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The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell
Permeability by Activating RhoA
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ABSTRACT Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute
pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected,
MEC:s are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs in-
fected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by
activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis
complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex contain-
ing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs nor-
mally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively acti-
vated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size
and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibi-
tors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced
the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demon-
strate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to
constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC per-
meability further suggests therapeutically targeting RhoA, TSCs, and Racl as potential means of resolving capillary leakage
during hantavirus infections.

IMPORTANCE HPS is hallmarked by acute pulmonary edema, hypoxia, respiratory distress, and the ubiquitous infection of pul-
monary MECs that occurs without disrupting the endothelium. Mechanisms of MEC permeability and targets for resolving le-
thal pulmonary edema during HPS remain enigmatic. Our findings suggest a novel underlying mechanism of MEC dysfunction
resulting from ANDV activation of the Rheb and RhoA GTPases that, respectively, control MEC size and permeability. Our stud-
ies show that inhibition of RhoA blocks ANDV-directed permeability and implicate RhoA as a potential therapeutic target for
restoring capillary barrier function to the ANDV-infected endothelium. Since RhoA activation forms a downstream nexus for
factors that cause capillary leakage, blocking RhoA activation is liable to restore basal capillary integrity and prevent edema am-
plified by tissue hypoxia and respiratory distress. Targeting the endothelium has the potential to resolve disease during symp-
tomatic stages, when replication inhibitors lack efficacy, and to be broadly applicable to other hemorrhagic and edematous viral
diseases.
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antaviruses predominantly infect microvascular endothelial

cells (MECs) and nonlytically cause diseases associated with
increased vascular permeability (1-7). Hantavirus pulmonary
syndrome (HPS) results from infection by hantaviruses present in
North and South America, including Andes virus (ANDV), Sin
Nombre virus (SNV), New York 1 virus, and many others (5,
8-12). However, ANDV is the only hantavirus reported to spread
from person to person (5, 9-12) and to cause lethal HPS-like
disease in Syrian hamsters (9, 13—15). HPS is characterized by
thrombocytopenia, hypoxia, and acute pulmonary edema that
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leads to respiratory insufficiency and an associated 35 to 49%
mortality rate (4, 7, 16, 17).

Although hantaviruses infect MECs in many organs, virtually
all pulmonary MECs are reportedly infected and enlarged in HPS
patients (1, 7). This unique hantavirus MEC tropism sets the stage
for dysregulated MEC barrier functions to contribute to capillary
leakage during HPS (1, 4, 7). The association of immune and
cytokine responses with MEC permeability has been suggested
(18-20), yet the same data support opposing conclusions, and
steroids fail to control hantavirus disease (1, 4, 7, 21). A study of

mBio® mbio.asm.org 1


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01747-16&domain=pdf&date_stamp=2016-10-25
mbio.asm.org

Gorbunova et al.

HPS in macaques indicates that pulmonary edema is observed
from 6 to 13 days postinfection (dpi) without concurrent T cell or
cytokine responses (22). Studies of ANDV-infected Syrian ham-
sters, which closely mimic human HPS (13-15), indicate that
dexamethasone or cyclophosphamide treatment or depletion of
macrophages or CD4" or CD8™" T cells failed to alter the timing,
onset, or severity of HPS (13, 23). In fact, immunosuppression
permits SNV to cause lethal edema in Syrian hamsters (24).

Additional findings support roles for hantavirus dysregulation
of infected pulmonary MECs in HPS-directed capillary permea-
bility. Pathogenic hantaviruses engage inactive, bent a, 85 integrin
conformers in order to infect MECs (25-28), and hantaviruses
remain cell associated (29, 30), inhibiting «, 35 integrin-directed
MEC migration days after infection (29, 31, 32). Activated «,f3;
integrins normally restrict the permeabilizing effects of vascular
endothelial growth factor (VEGF) by forming a complex with
VEGEF receptor 2 (VEGFR2) (33, 34). Pathogenic, but not non-
pathogenic, hantaviruses uniquely inhibit «, 5 functions in hu-
man MECs, resulting in the hyperpermeability of MECs to VEGF
or hypoxia-induced VEGF (31, 32, 35). Edema causes hypoxia,
and HPS patients become acutely hypoxic, with elevated VEGF
levels in pulmonary edema fluids (36). Secreted VEGF binds to
endothelial cell (EC) receptors within 0.5 mm of its release (37),
acting locally to disassemble adherens junctions (AJs) and induce
EC permeability (34, 38). Bradykinin release following activation
of the kallikrein-kinin system was also shown to increase electrical
conductance, as a measure of permeability, in ANDV- and Han-
taan virus (HTNV)-infected ECs (39). However, the mechanisms
by which hantaviruses constitutively cause basal capillary perme-
ability and edema that evolves into later tissue hypoxia remain to
be resolved.

AJs are composed of homophilic interendothelial vascular en-
dothelial (VE)-cadherin complexes that form the primary fluid
barrier of capillaries (38, 40). Intracellularly, VE-cadherin engages
the actin cytoskeleton and is dynamically regulated by extracellu-
lar and intracellular signaling pathways that control cell morphol-
ogy, motility, and leukocyte extravasation (38, 40, 41). Racl and
RhoA are cytoplasmic cellular GTPases that opposingly control
the density of VE-cadherin within AJs, pore formation during
diapedesis, EC barrier integrity, and capillary permeability (40,
42-46). Activation of a5 or focal adhesion kinase (FAK) acti-
vates Racl, increasing the density of VE-cadherin between ECs,
and FAK also engages and stabilizes actin/VE-cadherin complexes
(33, 40, 47, 48). In contrast, inhibition of «, 35 prevents FAK and
Racl activation and instead directs RhoA activation (44, 48, 49).
In ECs, the conditional knockout of FAK or the RhoA inhibitor
RhoGDlI is sufficient to increase EC permeability and cause pul-
monary edema in mice (48, 50, 51).

