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Abstract: Despite a considerable amount of data, the molecular and cellular bases of the toxicity due
to metal exposure remain unknown. Recent mechanistic models from radiobiology have emerged,
pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the
recognition and the repair of DNA double-strand breaks (DSB) and the final response to genotoxic
stress. In order to document the role of ATM-dependent DSB repair and signalling after metal
exposure, we applied twelve different metal species representing nine elements (Al, Cu, Zn Ni, Pd,
Cd, Pb, Cr, and Fe) to human skin, mammary, and brain cells. Our findings suggest that metals may
directly or indirectly induce DSB at a rate that depends on the metal properties and concentration, and
tissue type. At specific metal concentration ranges, the nucleo-shuttling of ATM can be delayed which
impairs DSB recognition and repair and contributes to toxicity and carcinogenicity. Interestingly, as
observed after low doses of ionizing radiation, some phenomena equivalent to the biological response
observed at high metal concentrations may occur at lower concentrations. A general mechanistic
model of the biological response to metal exposure based on the nucleo-shuttling of ATM is proposed
to describe the metal-induced stress response and to define quantitative endpoints for toxicity and
carcinogenicity.

Keywords: metal toxicity; metal carcinogenesis; DNA double-strand breaks; ATM

1. Introduction

Metals are abundantly used and transformed by a number of industrial activities such
as mining, metallurgy, production of fertilizers, paints, batteries, and more recently, high-
tech products. Accidental, environmental occupational exposures to metals have increased
our knowledge about their toxicity. This is notably the case for lead (Pb) with saturnism [1]
and cadmium (Cd) with Itai-Itai disease [2,3]. Aluminum (Al) and iron (Fe) have been
incriminated in Alzheimer’s disease [4]. Copper (Cu) and Fe have been cited for their
potential link to Parkinson’s disease [5,6]. In addition to their potential toxicity, chronic
exposure to metals may also increase cancer risk. For example, epidemiological studies of
workers in chromium (Cr) production and occupational and environmental exposure to
arsenic (As) and nickel (Ni) have documented the risk of lung and nasal cancers [7–10].

Metals, therefore, represent an actual issue of public health throughout two major
clinical features: toxicity and cancer risk. However, despite a considerable amount of data,
the molecular and cellular bases of metal-induced (MI) toxicity and/or carcinogenesis

Biomolecules 2021, 11, 1462. https://doi.org/10.3390/biom11101462 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-7057-1840
https://orcid.org/0000-0002-7622-9886
https://orcid.org/0000-0003-3498-6499
https://orcid.org/0000-0002-1282-1303
https://doi.org/10.3390/biom11101462
https://doi.org/10.3390/biom11101462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11101462
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11101462?type=check_update&version=2


Biomolecules 2021, 11, 1462 2 of 21

remain unknown. This statement is notably explained by the fact that exposure to metals is
various and the mechanisms related to toxicity and carcinogenesis are complex.

Interestingly, the majority of studies about MI biological effects have focused on base
damage (BD) and/or DNA single-strand breaks (SSB) while there is still no clear quantified
link between these types of DNA damage and cell death (toxicity) or cell transformation
(cancer) [1,2,11,12]. By contrast, studies about the biological effects of ionizing radiation,
another toxic and carcinogenic agent, provide increasing evidence of a causal and quantified
link between toxicity and unrepaired DNA double-strand breaks (DSB) on one hand, and
genomic instability and misrepaired DSB on another hand [13,14]. However, unlike radiation-
induced (RI) stress, MI stress was long considered to be too energetically low to produce
DSB. However, Fenton-like reactions and genetic impairments in the DSB repair pathways
may cause indirect production of DSB in response to metal exposure. This hypothesis has
been documented both in vivo and in vitro by using different DSB assays [1,2,15–22].

