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Abstract
A single tumor biopsy specimen is typically used in cancer genome studies. However, it

may represent incompletely the underlying mutational and transcriptional profiles of tumor

biology. Multi-regional biopsies have the advantage of increased sensitivity for genomic

profiling, but they are not cost-effective. The concept of an alternative method such as the

pooling of multiple biopsies is a challenge. In order to determine if the pooling of distinct

regions is representative at the genomic and transcriptome level, we performed sequencing

of four regional samples and pooled samples for four cancer types including colon, stom-

ach, kidney and liver cancer. Subsequently, a comparative analysis was conducted to

explore differences in mutations and gene expression profiles between multiple regional

biopsies and pooled biopsy for each tumor. Our analysis revealed a marginal level of

regional difference in detected variants, but in those with low allele frequency, considerable

discrepancies were observed. In conclusion, sequencing pooled samples has the benefit of

detecting many variants with moderate allele frequency that occur in partial regions, but it is

not applicable for detecting low-frequency mutations that require deep sequencing.

Introduction
With the approval of several molecular-targeted therapies, personalized therapeutic
approaches have become more practical for clinical cancer care. In general, the implementation
of targeted therapies is based on genetic alterations leading to tumor progression in individuals.
However, intratumoral heterogeneity hinders precise genetic profiling by lowering the proba-
bility of detecting target variations [1]. Tumor tissues taken from the same tumor might harbor
different mutations or exhibit distinct phenotypic characteristics [2, 3]. Intratumoral heteroge-
neity can act as a determinant of treatment failure and disease recurrence [4]. Despite this
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knowledge, surgically resected tumor specimens are usually divided into several aliquots in the
biobank without taking into account regional heterogeneity [5].

Regional genetic heterogeneity of tumor tissues is typically investigated by single-cell
genome analysis [2] or targeted deep sequencing [6]. Intratumoral heterogeneity at the single
nucleotide level has shown that many mutations are common to several regions, while several
other mutations are present only within a single region, suggesting ongoing regional clonal
evolution [3, 7]. At the transcriptome level, a recent study indicated that overall mRNA expres-
sion profiles in esophageal squamous cell carcinoma (ESCA) specimens are similar in all intra-
tumor comparisons based on microarray-based expression profiling [8]. Minimal regional
heterogeneity at the level of the transcriptome might suggest that clonal evolution is not caused
by transcriptional control in ESCA. However, single cell transcriptome analysis has revealed
expression heterogeneity in glioblastoma, breast cancer, and prostate cancer [1, 9, 10]. RNA
sequencing (RNA-seq) on single cells in lung cancer tissue showed high heterogeneity, which
was related to cell-specific responses to drug treatments.

Creation of a biobank requires the collection and storage of high-quality biological samples
that represent all of a patient’s genetic variation. Recommendations for specimen collection
and handling have been developed for clinical trials. A biobank may be defined as the long-
term storage of biological samples for research or clinical purposes. Best practices for the man-
agement of research biobanks vary according to institutions and international regulations and
standards. However, there are many agreed-upon best practices for establishing a biobank for
the custodianship of high-quality specimens and data [11]. Although the importance of genetic
heterogeneity in patient tumor tissue is increasing, the need for sampling and storage guide-
lines that reflect the regional variability of mutations remains.

The recent advent of next-generation sequencing (NGS) technologies has led to attempts to
identify appropriate therapeutic applications based on high-resolution mutation assessments.
Somatic mutational heterogeneity raises the issue of more careful decision-making with the
clinical implementation of deep sequencing. Multi-regional analysis through deep sequencing
has the potential to overcome the bias related to biopsy from a single region. Basically, pooling
of biopsies from a single tumor can significantly reduce sequencing cost and time, but the
applicability in clinical sequencing has not been studied in diverse cancer types. More reliable
assessment is needed in tumor sequencing strategies. We examined genomic and transcrip-
tomic profile differences between multiple regions and pooling of samples. A comparative
analysis of genomic and transcriptomic profiles using whole-exome sequencing (WES) and
RNA-seq data, respectively, revealed that multiple regional sampling is the most suitable tech-
nique for addressing genetic variability in cancer.