In HPS patients, hantavirus-infected MECs are reportedly en-
larged (1, 7), providing a visible correlate of MEC dysfunction. In
vitro, we also found that ANDV-infected MECs were enlarged (3-
to 5-fold), with hypoxia increasing both the number of enlarged
infected MECs and MEC permeability (52, 53). In contrast, infec-
tion of MECs with nonpathogenic Tula virus (TULV) or mock
infection resulted in 2 to 10% enlarged MECs under hypoxic con-
ditions and failed to enhance MEC permeability (31, 32, 53). Cell
size is controlled by mTOR-directed phosphorylation of S6 kinase
(S6K) (54) and normally inhibited by TSC repression of the
mTOR GTPase Rheb (54, 55). ANDV-induced increased MEC
size was directed by activating the Rheb-mTOR-pS6K signaling
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pathway (53). Tuberous sclerosis complexes (TSCs) normally in-
hibit Rheb-directed mTOR activation (54, 56), and mutations in
TSC proteins (TSC1-hamartin, TSC2-tuberin) constitutively ac-
tivate Rheb-mTOR-pS6K and increase cell size (54, 56). Intrigu-
ingly, TSCs also regulate Racl and RhoA GTPases that play fun-
damental antagonistic roles in the control of EC permeability (40,
45, 57-59). This suggested that ANDV regulation of TSCs may
increase both MEC size and capillary leakage in HPS.

In this study, we evaluated ANDV infection and N protein
regulation of TSCs that result in Rheb and RhoA activation in
MECs. Our results indicate that expression of the ANDV N pro-
tein alone in MECs increases cell size and activates Rheb-mTOR-
pS6K by binding to TSCs. Our studies revealed that ANDV N
protein coprecipitates TSC2, assembled TSC complexes, and
the TSC inhibitor 14-3-3 (60—62). Consistent with this, we
found that ANDYV infection or N protein expression in MECs
activated RhoA and reduced levels of the RhoA inhibitor
p190RhoGAP and the Racl activator TIAM1. Small interfering
RNA (siRNA) knockdown of RhoA, expression of dominant-
negative RhoA, or inhibition of RhoA/ROCK with fasudil or
Y27632 was found to reduce ANDV-directed MEC permeability
by 80 to 90%. These findings demonstrate that ANDV activation
of RhoA causes MEC permeability and suggest an underlying
edemagenic mechanism that may constitutively decrease the bar-
rier integrity of ANDV-infected MECs. These findings implicate
RhoA, TSCs, and Racl as potential therapeutic targets for resolv-
ing capillary leakage during ANDV infection and a potential
means of resolving edema during symptomatic HPS stages.

RESULTS

ANDV N protein expression in human endothelial cells in-
creases cell size. The mechanism by which ANDV activates
mTOR, increases MEC size, and causes MEC permeability re-
mains to be defined. Hantavirus N proteins are highly expressed
during infection (63, 64), yet roles for hantavirus proteins in MEC
dysfunction and permeability have not been studied. Here we an-
alyzed the constitutive expression of ANDV N protein in early-
passage primary human pulmonary MECs. MECs were lentivirus
transduced to express ANDV N protein and puromycin selected.
ECs persistently expressed N protein in >95% of MECs without
notable effects on cell viability or loss of N protein expression in
the absence of puromycin selection (Fig. 1A). Similar to ANDV
infection (53), we noted that ~15% of N-protein-expressing
MECs were enlarged (three to five times normal size) (Fig. 1A and
B). Hypoxic conditions increased the number of enlarged MECs
(40 to 50%) and the permeability of N-protein-expressing MECs
(~3-fold) (Fig. 1B). In comparison, ~5% of mock-transduced,
hypoxia-treated control MECs were enlarged (Fig. 1C) (53). Un-
der hypoxic conditions, the percentage of enlarged N-protein-
expressing MECs was dramatically reduced by addition of the
mTOR inhibitor rapamycin (Fig. 1C).

ANDV N protein induces mTOR-directed phosphorylation
of S6K. TSCs regulate cell size by inhibiting the mTOR-specific
GTPase Rheb (54, 55). Mutations in the TSC1 or TSC2 protein
result in increased cell size by derepressing Rheb and constitu-
tively activating mTOR-directed phosphorylation of S6K (54).
Analysis of N-protein-transduced MECs revealed that N protein
expression directed the phosphorylation of S6K under hypoxic
conditions (Fig. 2A). In contrast, S6K was not phosphorylated by
hypoxia treatment of MECs alone (Fig. 2A) and pS6K responses of
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FIG1 ANDV N protein expression induces mTOR-directed endothelial cell
enlargement. (A) Pulmonary MECs were infected with ANDV or transduced
with a lentivirus expressing ANDV N protein and puromycin selected (113).
MECs were immunoperoxidase stained for N protein and visualized by light
microscopy. (B) The percentage of enlarged MECs expressing ANDV N under
normoxic (20% O,) or hypoxic (1% O,) conditions was measured and quan-
tified with NIH Image (31, 32, 53). The permeability of N-protein-expressing
MEC:s relative to that of control MECs was determined by Transwell permea-
bility to FITC-dextran (40 kDa) incubated under normoxic or hypoxic condi-
tions (31, 32, 53). (C) Control and ANDV N-protein-expressing MECs were
assayed for the effect of VEGF (20 ng/ml; 1 h) on enlarged cells (=3 X normal
size) in the presence or absence of rapamycin (53). Data represent results of
three independent experiments (**, P < 0.01; ***, P < 0.001).