In quiescent mammalian cells, the DSB recognition and repair is mainly ensured by
the predominant non-homologous end-joining (NHEJ) pathway whose phosphorylation of
variant H2AX histone proteins (γH2AX) is the earliest sensor [23]. Recently, the rate of RI
nucleo-shuttling of the ATM protein (RIANS), a major actor of DSB repair and signalling,
was found to be a reliable predictor of radiosensitivity and cellular toxicity [24–30]. The fol-
lowing mechanistic model was proposed: RI oxidization triggers the monomerization of
the cytoplasmic ATM dimers, which allows the ATM monomers to diffuse in the nucleus.
Once in the nucleus, the ATM monomers phosphorylate H2AX histones, which triggers
the formation of nuclear γH2AX foci and DSB recognition and repair by NHEJ [24,29–31].
A delay in the RIANS may be caused by an overproduction of some ATM phosphorylation
substrate proteins in the cytoplasm that sequestrate the ATM monomers. Consequently,
less ATM monomers diffuse in the nucleus, and two scenarios can be evoked: either the
DSB that are non-recognized by NHEJ remain unrepaired and participate in cell death and
toxicity, or they are repaired by error-prone recombination-like pathways and participate
as misrepaired DNA damage in cell transformation and cancer [24,29–31]. Here, we exam-
ined whether the nucleo-shuttling of the ATM protein is also relevant for describing the
response to MI stress. Human cells from different genetic statuses and origin were exposed
to 12 different metallic species (representing nine different metals) and were subjected to
immunofluorescence with the RIANS biomarkers as endpoints.

2. Materials and Methods
2.1. Cell Lines

For the first steps of the study, untransformed human fibroblast cell lines were used for
their genomic stability. Cells were routinely cultured at 37 ◦C in 5% CO2 humid conditions
as monolayers with Dulbecco’s modified Eagle’s medium (DMEM) (Gibco-Invitrogen-
France, Cergy-Pontoise, France), supplemented with 20% fetal calf serum, penicillin, and
streptomycin. All the experiments were performed with cells in the plateau phase of growth
(95–99% in G0/G1) to overcome any cell cycle effects. The radiobiological features of the
radioresistant 149BR, 1BR3, and HF19 (ECACC, Public Health England, Salisbury, UK)
and the radiosensitive 01HNG fibroblasts were published elsewhere [32,33]. The 01HNG
cell lines belongs to the “COPERNIC” collection managed by our lab and approved by
the regional Ethical Committee. Cell lines were declared under the numbers DC2008-585,
DC2011-1437 and DC2021-3957 to the Ministry of Research. Radiobiological database was
protected under the reference as IDDN.FR.001.510017.000.D.P.2014.000.10300.

It is noteworthy that cellular radioresistance is generally defined as a clonogenic cell
survival fraction at 2 Gy higher than 50% [14,32,33]. In the next steps of the study, other
cellular models were used, notably endothelial and brain cells. The human mammary
endothelial HMEC cells (#A10565; Thermo Fisher Scientific, Waltham, MA, USA were
routinely cultured as monolayers with RPMI medium (Thermo Fisher Scientific), supple-
mented with 20% fetal calf serum, penicillin, and streptomycin [34]. The human spinal
cord (Hasp), cortex (Ha), and hippocampus (Hah) were purchased from ScienCell Research
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Laboratories (Carlsbad, CA, USA) and routinely cultured as monolayers with a specific
culture medium provided by the manufacturer.

2.2. Metals

All the indicated metal species tested in this study, which included Al3+, Fe3+, Cu2+,
Zn2+, Ni2+, Pd2+, Cd2+, Pb2+, and CrO4

2− (as AlCl3, CuCl2, CuSO4, ZnCl2, NiCl2, PdCl2,
CdCl2, Cd(CH3CO2)2, C12H10Cd3O14, Pb(NO3)2, Na2CrO4, and FeCl3), were purchased
from (Sigma-Aldrich France, Saint-Quentin-Fallavier, France). Metals were diluted into
the culture medium for 24 h. If cells were irradiated, the culture medium was renewed
without metal. It is noteworthy that the concentrations of the metal species tested in this
study are much higher than those of these culture mediums. The beginning of irradiation
or the introduction of metal in the culture medium served as “zero” post-stress time.

2.3. Treatment with Zoledronate and Pravastatine (ZoPra)

The ZoPra treatment was applied as previously published [35]. Briefly, cells were
incubated with 1 µM pravastatine (Sigma-Aldrich France) in phosphate buffered saline
solution (PBS) for 24 h at 37 ◦C. Thereafter, 1 µM zoledronate (Sigma-Aldrich France) in
PBS was added into the culture medium, and cells were incubated for 12 h at 37 ◦C. The
culture medium was renewed immediately before irradiation.

2.4. Irradiations

An X-ray clinical irradiator (Philips orthovoltage; Philips, Amsterdam, The Nether-
lands) devoted to research was used to perform all the irradiations. The X-ray beam was
produced from a tungsten anode, applying a voltage setting of 200 kV, an intensity of
20 mA, and using a filtration of 0.1 mm copper filter. The dose-rate was 1.234 Gy/min [32].