Materials and Methods

Sample preparation and design for multi-regional differences in genetic
profiles
Surgical specimens were stored in 3–4 aliquots depending on tumor size. We typically analyzed
one aliquot for genomic and biochemical characterization of the tumor. To measure the genetic
variability of different aliquots in the biobank, we designed an experiment comparing the geno-
mic and transcriptome profiles of pooled samples against multiple regional samples (Fig 1).
We selected one case each from four types of cancer including hepatocellular carcinoma, stom-
ach adenocarcinoma, renal cell carcinoma, and colon adenocarcinoma from the Biobank of
Samsung Medical Center (SMC). Each surgical sample for genome analysis was obtained from
four different tumor foci falling with the same distance. Four tumor foci were chosen according
to the following criteria: 1) Each region corresponded to a vertex of a square; 2) The length of
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each edge was 2 cm; and 3) Each fraction had the same volume. Once pooled sample was pre-
pared from four tumor foci, nucleic acids were extracted by QIAamp DNAmini kit (Qiagen,
Valencia, CA, USA). The frozen tumor samples were macro-dissected and lightly stained with
hematoxylin and eosin (H&E) to identify regions consisting of� 30% cancer cells. We com-
pared genomic profiles of WES and RNA-seq from four aliquots of each cancer type (Fig 1).
Mixed samples were also generated in silico by choosing random reads from individual sam-
ples. This study was exempted from IRB approval because it was conducted as a part of a qual-
ity check of specimens stored in the Samsung Medical Center Biobank.

Fig 1. Schematic overview of the comparison of mutation and expression patterns frommultiregion sequencing of whole-exome and whole-
transcriptome. Regional samples of each cancer were closely grouped over 2-D space based on principal component analysis (PCA). The differences in
genomic variants and in gene expression between sequencing are shown.

doi:10.1371/journal.pone.0152574.g001
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Genomic DNA and total RNA extraction
Tissue frozen in nitrogen solution was crushed into a small volume using a sterilized surgical
knife, and then homogenized using the Tissue Lyzer II (Qiagen, Valencia, CA, USA) at 20 Hz
for 30 seconds. After the homogenized tissue was digested by proteinase K at 56°C for 16 hours,
genomic DNA and total RNA were extracted using the AllPrep DNA/RNAmini kit (Qiagen)
according the manufacturer’s protocol. The quality and quantity of genomic DNA were deter-
mined using NanoDrop 8000 UV-Vis spectrometer (Thermo Scientific, DE, USA), Qubit 2.0
Fluorometer (Life technologies, Grand Island, NY, USA) and 2200 TapeStation Instrument
(Agilent Technologies, Santa Clara, CA, USA). Total RNA quality and quantity were also deter-
mined using a Nanodrop 8000 UV-Vis spectrometer (Thermo Scientific) and Lab-on-a-Chip
on an Agilent 2100 Bioanalyzer (Agilent Technologies).

Whole exome sequencing
Genomic DNA (1 μg) from each tissue sample was sheared using a Covaris S220 (Covaris, MA,
USA) and used for the construction of a library using the SureSelect XT Human All Exon v5
and the SureSelect XT reagent kit, HSQ (Agilent Technologies) according to the manufactur-
er’s protocol. This kit was designed to enrich 335,756 exons of 21,058 genes, covering ~71 Mb
of the human genome. After enriched exome libraries were multiplexed, the libraries were
sequenced on the HiSeq 2500 sequencing platform (Illumina). Briefly, a paired-end DNA
sequencing library was prepared through gDNA shearing, end-repair, A-tailing, paired-end
adaptor ligation, and amplification. After hybridization of the library with bait sequences for
16 hours, the captured library was purified and amplified with an index barcode tag, and the
library quality and quantity were measured. Sequencing of the exome library was carried out
using the 100-bp paired-end mode of the TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS
kit (Illumina).

Whole transcriptome sequencing
The library construction for whole transcriptome sequencing was performed using Truseq
RNA sample preparation v2 kit (Illumina). Isolated total RNA (2 μg) was used in a reverse
transcription reaction with poly (dT) primers using the SuperScript™ II reverse transcriptase
(Invitrogen/Life Technologies) according to the manufacturer’s protocols. Briefly, an RNA
sequencing library was prepared through cDNA amplification, end-repair, 3’ends adenylate,
adapter ligation, and amplification. Quality and quantity of library were measured by Bioanaly-
zer and Qubit. Sequencing of the transcriptome library was carried out using the 100-bp
paired-end mode of the TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS kit (Illumina).