N-expressing MECs was blocked by rapamycin (Fig. 2A). Consis-
tent with this, expression of N protein in HEK293 cells in the
presence of Rheb dose dependently increased S6K phosphoryla-
tion, while expression of Rheb alone failed to increase pS6K
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FIG 2 ANDV N-protein-induced mTOR phosphorylation of S6K is TSC2
sensitive. TSC repression of Rheb-mTOR-pS6K restricts cell size (54). (A)
MECs transduced and puromycin selected to persistently express ANDV N
protein or mock transduced were evaluated for mTOR-directed phosphoryla-
tion of S6K under hypoxic conditions (53). Control or N-protein-expressing
MECs were assayed for changes in S6K phosphorylation by WB assay with a
phosphospecific antibody to S6K (T389) (cell signaling) in the presence or
absence of rapamycin (20 ng/ml) as previously described (53). (B) HEK293T
cells were cotransfected with increasing amounts of a plasmid expressing the N
protein and a constant amount of Rheb and assayed for pS6K, total S6K, and
actin by WB (53). (C) ANDV N-protein-directed phosphorylation of S6K was
assayed in the presence of increasing amounts of a plasmid expressing TSC2.
Lysates were assayed by WB assay for pS6K, total S6K, TSC2, N protein, and
actin levels.

(Fig. 2B). Interestingly, expression of increasing amounts of TSC2
resulted in a concomitant decrease in N-protein-directed S6K
phosphorylation (Fig. 2C), suggesting that N-directed mTOR ac-
tivation is TSC2 mediated. Collectively, these findings indicate
that ANDV N protein increases the size of MECs by activating the
Rheb-mTOR-pS6K signaling pathway.

ANDV N protein binds TSCs via interactions with N-
terminal domains of TSC2. The findings described above suggest
that N protein may alter normal TSC repression of Rheb. TSC1
and TSC2 form a complex that inhibits Rheb-directed mTOR ac-
tivation through a GTPase-activating protein (GAP) domain in
the TSC2 C terminus (55). We previously reported that ANDV,
but not nonpathogenic TULV, activates mTOR-pS6K and in-
creases cell size (53). In order to determine if the TULV and
ANDV N proteins differ in the ability to interact with TSCs, we
coexpressed TSC2 with ANDV or TULV N protein and assayed N
protein interactions with TSC2. We immunoprecipitated TSC2
from cell lysates and found that TSC2 selectively coprecipitated
ANDV, but not TULV, N protein (Fig. 3A). These findings are
consistent with ANDV activation of mTOR and prompted the
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FIG 3 ANDV N protein coimmunoprecipitates TSC2 via N-terminal domains. (A) HEK293T cells were cotransfected with plasmids expressing the ANDV or
TULV N protein and hemagglutinin (HA)-tagged TSC2. Cell lysates (114) were immunoprecipitated with anti-HA antibody, evaluated for immunoprecipitated
TSC2 protein and coprecipitated N proteins by WB (left), and simultaneously analyzed for input protein by WB of N protein, TSC2, and actin (right) (114, 115).
(B) HEK293 cells transfected with plasmids expressing N protein, Flag-tagged TSC2, or a C-terminal truncation of TSC2 containing residues 1 to 1403 were
immunoprecipitated (IP) with anti-N rabbit antibody and assayed by WB for coprecipitated TSC2 or truncated TSC2, as well as for input protein, by direct WB
analysis of lysates for TSC2, N protein, and actin (116). (C) HEK293T cells were cotransfected with plasmids expressing ANDV N protein, HA-tagged TSC1, or
an HA-tagged C-terminal truncation of TSC1 containing residues 1 to 361. Cell lysates were immunoprecipitated with antibody to ANDV N protein and assayed
for coprecipitation of TSC1 or TSC1 truncations by WB (114) or assayed directly for input protein by WB for HA-TSC1, N protein, and actin (114, 115). (D)
HEK293 cells were cotransfected with the TSC2-, HA-TSC1-, and N-protein-expressing plasmids indicated and assayed for input protein by WB and for N

protein coprecipitation of TSC2 and TSC1 by WB.

evaluation of ANDV N protein interactions with additional TSC
components that normally repress Rheb (56, 58). HEK293 cells
were transfected with plasmids expressing ANDV N, TSC1, TSC2,
or truncated TSC proteins and reciprocally evaluated for coim-
munoprecipitation by ANDV N protein. ANDV N protein copre-
cipitated TSC2 and a C-terminal TSC2 truncation (1 to 1403)
lacking the GAP domain (Fig. 3B). In contrast, N protein failed to
coprecipitate TSC1 or a C-terminal TSC1 truncation (1 to 361)
(Fig. 3C). In cells coexpressing TSC1 and TSC2, we found that N
protein coprecipitated both TSC2 and TSC1 (Fig. 3D). These find-
ings suggest that ANDV N interacts with assembled TSC1-TSC2
complexes through interactions with the N terminus of TSC2 that
are independent of the TSC2 GAP domain.

ANDV N protein binds TSCs in the presence or absence of
the TSC inhibitor 14-3-3. In addition to TSC1 and TSC2 compo-
nents, TSCs are present as ternary complexes containing TBC1D7
(62,65), and TSCregulation of Rheb is inhibited by recruitment of
the scaffold protein 14-3-3 (60, 61). Here we immunoprecipitated
TSC2 and analyzed N protein interactions with TSCs containing
TBC1D7 and 14-3-3. We found that TBC1D7, TSC1, and N pro-
tein were coprecipitated by TSC2 and that N protein formed a
complex with TSCs in the presence or absence of 14-3-3 (Fig. 4A).
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These findings suggest that, instead of disrupting TSCs, N protein
binding to TSC2 mediates its association with assembled TSCs
and that N protein binding to TSCs is discrete from the binding of
inhibitory 14-3-3 proteins (Fig. 4A) (60-62).