2.5. Immunofluorescence

The immunofluorescence protocol was described elsewhere [36,37]. Briefly, cells were
fixed in paraformaldehyde for 10 min at room temperature and were permeabilized in
0.5% Triton X-100 solution for 5 min at 4 ◦C. Primary and secondary antibody incubations
were performed for 40 and 20 min at 37 ◦C, respectively. The anti-γH2AXser139 antibody
(#05636; Upstate Biotechnology-Euromedex, Mundolsheim, France) was used at 1:800. The
monoclonal anti-mouse anti-pATMser1981 (#ab2888) from Abcam (Cambridge, UK) was
used at 1:100. Incubations with anti-mouse fluorescein (FITC) and rhodamine (TRITC)
secondary antibodies were performed at 1:100 at 37 ◦C for 20 min. Slides were mounted
in 4’,6’ Diamidino-2-Phényl-indole (DAPI)-stained Vectashield (Abcys, Paris, France) for
scoring micronuclei and mitoses and examined with an Olympus fluorescence microscope.
DAPI staining also allowed for indirectly evaluating the yield of G1 cells (nuclei with
homogeneous DAPI staining), S cells (nuclei showing numerous γH2AX foci), G2 cells
(nuclei with heterogeneous DAPI staining), and metaphase (visible chromosomes). In cer-
tain conditions described in this study, some nuclei may appear with hundreds of foci:
these cells, called “highly damaged cells” (HDC), are generally observed after a cancer-
prone hyper-recombination process [34,38]. In this study, the number of HDC cells was
considered as a molecular endpoint.

The foci scoring procedure applied here has received the certification agreement of a
CE mark and ISO-13485 quality management system norms. Our foci scoring procedure
also developed some features that are protected in the frame of the Soleau Envelop and
patents (FR3017625 A1, FR3045071 A1, EP3108252 A1) [37]. More than 50 nuclei were
analyzed per experiment and at least 3 independent replicates were performed for each
condition. The Gaussian nature of the distribution of the number of foci per cell was system-
atically controlled for unirradiated conditions and data was assessed 24 h post-irradiation
and routinely for the other indicated post-irradiation times. Foci scoring performed by
eye was characterized by a relative error ranging between 3 and 7%, which depends on
the number of foci per cell. Such relative errors were found incompressible (a foci scoring



Biomolecules 2021, 11, 1462 4 of 21

based on a number of nuclei that would be 2, 5, or 10 times higher does not reduce the foci
scoring error significantly (data not shown)). In our lab, inter-experiments and inter-reader
differences were not statistically significant. Similarly, there was no significant differ-
ence between eye scoring and computerized ImageJ scoring when microscopy objective
magnification is ×100 [24].

2.6. Statistical Analysis

The immunofluorescence data were fitted to the so-called Bodgi’s formula that de-
scribes the kinetics of the appearance/disappearance of nuclear foci formed by some
protein relocalizing after genotoxic stress [39]. This formula also serves as a coherence
control to analyze the γH2AX, pATM, and MRE11 data. Statistical analysis was performed
using Kaleidagraph v4 (Synergy Software, Reading, PA, USA).

3. Results
3.1. Unrepaired MI DSB Assessed with Different Endpoints

In our hands, the exposure of human cells to metal results in the production of metal-
induced (MI) DSB whose occurrence may depend on the cellular model, the concentration,
and the nature of the metallic species. Since the number of unrepaired RI DSB assessed at
24 h post-irradiation has been shown to be correlated with cellular death and therefore with
toxicity [13,24], the number of MI DSB revealed by the nuclear γH2AX foci was assessed
in human fibroblasts for 24 h after the introduction of metal in the culture medium. It is
noteworthy that the shape of the γH2AX foci did not change with the nature of the metallic
species (data not shown). The MI DSB response curves elicited similar sigmoidal functions
of the metal concentration that appeared curvilinear when the X-axis is a linear scale of
concentration. Three parts of the MI response curves were identified (Figure 1):

− a metal concentration range in which the number of γH2AX foci is not significant or
does not increase significantly with metal concentration;
− a metal concentration range in which the number of γH2AX foci becomes significant
and increases, generally linearly, with the metal concentration;
− a metal concentration range in which the number of γH2AX foci reaches its maximum
in a pseudo-plateau.