Exome-sequencing data analysis
The sequencing reads were aligned to the UCSC hg19 reference genome (downloaded from
http://genome.ucsc.edu) using Burrows-Wheeler Aligner (BWA)[12], version 0.6.2 with
default settings. PCR duplications were marked using Picard-tools-1.8 (http://picard.
sourceforge.net/), data cleanup was followed by Genome Analysis Toolkit (GATK)[13] and
variants were identified with MuTect (http://www.broadinstitute.org/cancer/cga/mutect) and
LoFreq (http://sourceforge.net/projects/lofreq/) under default parameters. Perl script and
Annovar were used to annotate variants. The detected SNVs were filtered with cancer-associ-
ated 337 genes using cancer panels. Variants with> 90% variant allele frequency (VAF),
defined as homozygous germline SNPs, were filtered out. Also, we filtered out germline vari-
ants satisfying the following three criteria: 1) SNPs reported in dbSNP; 2) Variants with>1%
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frequency in population using ESP5400 and 1000 Genome data; 3) Variants not reported in
COSMIC and TCGA data. We evaluated mapping quality using the Picard tool (broadinsti-
tute.github.io/picard). PCA analysis was performed for a profile of detected variants using the
princomp function of the R tool. In order to test with in silico data of four multi-regional sam-
ples, we generated the mixed sample by randomly choosing 25% reads from each sample. The
correlation between the average variant allele fraction of the regional samples and the variant
allele fraction of the pooled sample (or the in silicomixed sample) was measured using Pear-
son’s correlation coefficient. Copy number variations were identified by comparing mapped
read counts between tumor and control mixing other 12 normal blood samples, and then we
performed the segmentation procedure with DNAcopy R package.

RNA-sequencing data analysis
The reads from the FASTQ files were mapped against the hg19 human reference genome using
TopHat version 2.0.6 (http://tophat.cbcb.umd.edu/). The output files in BAM format were ana-
lyzed using HTSeq version 0.6.1 [14] to quantify the transcript abundance. A total of 18,161
coding genes were selected to measure the transcript abundance and then low expressed genes
were filtered out based on a maximum read count> 20 across all samples. Read counts
obtained from mapping to genes were normalized via the TMM (Trimmed Mean of M-values)
normalization method. Pairwise scatter plots of log2 expression values between samples were
generated using the “pairs” R function and Pearson’s correlation coefficients of gene expression
profiles were measured between samples in order to determine the difference in gene expres-
sion profiles among them. In order to measure the variability between samples at the gene
level, the fold change in gene expression between both regions (or each region and pooled sam-
ple) was calculated. For any comparison between the samples, genes that passed the fold
change cut-off were selected for fraction calculation. The sequencing data analyzed in this
manuscript have been deposited in the NCBI's Sequence Read Archive (SRA) and are accessible
through accession number SRP066596 (http://www.ncbi.nlm.nih.gov/sra/SRP066596).

Results

Comparison of single nucleotide variations
Whole exome sequencing on all samples produced 125.9±13.7 million reads with target cover-
ages of 136.7±17.4x (S1 Table). Single nucleotide variations (SNVs) from four “regional” sam-
ples of each tumor type were called by MuTect and LoFreq (S3 Table). SNVs in each regional
sample were classified into three groups: i) common variants found in all four regional samples;
ii) shared variants detected in> 2 samples; and iii) private variants detected in a single sample.
Although most of the variants were common in four regions, the proportion of common vari-
ants was quite variable in four cases. More than 53.9% of detected SNVs were concordant
among all four regional stomach cancer samples, while renal cell carcinoma showed the highest
concordance rate (79.6%) in four regional samples (Fig 2A). Likewise, stomach cancer and
colon cancer case showed a marked number of private variants (16/102 and 36/152), which
might indicate the genetic heterogeneity in these samples.

We tested whether sample pooling from multiple regions could improve variant detection.
The number of variants found in pooled samples increased in all four cancer types, as shared as
well as private variants were detected (Fig 2A and 2B). In particular, most of the common vari-
ants in the multiregional samples could be detected in pooled samples (>97.4%; Fig 2B). In
addition, shared and private variants were detected by sample pooling (Fig 2B). SNVs from the
pooled and mixed samples were concordant with shared SNVs in the multi-regional samples
from 40 to 85%. Private SNVs of a single region, which are expected to have an approximate
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detection rate of 25% (1 of 4 samples), were detected with a higher than average detection rate
of 30.9%. However, basically pooled biopsy missed many private SNVs or some common
SNVs. It missed 5.6%, 0.6%, 3.7% and 2.8% of SNVs with moderate VAF (with> 20% VAF at
least in one regional sample among shared variants) detected from regional biopsies for colon,
kidney, stomach and liver, respectively (S1 Fig). The missed SNVs were more presented at low
VAFs.