We further evaluated endogenous TSC2 interactions with N
protein following ANDV infection of MECs. We found that im-
munoprecipitation of endogenous TSC2 from ANDV-infected
MECs resulted in coprecipitation of the ANDV N protein
(Fig. 4B). These findings validate coexpression studies by demon-
strating endogenous interactions of the Rheb inhibitor TSC2 with
N protein during ANDV infection. Together, these findings indi-
cate that ANDV N protein binding to TSCs and TSC-14-3-3 com-
plexes prevents TSC repression of Rheb and results in the activa-
tion of mMTOR-pS6K signaling pathways.

ANDY infection and N protein expression activate RhoA in
MECs. Collectively, our findings suggest that N protein binds TSCs
and inhibits TSC repression of Rheb. However, TSCs also regulate
signaling responses directed by Racl and RhoA GTPases (57-59, 66)
that antagonistically regulate EC permeability (Fig. 5A) (40, 43, 50).
A wide range of factors activate RhoA to cause EC permeability
(38,42,49,51,67), and this prompted us to determine if RhoA was
activated by ANDV infection of MECs (40, 46). We assayed acti-
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FIG 4 TSC2 coimmunoprecipitates ANDV N protein in assembled TSC
complexes from ANDV-infected MECs. (A) HEK293 cells were cotransfected
with plasmids expressing TSC2, N protein, HA-TSC1, HA-TBC1D7, and HA—
14-3-3 as indicated. Cell lysates were immunoprecipitated (IP) with antibody
to TSC2 and assayed for coprecipitation of N protein and TSC1, TBC1D7, and
the TSC inhibitor 14-3-3 as indicated. Lysates were analyzed for individually
expressed input proteins and actin by WB. (B) MECs were ANDV infected at
an MOI of 0.5, and at 3 dpi, cell lysates were immunoprecipitated with anti-
body to endogenous TSC2 and assayed for coprecipitation of ANDV N protein
by WB. WB of endogenous TSC2 and ANDV N protein in infected MEC
lysates was analyzed for total input TSC2, N protein, and actin levels.

vated (GTP-bound) RhoA by using Rhotekin binding domain as-
says and found that ANDV infection of MECs constitutively acti-
vated RhoA and that RhoA activation was independent of hypoxic
conditions (Fig. 5B). We similarly analyzed MECs expressing
ANDV N protein and found that RhoA was constitutively acti-
vated (Fig. 5C). In contrast, lentivirus expression of GnGc alone in
MEC:s did not activate RhoA and coexpression of N and GnGc in
MEC:s resulted in RhoA activation similarly to N protein expres-
sion alone (Fig. 5C). These findings indicate that RhoA activation
is uniquely directed by the ANDV N protein and that ANDV in-
fection directs the basal activation of RhoA in human MECs inde-
pendently of hypoxia. Since RhoA activation is a prominent cause
of MEC and capillary permeability (43, 46, 50, 51, 68), our results
suggest that RhoA activation by ANDV is an underlying mech-
anism of diminished MEC barrier integrity and basal capillary
leakage.

GTPase-specific GAPs and GEFs (guanine nucleotide ex-
change factors), respectively, inhibit or activate Racl and RhoA
(50, 69-71). We analyzed N-protein-expressing MECs for
changes in pl190RhoGAP, TIAM1, and IQGAP, which are re-
spective regulators of RhoA, Racl, and cdc42 GTPases. We
found that MECs expressing the ANDV N protein had dramat-
ically reduced levels of the RhoA inhibitor pl90RhoGAP and the
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FIG 5 ANDV and ANDV N protein activate RhoA. (A) TSCs normally
inhibit Rheb and RhoA and enhance Racl-directed EC barrier integrity. N
protein derepression of TSC-Rheb suggests that N may similarly direct RhoA
activation and MEC permeability. (B) ANDV-infected MECs were assayed for
RhoA activation (Rho-GTP) with the GST-Rhotekin-RBD assay (Cytoskele-
ton Inc.) and for total RhoA and N protein levels under hypoxic (Fig. 1) or
normoxic conditions. (C) Control MECs and MECs transduced to express
ANDV N protein, N, and GnGc or GnGc alone were assayed for RhoA activa-
tion as described above and for RhoA and ANDV-expressed proteins. (D)
Control MECs or MECs constitutively expressing ANDV N protein were as-
sayed for total pI90RhoGAP, Racl GEF, and TIAM1 protein levels and for
IQGAP, N protein, and actin by WB.

Racl activator TIAMI, while levels of IQGAP remained un-
changed in N-protein-expressing cells (Fig. 5D). These findings
are consistent with the idea that N protein expression prevents
p190RhoGAP repression of RhoA. Since TSCs normally inhibit
RhoA and activate Racl, our findings are consistent with N pro-
tein activation of RhoA by coordinated inhibition of TSCs, GAPs,
and GEFs, which determine the balance of Racl and RhoA activa-
tion and MEC barrier integrity (70, 71). However, it remains to be
determined if these changes are a cause of RhoA activation or
whether additional factors that control RhoA (i.e., RhoGDI, FAK,
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Syx, Vav2, and pl115RhoGEF) (48-50, 69, 71) are engaged by
ANDV infection or N expression to constitutively activate RhoA.