Figure 1. Unrepaired DSB after metal exposure. Number of γH2AX foci per cell in the human
untransformed radioresistant 149BR cells after incubation for 24 h with the indicated concentration
of metal species plotted either in a linear scale (left panel) or in a log scale (right panel). Each
plot represents the mean ± standard error (SEM) of at least three replicates. Insert: Representative
examples of γH2AX and DAPI-counterstained images obtained at the indicated concentration of
CuCl2. The white bar represents 5 µm.

All the mathematical features of the sigmoidal data fits are detailed in Table 1.



Biomolecules 2021, 11, 1462 5 of 21

Table 1. Metal species characteristics and data fit parameters.

Metal
Species

TMC>2
$$$$(µM)

Sigmoidal* Data Fit Parameters

m1 m2 m3 m4 r

Na2CrO4 0.003 30 1.71 1.90 × 10−1 0.67 0.97

NiCl2 0.03 3380 4.49 2.77 × 107 0.42 0.98

Pb(NO3)2 0.1 35 3.69 2.31 × 102 0.80 0.99

AlCl3 1 36 0.29 5.75 × 103 0.48 0.99

FeCl3 3 735 0 6.53 × 107 0.33 0.98

ZnCl2 3 72 1.00 1.50 × 103 0.89 0.99

CdCl2 3 58 0 3.54 × 103 0.46 0.99

Cd(CH3CO2)2 3 603 0 2.29 × 108 0.26 0.99

C12H10Cd3O14 10 80 0 5.25 × 104 0.28 0.99

PdCl2 10 1045 0 2.94 × 106 0.47 0.99

CuSO4 10 43 0 7.07 × 102 0.75 0.99

CuCl2 10 1501 0.13 8.84 × 105 0.62 0.99

* The applied sigmoidal function tested for data fitting was y = m1 + (m2 − m1)/(1 + (x/m3) m4). r is the
correlation coefficient.

It is noteworthy that similar numbers of γH2AX foci were obtained with other un-
transformed radioresistant fibroblast cell lines as those assessed in the 149BR cells, such as
the HF19 and MRC5 cells (Figure S1).

In our conditions of culture, the average background level of non-transformed human
fibroblasts was found to be lower than two γH2AX foci per cell [24,31], suggesting that
a higher number of γH2AX foci per cell can reveal toxicity. The threshold metal concen-
tration to reach more than two γH2AX foci per cell, called TMC>2, was deduced from
experimental data. The metallic species tested were found to be characterized by a specific
metal concentration threshold of some µM, with the notable exception of CrO4

2− whose
corresponding TMC>2 was found in the nM range (Table 1). Our findings suggest that
all the metallic species tested induce persistent/slowly repairable DSB at a specific rate
(Figure 1).

In the same experimental conditions, we investigated other endpoints generally associ-
ated with unrepaired DSB such as the yields of micronuclei and highly damaged cells (HDC)
(defined here as nuclei showing more than 15 γH2AX foci per cell) [34,38]. Micronuclei are
considered to be the cytogenetic reflection of the unrepaired DSB propagated to the mitotic
phase [40]. The number of MI micronuclei generally obeyed a pseudo-sigmoidal function
of the metal concentration in agreement with the γH2AX data (Figure 2B). Moreover, the
MI micronuclei curves of CrO4

2− again appeared shifted to the nM range. Interestingly,
some metal species such as Pb2+ and Cu2+ showed a drastic decrease in the number of
micronuclei at high metal concentrations. At this stage, we can evoke the possibility
that the process of micronuclei was so rapid that a large number of them escape from
cells (exocytosis phenomenon) during the immunofluorescence procedure, as previously
reported [11].

By plotting the γH2AX data against the corresponding micronuclei data, a quantitative
link appeared between the two endpoints: the higher the number of residual γH2AX foci,
the higher the yield of micronuclei with metal-specific linear slopes (Figure S2A). The
γH2AXfoci/micronuclei ratio was found to be 1.2 ± 0.3 (r = 0.8; p = 0.04). Pd2+ elicited the
highest γH2AX/micronuclei ratio (Figure S2A).
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Figure 2. Residual micronuclei and highly damaged cells after metal exposure. (A) Number of
micronuclei per 100 cells in the human untransformed radioresistant 149BR cells after incubation for
24 h with the indicated concentration of metal species. Each plot represents the mean ± standard
error (SEM) of at least three replicates. Insert: Representative example of one micronucleus (white
arrow). (B) Number of HDC per 100 cells in the human untransformed radioresistant 149BR cells
after incubation for 24 h with the indicated concentration of metal species. Each plot represents the
mean ± standard error (SEM) of at least three replicates. Insert: Representative example of one HDC
stained with anti-γH2AX antibody and counterstained with DAPI. The white bar represents 5 µm.