We measured the distribution of variant allele frequency (VAF) for common, shared, and
private variants from regional samples (Fig 2C). VAF of common variants detected from four
regions was higher than that of shared and private (median was near 40). However, shared or

Fig 2. The characteristics of common, shared and private variants from regional samples. (A) Fractions of common, shared, and private variants
identified among different regions. (B) Fractions of common, shared, and private variants identified from pooled- or mixed-samples. (C) Variant allele
frequency (VAF) distribution of common, shared, and private variants identified among different regions.

doi:10.1371/journal.pone.0152574.g002
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private variants were detected at low allele frequencies. The variant allele frequency of each
pooled sample was similar overall to the average allele frequency of four regional samples (Fig
3). Depending on VAFs, the correlations of the pooled (mixed) samples were 0.97 (0.92), 0.96
(0.92), 0.90 (0.95) and 0.87 (0.93) for colon, kidney, stomach and liver samples, respectively.
When we selected variants listed in the COSMIC database and labeled them as the same cancer
type (Fig 4), most were common variants, while a missense variant in PARP4 of stomach can-
cer was a shared variant and CTNNB1 of liver cancer was a private variant. These results con-
clusively demonstrated the limitation of single or pooled samples to detect all of the variants
present in patient specimens.

Comparison of gene expression profiles
Across all RNA-seq data from 20 samples, 89±2.1% of total reads were uniquely aligned to the
human genome reference (S2 Table). We obtained expression profiles of 17,145 coding genes
from the mapped reads (S4 Table). Tumor purity estimation was performed based on tran-
scriptional profile from RNA-seq using ESTIMATE [15]. Tumor purities were more than 60%
for all the samples and the variation between regional samples was not high (S< = ±10) (S2
Fig). In order to determine the magnitude of difference in gene expression between regional
samples, we calculated pair-wise correlation between samples (Fig 5). The average correlation
between the different regional samples was R2 = 0.97 (colon), R2 = 0.94 (stomach), R2 = 0.89
(kidney), and R2 = 0.88 (liver), respectively. The gene expression profiles of colon and stomach
samples have a higher correlation than those of kidney and liver samples. Intratumoral hetero-
geneity at the level of RNA transcripts could be higher in kidney and liver than in colon and
stomach. The average pairwise correlation between each regional sample and pooled sample

Fig 3. Correlation between the average variant allele fraction of regional samples and the allele fraction of pooled sample (or the in silicomixed
sample).

doi:10.1371/journal.pone.0152574.g003

Genomic Comparison of Multi-Regional and Pooled Tumors

PLOS ONE | DOI:10.1371/journal.pone.0152574 March 24, 2016 7 / 12



was R2 = 0.97 (colon), R2 = 0.95 (stomach), R2 = 0.84 (kidney), and R2 = 0.86 (liver), respec-
tively, indicating that the gene expression of pooled samples was similar overall to that of each
regional sample. The regional samples from kidney and liver cancers showed relatively more
variable gene expression profiles.

In order to determine howmuch variability exists between samples at the gene level, the gene
expression profiles within regional samples were further compared based on the fold change dif-
ference (> 2–4 fold) between each pair of samples (Fig 6). The similarity in gene expression pro-
files within multiple regions was quite different in cancer cases. Colon cancer showed similar
gene expression profiles, while regional samples of liver cancer were significantly different from
each other. For example, theHRAS oncogene showed a 5-fold expression difference between the
four regions of liver cancer. The gene expression profiles of the pooled samples were also similar
to those of multi-regional samples in colon and stomach samples. These results demonstrate
that overall expression patterns are similar between different regions, and between regional and
pooled samples, but some genes show a highly variable expression pattern.

Discussion
Genome analysis of cancer requires high-quality human cancer tissue in order to obtain the
most accurate results [16]. Protocols for sample acquisition for biobanks should include a pro-
cedure to assessthe genetic heterogeneity by sequencing without compromising the pathologi-
cal diagnosis [17]. In particular, any actionable variant in a refractory cancer patient can be
used to personalize treatment with target drugs based on the genomic profile. We have com-
pared the analytical performance of WES and RNA-seq in pooled and multiple regional sam-
ples. Sequencing of multiregional samples could cover a higher number of variants. Because
the cost of next-generation sequencing is decreasing, we need to consider multiple sampling

Fig 4. Profile of variants listed on the COSMIC DB and labeled as the same tissue type. The fraction of each circle indicates tumor variant allele
frequency.

doi:10.1371/journal.pone.0152574.g004

Genomic Comparison of Multi-Regional and Pooled Tumors

PLOS ONE | DOI:10.1371/journal.pone.0152574 March 24, 2016 8 / 12



from a single tumor specimen to ensure minor variations are represented. Biopsies of multiple
sites will be more beneficial in metastatic cancers, as the subclones within the primary tumor
can be also presented in metastatic sites. Therefore the clinical treatment should focus on these
subclones with metastatic potential [5].