ANDV-induced MEC permeability is blocked by inhibition
of RhoA. Activation of RhoA directs actin contraction and the
disassembly of VE-cadherin within AJs that controls capillary per-
meability (38, 41, 43, 46, 50, 70). We previously reported that
ANDV and hemorrhagic fever with renal syndrome (HFRS)-
causing HTNV, but not TULV, infections of MECs induce VE-
cadherin disassembly and enhance MEC permeability in response
to hypoxia or VEGF (31, 32, 35, 72). The findings described above
suggest that RhoA activation may be an underlying edemagenic
mechanism that causes capillary leakage and basal pulmonary
edema during ANDV infection. Here we determined if ANDV-
induced permeability is RhoA mediated by analyzing responses of
MECs to discrete RhoA inhibitors. We transfected MECs with
RhoA siRNAs or transduced MECs to express dominant-negative
RhoA(T19N) (73) and found that RhoA expression levels were
specifically reduced in siRNA-treated MECs and increased in
RhoA(T19N)-expressing cells (Fig. 6A and B). Using a gold stan-
dard fluorescein isothiocyanate (FITC) Transwell permeability
assay (31, 32, 53), we found that RhoA-specific siRNA resulted in
a 90% reduction of ANDV-induced permeability (Fig. 6A). Sim-
ilarly, transduction of MECs with a lentivirus expressing an inac-
tive RhoA(T19N) mutant protein resulted in an 80% reduction in
ANDV-induced MEC permeability (Fig. 6B).

We further analyzed the effects of the RhoA and Rho kinase
(ROCK) inhibitors fasudil (HA-1077) and Y27632 (70, 74) for the
ability to reduce ANDV-induced EC permeability. At 3 days after
ANDYV infection, we added RhoA inhibitors to cells 6 h prior to
analysis of MEC permeability. We found that the addition of fa-
sudil or Y27632 dramatically reduced ANDV-induced MEC per-
meability 80 to 90% (Fig. 6C). A prior study showed that ANDV
and HTNV enhanced bradykinin-directed permeability (39). Asa
result, we determined whether ANDV- and HTNV-directed MEC
permeability responses induced by bradykinin were inhibited by
the ROCK inhibitor fasudil. We found that the addition of brady-
kinin to ANDV- and HTNV-infected MECs increased permeabil-
ity ~3-fold and that coadministration of fasudil inhibited perme-
ability to control levels (Fig. 6D).

These findings indicate that ANDV-induced MEC permeabil-
ity is RhoA directed and blocked by inhibition of RhoA activation.
Collectively, our findings suggest a mechanism by which ANDV
induces basal changes in MEC permeability and cell size through
N protein interactions with TSC that derepress Rheb and RhoA
GTPases. Our findings suggest the potential for RhoA to be a
conserved downstream target for hantavirus therapeutics, which
may reduce or resolve basal ANDV-induced edema by inhibiting
RhoA activation or activating pathways that restore Racl activa-
tion and TSC function (Fig. 7).

DISCUSSION

ECs contain unique receptors, junctions, and signaling pathway
effectors that regulate immune cell and platelet binding and acti-
vation, transcytosis, vascular tone, and the activation of comple-
ment and clotting cascades that collectively regulate hemostasis
(75). ECs regulate vascular barrier functions through a series of
failsafe mechanisms that are in place to prevent a lethal breach of
barrier integrity (33, 34, 38, 75, 76). As a result, it is likely that
several EC functions need to be inhibited to cause hemorrhagic or
edematous diseases.
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FIG 6 RhoA inhibitors block ANDV-directed MEC permeability. (A) MECs
were ANDV infected (MO, 1) and transfected at 2 dpi with control siRNA or
siRNA to RhoA. RhoA and actin protein levels were assayed by WB, and MEC
permeability was assayed as described in the legend to Fig. 1B by Transwell
assay, and results are presented as a percentages of control ANDV-directed
MEC permeability (31, 32). (B) MECs were transduced with a lentivirus ex-
pressing dominant-negative RhoA(T19N) (73) and subsequently ANDV in-
fected and assayed as described above for MEC permeability directed by
ANDV infection. (C) MECs were ANDV infected, and at 3 dpi, the RhoA
inhibitor fasudil or Y27632 (10 uM) was added to cells 6 h prior to analysis of
MEC permeability. Monolayer permeability was assayed as described for
Transwell monolayer permeability to FITC-dextran (40 kDa) for 30 min with
FITCin the lower chambers quantitated by fluorimetry. (D) MECs were mock,
ANDV, or HTNV infected (MO, 1) in Transwell plates in triplicate, and at 3
dpi, MECs were incubated in EBM—0.5% BSA for 2 h. MECs were treated with
or without fasudil (10 uM) for 1 h and subsequently stimulated with brady-
kinin (1 uM) in the presence of FITC-dextran (40 kDa) for 30 min prior to
fluorimetric quantitation of medium in the lower chambers and comparison
to mock-infected controls. Data are representative of results from three inde-
pendent experiments.