HDC (cells with more than 15 γH2AX foci) are generally observed after a cancer-prone
hyper-recombination process [38] and/or at a very high level of oxidative stress [34]. The
MI HDC curves were found to be very similar to the γH2AX ones, suggesting again a
strong metal concentration-dependence (Figure 2B). However, it is noteworthy that the Cu
species induced large numbers of HDC cells. The link between the number of γH2AX foci
and that of HDC was also found to be linear for the great majority of metallic species tested
(the higher the number of residual γH2AX foci, the higher the yield of HDC). The γH2AX
foci /HDC ratio was found to be 1.0 ± 0.3 (r = 0.85; p = 0.04). Cu2+ and Ni2+ elicited the
highest γH2AX/HDC ratio (Figure S2B).

Some authors have reported that low metal concentrations may stimulate cellular
proliferation, which would favor mitosis induction [41–45]. To verify this hypothesis,
mitoses were scored by using the DAPI counterstaining in the same experimental conditions
as described above. For all the metallic species tested, we observed a yield of more than
two mitoses per one hundred cells. This number decreased as far as the metal concentration
increased, suggesting that high concentrations of metal trigger cell cycle arrest. For certain
metallic species, at specific concentrations, the number of mitoses increased or described
non-linear concentration-effects: the biological interpretation of these data and notably, the
interplay between cell concentrations, clonogenicity, and influence on the cell cycle control
remain to be elucidated (Figure S3). However, since the highest number of mitoses did not
exceed 13 mitoses per 100 cells (obtained with CuCl2), it must be stressed that the great
majority of quiescent cells remains in G0/G1 phase even after a metal exposure for 24 h for
all the metallic species tested (Figure S3).

3.2. Influence of the Presence of Metal during the RI DSB Recognition and Repair Process

The data described above showed that metal exposure induces a relatively low number
of MI DSB at concentrations lower than 100 µM. Such data did not permit the verification of
whether each metallic species inhibits recognition and/or repair of the DSB that it induces.
Hence, to understand the influence of metal on the DSB recognition and repair steps, we
used a physical agent to induce DSB without any chemical interaction with metal, the
X-ray, as applied in previous studies [11,12]. The advantage of X-ray irradiation is that the
RI DSB induction rate and the RI DSB repair kinetics of the cell lines tested are very well



Biomolecules 2021, 11, 1462 7 of 21

documented. Notably, in our conditions, a DSB induction rate of 37 ± 4 DSB per Gy per
cell was found in human fibroblasts, in agreement with a number of reports [14]: at a dose
of 2 Gy applied for 2 min, the number of RI DSB was much higher than the MI DSB. Here,
cells were therefore exposed to metal for 24 h, then exposed to 2 Gy X-rays. After culture
medium renewal, a post-irradiation repair time ranging from 10 min to 24 h was applied
(Figure 3A,B). The resulting γH2AX foci kinetics elicited a shape of curves similar to that
of cells irradiated without metal, to the notable exception of:

− the 10 min–1 h data points, that may reveal a low number of γH2AX foci, generally
interpreted as a lack of DSB recognition by the NHEJ pathway [24,31] (Figure 3C);
− the 24 h data points, that may reveal a significant number of residual γH2AX foci,
generally interpreted as a DSB repair defect by the NHEJ pathway [24,31] (Figure 3D);

Figure 3. RI DSB repair kinetics after metal exposure. (A,B) The number of γH2AX foci as a function
of repair time post-irradiation in the human untransformed radioresistant 149BR incubated for 24 h
with the indicated concentration of metal species. Each plot represents the mean ± standard error
(SEM) of at least three replicates. (C) The γH2AX data shown in panels (A,B) and obtained after
10 min post-irradiation were plotted against the metal concentration. The grey zone corresponds
to the numerical values when all the RI DSB are recognized. A decrease in the number of γH2AX
foci is interpreted as a defect in the DSB recognition. (D) The γH2AX data shown in panels A and B
and obtained after 24 h post-irradiation were plotted against the metal concentration. The grey zone
corresponds to the numerical values when all the RI DSB are unrepaired. An increase in the number
of γH2AX foci is interpreted as a defect in the DSB repair.