Understanding the actual distribution of variants and gene expression profiles presented in
bulk tumor specimens has been a challenge due to tumor heterogeneity. Our analysis indicated
that most detected variants were highly concordant across regions; however, some discrepancies

Fig 5. Pairwise correlations and scatter plots of expression profiles fromwhole transcriptome sequencing data. Pearson’s correlation coefficients
included all coding genes.

doi:10.1371/journal.pone.0152574.g005
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were observed for variants with low allele frequency. For example, we found an apparent dis-
crepancy in the presentation of recurrent somatic mutations of CTNNB1 (D32H and S37C) in
liver cancer (Fig 4). They were private variants detected in only one region and S37C of both
mutations was not detected from the pooled sample due to low allele frequency (expected
VAF< 6% for D32H and< 2% for S37C). Mutations in CTNNB1 are considered to be cancer
drivers for HCC development [18]. In an experimental model of HCC, CTNNB1, IGF1R,
FGF19, CCND1 and IGF2 have been evaluated in the oncogenic addiction loop, but this study
has yet to enter the advanced clinical developmental phase [19]. This example suggests that a
single biopsy is not sufficient to determine individualized cancer therapy, specifically consider-
ing clinically relevant genomic alterations. In addition, the sequencing of pooled samples should
be addressed to ensure detection of low allele frequency mutations.

Our transcriptome analysis indicated that mRNA expression was relatively unstable when
comparing the expression profiles between multiple regions in cancers. This regional difference
in expression may be caused by functional heterogeneity of subclones during tumor progres-
sion. In addition, copy number pattern is overall similar for all regional samples, but many
regional differences exist at focal regions in chromosome, indicating the presence of regional
tumor heterogeneity (S3 Fig). Copy number alterations showing remarkable regional differ-
ences were observed in the following regions: absence of 16q amplification in Colon-4, chro-
mosome 12 amplification in Kidney-4, and 13q amplification in Stomach-1. Those regions
may affect the gene expression, and gene expression changes can be underestimated in single
biopsy. A single biopsy may fail to estimate representative gene expression in certain tumors.
Our analysis suggested that pooled samples of multiple regions also did not reduce the bias in
measuring precise gene expression.

Further studies are required to resolve technical issues and perform other in depth analyses.
For example, although most variance between different regional biopsies from the same tumor
was due to intratumoral heterogeneity, some of the variation was due to technical problems
arising during the biopsy process. Thus, the interpretation of sequencing results should be care-
fully and systematically conducted. Another example is the expression consistency per gene
category across samples. As some genes are consistently expressed across a tissue while other
genes are highly variable, different expression profiles over regions of the tumor may be exhib-
ited in a specific gene class.

Our study has still some limitations, including sample size and subclone estimation issues.
The number of test samples is important for achieving accurate assessment. Although only one

Fig 6. Percent of differentially expressed genes in multiregional samples (blue) and between the pooled sample and regional samples (orange).
Each bar represents the distribution of the fraction of genes showing fold change difference in expression ((A) > 2-fold, (B) > 3-fold, and (C) > 4-fold) between
each pair of samples. For every possible comparison between the four regional samples (a total of six comparisons) and between the four regional samples
and the pooled sample (four comparisons) in each tumor case, genes showing a difference in fold change were selected for fraction calculation.

doi:10.1371/journal.pone.0152574.g006
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set per tumor type was examined in this study, our preliminary results may provide clues to a
sequencing strategy that would enable efficient genomic profiling of samples in tumor tissue
banks. This pilot study will be extended in a larger sample size to better understand and charac-
terize the regional tumor heterogeneity. In addition, the clonal status of each mutation will be
estimated from mutation and copy number profiles with tumors and their matched normal
samples.

We demonstrated that different mutation profiles and gene expression patterns within a sin-
gle tumor were observed in four cancer types. Several clinical applications including different
drug sensitivity, functional impact on tumor progression and resistance to therapy can be
developed based on the genomic and transcriptomic patterns of multiple regions. In conclu-
sion, our analysis suggests that a single biopsy might not be sufficient to determine personal-
ized cancer therapy, and sequencing from pooled samples should be improved for precise
identification of genomic variants from distinct regions.
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