ECs are the primary cellular targets of hantavirus infection (1,
6, 7), and this focuses studies of pathogenesis on mechanisms by
which hantaviruses dysregulate MEC functions (31, 72, 77) in
order to increase vascular permeability and cause the diseases HPS
and HFRS (2, 3, 16). Mutation or knocking out of 5 integrins
causes vascular leakage (33, 78), and pathogenic hantaviruses bind
and inhibit the function of B; integrins present on platelets and
ECs (25-28). HPS patients are acutely thrombocytopenic (7), and
on MECs, «, 35 integrins play a fundamental role in cell migration,
the formation of focal adhesions, Rac1 activation, and the regula-
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cells is shown. Racl activation, which normally enhances VE-cadherin assembly within AJs and maintains MEC barrier integrity (40, 46, 58, 86, 87), is depicted
on the left. Potential changes in RhoA and Rac1 responses following ANDV infection of MECs are presented on the right. RhoA activation by N protein may be
exacerbated by additional responses to ANDV infection that dysregulate normal «, 3, integrin and FAK responses and are enhanced by hypoxia and mTOR-
directed increases in HIF1a. Extracellularly, pathogenic hantaviruses bind bent, inactive a, 35 integrins (27), blocking integrin and associated FAK and Racl
responses that stabilize AJs (48, 79, 117). Intracellularly, ANDV N protein binds and inhibits TSCs that normally repress RhoA (58, 59, 86)- and Rheb-mTOR
(56)-directed changes in cell size (54, 82), HIF1a induction (60), and permeability (43, 48, 50, 68). N protein activates RhoA, which constitutively increases MEC
permeability and also explains ANDV-enhanced MEC permeability in response to hypoxia (52, 53), bradykinin (39), and VEGF (31, 32, 36, 91), which further
activate RhoA (49, 68). These findings are consistent with ANDV activation of RhoA, hypoxia-enhanced MEC permeability, and the ability of RhoA inhibitors

to block this common downstream permeability nexus (49).

tion of VEGFR2-directed permeability (48, 79). Hypoxia, ob-
served at late stages of HPS (4, 7), induces the permeability factor
VEGF (34, 53), as well as bradykinin receptors that direct perme-
ability in response to activation of the kallikrein-kinin system (39,
67, 80, 81). In fact, VEGF levels are increased in HPS pulmonary
edema fluids (31, 32, 36), and activation of the kallikrein system in
HV-infected cells releases bradykinin and increases EC permea-
bility (39). Capillary permeability is commonly mediated by
downstream RhoA activation, and findings presented here dem-
onstrate that the ANDV N protein activates RhoA.

In HPS patients, nearly every pulmonary MEC is infected and
enlarged (1, 7); similarly, ANDV infection of MECs in vitro results
in the generation of enlarged cells (52, 53). Here we show that
expression of the ANDV N protein in MECs is sufficient to cause
MEC enlargement and activate Rheb-mTOR-pS6K and RhoA sig-
naling responses. TSCs normally repress Rheb (56, 82), and ex-
pression of ANDV N protein dose dependently increased S6K
phosphorylation that was inhibited by expression of TSC2. We
observed that ANDV N protein binds to endogenous or expressed
TSC2 and that, instead of displacing TSC components, N bound
to an assembled TSC complex with or without the TSC inhibitor
14-3-3 (60, 62, 83, 84). This suggests a novel mechanism by which
ANDV N protein inactivates TSCs to control cell size and poten-
tially enhance mTOR-directed increases in HIF1« that may con-
tribute to hypoxia-induced responses of ANDV-infected MECs
(60, 62).
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TSCs also control the activity of Racl and RhoA GTPases that
antagonistically control barrier integrity and capillary permeabil-
ity (42, 46, 51, 58, 60, 85, 86). RhoA activation directs stress fiber
organization and contraction, inhibits Racl activation, impairs
VE-cadherin assembly, and increases vascular permeability (43,
48, 50). In contrast, Racl activation directs the formation of filop-
odia, increases the assembly of VE-cadherin homodimers between
MECs, increases capillary barrier integrity, and inhibits RhoA (40,
46, 58, 86, 87). Thus, the balance between the activation of Racl
and that of RhoA critically regulates AJ barrier function and vas-
cular permeability (38,40, 41, 70). We found that ANDV infection
or N protein expression in MECs constitutively activates RhoA.
This suggests a program by which the ANDV N protein inhibits
TSC regulation, activates RhoA, and tips the balance from MEC
integrity to one of basal MEC leakage (Fig. 7).

Correlates of basal EC permeability during HV infection have
not previously been found, in part because vessels, but not EC
monolayers, are under pressure and even small changes in barrier
integrity are exacerbated in capillaries. In fact even inapparent
cellular stresses like breathing-directed cyclic stretching of the
pulmonary endothelium (88, 89) may contribute to capillary leak-
age when uncoupled from normal MEC integrity. The cause of
vascular leakage during hantavirus diseases has been speculated to
stem from a wide range of effectors, including growth factors,
kinins, immune responses, cytokines, T cells, and permeability
factors (18-20, 29, 31, 32, 35, 36, 39, 77, 90). Although several
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factors are likely to contribute to permeability, immunosuppres-
sion of HV patients has no effect on the disease (21) and recent
findings suggest that immune responses are not determinants of
vascular leakage in animal models of ANDV infection (13, 22, 23).
Prior studies have shown that ECs infected by pathogenic, but not
nonpathogenic, hantaviruses are hyperpermeabilized by VEGF
addition or by hypoxic conditions observed at late stages of HPS
(31,32, 35, 53,91, 92). In addition, HV-infected ECs are hyperre-
sponsive to bradykinin-directed EC permeability (39). Hypoxia or
VEGF addition directed the nondegradative internalization of
VE-cadherin within HV-infected MECs (31, 32, 35, 53), although
another study suggested that VE-cadherin was transiently de-
graded after VEGF addition (91).