The great majority of the resulting data suggests that the presence of metal may affect
DSB recognition and/or repair. However, the quantitative impact on these two steps was
found to be strongly dependent on the metal considered and its concentration. For example,
it appeared that 100 µM Pb(NO3)2, 100 µM NiCl2, or 1 µM Na2CrO4 drastically impair the
RI DSB recognition at 10 min post-irradiation, while 30 and 100 µM ZnCl2, 30 µM AlCl3,
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and 30 µM NiCl2 do not influence it (Figure 3C). By considering the DSB recognition after
100 µM metal exposure, the rank order of the metallic species tested was:

Pb(NO3)2 < NiCl2 < CuSO4 < FeCl3 < CdCl2 < AlCl3 < ZnCl2 (from the most impaired
to the least). Na2CrO4 applied at 1 µM may be included in this order (between CuSO4 and
FeCl3) by considering the number of non-recognized DSB.

With regard to the number of γH2AX foci obtained after 24 h post-irradiation, all
the metallic species tested produced unrepaired MI DSB with the concentrations tested
(Figure 3D). However, the rank order of the metallic species tested was (from the most
defective repair to the least) very similar to that deduced from the DSB recognition data
after 100 µM metal exposure: NiCl2 > Pb(NO3)2 > CuSO4 > FeCl3 > CdCl2 > AlCl3 >
ZnCl2. Only the NiCl2 and Pb(NO3)2 data were found inverted in the two rank orders:
NiCl2 produced more unrepaired DSB than Pb(NO3)2, while Pb(NO3)2 produced less
unrecognized DSB than NiCl2. Na2CrO4 applied at 1 µM may be included between CuSO4
and FeCl3 by considering the number of unrepaired DSB.

Hence, in the presence of metal, RI DSB recognition data appears to be correlated to
the RI DSB repair data: by plotting the number of γH2AX foci obtained after 24 h post-
irradiation and the corresponding data obtained without irradiation, Figure S4 revealed
strong RI DSB repair defects in agreement with the data shown in Figure 3A,B. Furthermore,
a one-to-one correlation was found between the number of unrepaired DSB after metal
exposure with and without irradiation (y = −3.68 + 1.15 x; r = 0.95; p < 0.02) (Figure S4).
It is noteworthy that the non-nil intercept of about three γH2AX foci observed with X-ray
treatment may correspond to the number of residual γH2AX foci generally assessed with
the cell line tested after 2 Gy X-rays without metal exposure (the number of spontaneous
γH2AX foci was not significant, data not shown) [24].

3.3. Influence of the Presence of Metal on the Nucleo-Shuttling of the ATM Protein

The data described above suggest that the presence of metal inhibits DSB recognition
and/or repair via the ATM-dependent NHEJ pathway. Therefore, we examined the nuclear
relocalization of the auto-phosphorylated form of the ATM protein, reflecting its kinase
activity in the nucleus [31]. By applying anti-pATM immunofluorescence to cells exposed to
metal and IR, the number of the nuclear pATM foci assessed 10 min after irradiation were
found to be generally lower than those obtained with non-exposed cells, in good agreement
with the γH2AX data (Figure 4A,B). Interestingly, when metal species were classified
by their capacity of inhibiting DSB recognition, the rank order obtained with pATM
and γH2AX data were found to be not significantly different (Figure 4C). A quantified
correlation was also obtained between the two data groups with a γH2AX/pATM ratio
of two, in full agreement with the RIANS model [28,31]. Again, these findings strongly
suggest that metal exposure may impair the recognition of DSB by the ATM-dependent
NHEJ pathway, which also impacts the quality of the DSB repair. Altogether, our findings
can be interpreted as the result of a delay of the nucleo-shuttling of the ATM protein as
proposed in a number of published papers [30].

The combination of zoledronate and pravastatin (ZoPra) was shown to increase the
number of pATM foci and reduce the radiosensitivity associated with numerous genetic
syndromes, suggesting that the active ATM forms present in the nucleus without ZoPra
treatment are not sufficient to ensure a normal response to radiation [30,37,46,47]. While
zoledronate is an aminobisphosphonate agent known for its action against osteoporosis,
and pravastatin belongs to the statins family known for their anticholesterol properties,
the ZoPra treatment was shown to inhibit both farnesylation and geranylgeranylation
of the progerin and prelamin A proteins, which permits higher permeabilization of the
nuclear membranes to protein trafficking [48]. Hence, the ZoPra treatment of cells exposed
to genotoxic stress is supposed to amplify and accelerate the nucleoshuttling of the ATM
protein. In fibroblasts exposed to AlCl3 or CuSO4, the number of early γH2AX and pATM
foci were found systematically higher in ZoPra-treated cells than in untreated controls
at 10 min and 1 h post-irradiation. However, the differences found were not significant
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(Figure S5). Altogether, these preliminary data encourage us to further investigate the
action of ZoPra treatment or any other agent that would accelerate the ATM nucleoshuttling
in cells exposed to metals (Figure S5).

Figure 4. Delay of the ATM nucleo-shuttling after metal exposure. In the same conditions as described
in Figure 3, anti-pATM immunofluorescence was applied to the radioresistant 149BR control cells to
obtain pATM foci kinetics. (A) Representative example of images stained with anti-pATM antibody
and counterstained with DAPI after 24 h exposure to 100 µM AlCl3, X-ray irradiation (2 Gy) followed
by 10 min for repair. The white bar represents 10 µm. (B) The pATM data obtained after 10 min
post-irradiation were plotted against the metal concentration. The grey zone corresponds to the
numerical values when all the RI DSB are recognized. A decrease in the number of pATM foci
is interpreted as a defect in the DSB recognition. Each plot represents the mean ± standard error
(SEM) of at least three replicates. (C) The pATM data obtained after 100 mM metal exposure and
10 min (empty circles) or 1 h (black circles) post-irradiation shown in panel B were plotted against
the corresponding γH2AX data shown in Figure 3. The black squares indicate the γH2AX and pATM
data without metal exposure. Each plot represents the mean ± standard error (SEM) of at least
three replicates. The dotted line represents the data fit with y = 2.0039x (r = 0.95) obtained from the
10 min data.

3.4. Influence of the Presence of Metal on the Activity of the MRE11 Nuclease

Once in the nucleus, the ATM monomers were notably shown to phosphorylate the
MRE11 protein, which inhibits its nuclease activity and triggers the formation of nuclear
MRE11 foci [13,30]. A technical report revealed that the kinetics of appearance of the
γH2AX foci do not overlap those of the MRE11 foci in the first hour post-irradiation,
suggesting that ATM- and NHEJ-dependent phosphorylation of H2AX histones may be
independent of the MRE11 activity [49]. It is also noteworthy that, in quiescent cells, the
MRE11 nuclease is localized in the nucleus while the great majority of ATM molecules are
cytoplasmic. Hence, the RIANS model suggests that the NHEJ and MRE11-dependent
pathways compete in cells with different kinetics and that DSB revealed by γH2AX foci or
by MRE11 foci may not have the same fate [30,50]. Interestingly, an early increase in the
number of MRE11 foci revealing DNA strand break sites that are not managed by NHEJ
has been correlated with the hyper-recombination process and cancer-proneness [13,30,50].
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In order to examine the formation of MRE11 foci after a MI stress, fibroblasts were
exposed to metal for 24 h and irradiated thereafter at 2 Gy X-rays. Anti-MRE11 immunoflu-
orescence was applied from 10 min to 24 h post-irradiation. While the 149BR cells that
were not exposed to metal showed a slight increase in the number of MRE11 foci from 1 to
4 h post-irradiation, the exposures with the metallic species tested resulted in a significant
increase in the number of MRE11 foci. The highest numbers of MRE11 foci values were
generally reached at 4 h post-irradiation (Figure 5). If the metallic species tested were
classified according to these maximal MRE11 foci values (from the highest to the lowest
one), it would be as follows: Pb(NO3)2 > CuSO4 > Na2CrO4 > FeCl3 > AlCl3 > NiCl2 >
CdCl2 > ZnCl2. Figure 5C,D reflects the differences between the number of residual γH2AX
foci and the maximal number of MRE11 foci.

Figure 5. MRE11 foci after exposure of cells to metal. In the same conditions as described in
Figure 3 (but only 100 µM metal was applied), anti-MRE11 immunofluorescence was applied to the
radioresistant 149BR control cells. (A) Representative example of images stained with anti-MRE11
antibody and counterstained with DAPI after 24 h exposure to 100 µM AlCl3, X-ray irradiation (2 Gy)
followed by 4 h for repair. The white bar represents 10 µm. (B) The MRE11 data was obtained after
100 µM metal incubation followed by 2 Gy X-rays and assessed at the indicated post-irradiation
times. Each plot represents the mean ± standard error (SEM) of at least three replicates. (C) The
number of residual γH2AX foci obtained after 100 µM metal as shown in Figure 3 but corrected
with the γH2AX data without metal exposure was plotted at the indicated metallic species. (D) The
number of the MRE11 foci obtained after 100 µM metal shown in Figure 5A but corrected with the
MRE11 data without metal exposure was plotted at the indicated metallic species.