Activated RhoA is linked to EC permeability directed by
thrombin, tumor necrosis factor alpha, and histamine, as well as
bradykinin and VEGF (38, 42, 49, 67, 80, 85). Findings presented
here demonstrate a role for RhoA activation in MEC permeability
during ANDV infection (Fig. 6A to C) and also show that inhibi-
tion of RhoA blocks bradykinin-directed permeability in ANDV
and HTNV-infected ECs (Fig. 6D). This implicates RhoA acti-
vation as a cause of basal changes in MEC integrity that con-
tribute to vascular leakage and edema (31, 32, 36, 39). However,
hypoxic conditions also induce bradykinin receptors and VEGF
(46, 67, 93), and this further suggests a mechanism for ANDV to
amplify RhoA-directed permeability under hypoxic conditions
(38, 41, 43, 46, 49, 60). Given the fundamental role of RhoA acti-
vation in basal and hypoxia-directed EC permeability (42, 43),
these findings suggest RhoA as a central downstream target of
edema during HPS.

Additional MEC functions dysregulated by hantavirus infec-
tion may also exacerbate N-protein-directed RhoA activation.
Both a,f3; integrins and FAK normally activate Racl (27, 48, 79),
yet pathogenic hantaviruses block a5 integrin and FAK activa-
tion during infection (27, 29, 30). This suggests a role for ANDV
inhibition of extracellular «, 35 integrin responses as a means of
reducing Racl-directed barrier integrity and enhancing RhoA ac-
tivation during ANDV infection. Another potential way for 35
integrins and RhoA to contribute to pulmonary edema is provided
by neutrophil recruitment to pulmonary compartments during
HPS (7, 94-96). As neutrophils traverse the endothelium to enter
tissues, pores are formed in ECs and pore assembly and closure are
regulated by Racl, RhoA, and 35 integrins (44, 95, 96). In ANDV-
infected MECs, inhibition of 35 and Racl and activation of RhoA
may increase the duration of pore opening and thereby diapedesis
alone may trigger pulmonary edema in HPS patients. As a result,
activating a,3; and Racl may be investigated as synergistic targets
for enhancement of EC barrier function and for inhibition of
RhoA activation (Fig. 7). Whether extracellular integrin blockade
(48,79, 97) or neutrophil extravasation contributes to RhoA acti-
vation and ANDV-directed MEC permeability remains to be in-
vestigated.

There are currently no therapeutic approaches for treating
hantavirus-induced diseases or reducing lethal outcomes of HPS
infections (21). Interferon and replication inhibitors are effica-
cious prophylactically but not in viremic or symptomatic patients
(5, 21, 98). However, one Puumala virus patient recovered after
being given a dose of the bradykinin antagonist icatibant (90) and
this supports a role for bradykinin in HFRS pathogenesis (39).
However, further studies are needed to determine if icatibant or
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several additional therapeutics provided to the patient played a
key role in recovery (90).

Our findings provide a mechanism for basal capillary permea-
bility during ANDV infection of MECs and uniquely reveal RhoA
as a potential therapeutic target for restoring MEC integrity and
resolving HPS (43, 49, 80, 94). Since RhoA is a central downstream
signaling effector (42, 43, 46, 68, 94, 99, 100), blocking of RhoA
activation may commonly inhibit constitutive and hypoxia-
directed EC permeability responses that are dysregulated by
ANDYV infection. ANDV-directed permeability was dramatically
reduced by the pharmacological RhoA/ROCK inhibitors fasudil
and Y27632 (74, 101, 102), and the approval of fasudil for use in
humans (102, 103) suggests its immediate therapeutic potential.
Findings presented here rationalize studying these and other
RhoA inhibitors for their efficacy in resolving lethal HPS disease in
a biosafety level 4 (BSL4) Syrian hamster model (15, 24).

On the basis of our findings, additional inhibitors that protect
endothelial barrier function by activating Racl and TSCs or indi-
rectly impact Racl/RhoA also have the potential to inhibit capil-
lary leakage and therapeutically resolve or reduce HPS disease.
Prostaglandin E2 promotes Racl activation, and forskolin and
rolipram protect EC barrier function by activating TSCs and pre-
venting Racl inhibition (104, 105). Statins were previously noted
to stabilize the endothelium by targeting 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase, resulting in reduced RhoA gera-
nylgeranylation required for RhoA activation (99, 106, 107). Ac-
tivation of a, 35 integrins (108) or use of compounds that lead to
Racl activation (i.e., SEW2871 [109], angiopoietin 1 [87, 110],
and FTY720 [31, 111]) may similarly inhibit edemagenic RhoA-
directed responses of ANDV-infected ECs. Although the re-
sponses described here were studied in an ANDV-specific context,
they appear to be applicable to HFRS-causing HTNV (Fig. 6D),
and the ubiquitous role of RhoA in vascular permeability (38, 42,
46, 49, 51, 67, 81) suggests that this approach may be germane to
other hemorrhagic and edematous viruses.

MATERIALS AND METHODS

Cells and virus. VeroE6 (ATCC CRL 1586) and HEK239T (ATCC CRL
1573) cells were grown in Dulbecco’s modified Eagle’s medium, 10%
fetal calf serum, and antibiotics as previously described (31). Human
pulmonary MECs were purchased from Cambrex Inc., grown in endothe-
lial growth medium 2MV (Lonza), and supplemented as previously de-
scribed (31). ANDV (CHI-7913) was cultivated in BSL3 facilities (31).
Viral titers were determined in VeroE6 cells, MECs were ANDYV infected
at a multiplicity of infection (MOI) of 0.5 or mock infected, and cells were
>90% infected at 3 dpi, as determined by focus assay of infected MECs
with anti-N-protein antibodies and immunoperoxidase staining with
3-amino-9-ethylcarbazole (25, 26). MECs infected with pathogenic
ANDV (MO 0.5) or persistently expressing ANDV N protein were incu-
bated for 18 h under hypoxic conditions (1% O, by N, displacement, 5%
CO, in a multigas incubator [MCO-19M Sanyo Scientific], or cobalt-
chloride [100 uM] treated [Sigma]) to induce hypoxia in basal EBM-2
with 0.5% bovine serum albumin (BSA) for 6 h (52, 53). Cells more than
three times normal MEC size were considered to be enlarged and were
quantitated by microscopy (10 fields, 1,500 cells in duplicate wells) with
NIH Image.

Plasmids and constructs. Plasmids expressing TSC2, TSC1, TBC1D7,
14-3-3, S6K, and Rheb were obtained from Addgene (14129, 19911,
32047, 13270, 26610, and 19996). ANDV nucleocapsid open reading
frames were PCR amplified and inserted into the pLenti-CMV-GFP-Puro
vector at the BamHI and Xbal sites, and HEK293T cells were cotrans-
fected with third-generation lentiviral packaging plasmids p-RSV-Rev,
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pMD.2G, and pMDLg/pRRE (Addgene 658-5, 12259, 12251, and 12253)
(112, 113) to generate lentivirus expressing the ANDV N protein.
RhoA(T19N) (73) was subcloned from the pRK5myc RhoA-T19N plas-
mid into the pLenti-GFP-hygro vector at the BamHI and Xbal sites (Ad-
dgene 12967, 15901, 17446, and 93425) and used as described above to
generate lentiviruses for MEC transduction. Passage 3 MECs were trans-
duced with recombinant ANDV N lentiviruses at an MOI of 5, initially
puromycin selected (0.3 ug/ml), and passed in the absence of puromycin
prior to studies at passages 6 and 7. ANDV N protein expression was
detected in >95% of the transduced MECs. RhoA(T19N) lentiviruses
were generated as described above and assayed for RhoA expression by
Western blotting (WB). HEK cells were transfected with plasmids by us-
ing calcium phosphate, and siRNAs were purchased from SA-Biosciences
and transfected into ECs with Surefect as previously described (32).

Antibodies and inhibitors. Antibodies to RhoA, S6K, TSC2,
p190RhoGAP, TIAM1, IQGAP, HA-Tag, and Myc-Tag were purchased
from Santa Cruz and antibodies to actin, Flag, and Phospho-70S6K were
from Life Sciences. Anti-ANDV Gn monoclonal antibody was purchased
from United States Biologicals. Anti-N-protein polyclonal rabbit sera
made to NY-1V N protein was previously described (25, 26), and RhoA-
glutathione S-transferase (GST) activation assays were performed with
GST-Rhotekin-RBD from Cytoskeleton Inc. Bradykinin was purchased
from Sigma, and fasudil and Y27632 were purchased from Selleck Chem-
icals.

MEC permeability assay. A gold standard Transwell permeability as-
say was used to assess ANDV N-protein-directed MEC permeability (31,
32, 53) on Costar Transwell plates (3-um pores; Corning) in triplicate.
FITC-dextran (40 kDa, 0.5 mg/ml; Sigma) was added to the upper cham-
ber, and the lower chamber was monitored for FITC-dextran 1 h later
with a BioTek FLx800 fluorimeter (490 nm/530 nm) (31, 32, 53). The fold
change in FITC-dextran transit across ANDV N-protein-expressing
MECs versus control MECs was determined (31, 32, 53). Where indicated,
2 days after ANDV infection (MO, 0.5), MECs were grown overnight in
growth factor starvation medium and subsequently stimulated with
VEGEF-A (100 ng/ml) 1 h prior to the addition of FITC-dextran (31, 32, 35,
52). For bradykinin permeability analysis, MECs were mock, ANDV, or
HTNV infected (MOI, 1) in Transwell plates in triplicate and at 3 dpi they
were incubated in EBM—0.5% BSA for 2 h. MECs were treated with or
without fasudil (10 uM) for 1 h and subsequently stimulated with brady-
kinin (1 uM) in the presence of FITC-dextran (40 kDa) for 30 min prior
to fluorimetric quantitation of medium in the lower chambers and com-
parison to mock-infected controls. Data presented represent results of
three independent experiments (P < 0.001).

Immunoprecipitation analysis. WB assays were performed as previ-
ously described (32). Briefly, MECs were infected with ANDV and grown
under normoxic or hypoxic conditions as indicated. Cells were lysed in
buffer containing 1% NP-40 (150 mM NaCl, 40 mM Tris-Cl, 10% glyc-
erol, 2 mM EDTA, 10 nM sodium fluoride, 2.5 mM sodium pyrophos-
phate, 2 mM sodium orthovanadate, 10 mM B-glycerophosphate) with
protease inhibitor cocktail (Sigma) (114). Total protein levels were deter-
mined, and 20 pg of protein was resolved by SDS-polyacrylamide (10%)
gel electrophoresis. Coimmunoprecipitations were performed in lysis
buffer as previously described (114) with the antibodies indicated over-
night, followed by protein A/G agarose, three washes in lysis buffer, and
resuspension in SDS sample buffer prior to SDS-gel electrophoresis and
WB analysis (32). Proteins were transferred to nitrocellulose, blocked in
2% BSA, incubated with the antibodies indicated, and detected with
horseradish peroxidase-conjugated anti-mouse and anti-rabbit second-
ary antibodies and ECL reagent (Amersham).

Statistical analysis. Results were derived from two to five independent
experiments and are presented as the mean * the standard error of the
mean (SEM), with indicated P values of <0.01 and <0.001 considered to
be significant. Multiple group comparisons were made by one-way anal-
ysis of variance. Two-way comparisons were performed by two-tailed,
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impaired Student ¢ test. All analyses were performed with GraphPad
Prism software version 5.0.
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