3.5. The Hypersensitivity Phenomenon Observed after Exposure to Low Metal Concentrations

In radiation biology, the phenomenon called “hypersensitivity to low dose (HRS)”
describes an excess of cell lethality, micronuclei, unrepaired DSB, or gene mutations in the
[1 mGy − 800 mGy] dose range equivalent to the biology effect observed at a 5 to 10 times
higher dose [31,51]. The HRS phenomenon is only observed in the cell lines in which the
RIANS is delayed. In fact, in the frame of the RIANS model, this HRS phenomenon is
supposed to be caused by a low number of ATM monomers (produced by low doses) in
the cytoplasm that is not sufficient to recognize all the RI DSB after their diffusion into
the nucleus. The HRS extent was shown to increase with the delay of RIANS [31]. If the
RIANS model is relevant for MI DSB, some specific low metal concentrations may produce
a similar phenomenon in cells with delayed nucleo-shuttling of the ATM protein. Therefore,
we examined the occurrence of an HRS-like phenomenon after exposure to 30 µM AlCl3 in
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the 01HNG fibroblasts that show a significant delay in the RIANS [24]. AlCl3 was chosen
because of its societal interest. Interestingly, in this cell line, the number of γH2AX foci
was found to be equivalent to that expected at 115 µM AlCl3 (i.e., at about a 3.8 times
higher concentration) (Figure 6A,B). This non-linear phenomenon was not observed with
the radioresistant skin fibroblast 149BR cell line that shows a fast RIANS [24]. The HRS-like
phenomenon may also be visible in a semi-log scale (Figure 6C). It is noteworthy that
similar conclusions were reached with two other couples of radioresistant/radiosensitive
fibroblast cell lines and also in the human endothelial HMEC cell lines (data not shown).

Figure 6. Evidence of an HRS-like phenomenon in cells exposed to metal. (A) Representative
examples of images stained with anti-γH2AX antibody and counterstained with DAPI after 24 h
exposure to 30 or 100 µM AlCl3 in the human radiosensitive 01HNG and the radioresistant 149BR
skin fibroblast cells. (B,C) Number of γH2AX foci per cell in the 01HNG (black) and 149BR (green)
cells after incubation for 24 h with the indicated concentration of AlCl3 presented in a linear (B) or a
semi-log (C) scale. Each plot represents the mean ± standard error (SEM) of at least three replicates.
Dotted lines represent linear data fits.

3.6. The Adaptive Response Observed after Exposure to Low Metal Concentrations

In parallel with the HRS phenomenon, another low radiation dose-specific phe-
nomenon has recently been explained by the RIANS model: the adaptive response. Experi-
mentally based on the succession of a low (d) and a high dose (D) separated by a certain
period of time (∆t), the adaptive response is a phenomenon in which d + ∆t + D provides
a lower radiobiological effect than D alone [52–54]. In the frame of the RIANS model, in
cells with delayed RIANS, the adaptive response occurs if the low dose, d, produces ATM
monomers that accumulate in the nucleus without inducing DSB. If ∆t is not too long, these
ATM monomers will participate in the recognition and repair of DSB induced by D, in
addition to the ATM monomers directly induced by D. Hence, the number of unrepaired
DSB will be lower after d + ∆t + D than after D applied alone. Such a phenomenon may
not occur in cells without a delayed RIANS since the number of ATM monomers provided
by D alone is sufficient to recognize all the DSB [52–54].

In order to examine whether cells with delayed RIANS show an adaptive response-like
phenomenon with metal exposure consisting in a succession of two concentrations c and C
separated by a certain period of time ∆t (i.e., c + ∆t + C), we incubated cells with 30 µM
AlCl3 for 4 h then with 300 µM AlCl3 for 24 h and the number of residual γH2AX foci
per cell in the human radiosensitive 01HNG and the radioresistant 149BR fibroblast cells
was assessed (Figure 7). AlCl3 was chosen because of its societal interest. Interestingly,
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while the radioresistant 149BR cells showed the same number of γH2AX foci after 30 µM
+ 4 h + 300 µM + 24 h and after 300 µM + 24 h, the 01HNG cells with delayed RIANS
elicited significantly less γH2AX foci after 30 µM + 4 h + 300 µM + 24 h than after 300 µM
+ 24 h (p < 0.03), suggesting an adaptive response-like phenomenon (Figure 7). Similar
conclusions were reached with pATM data (data not shown).

Figure 7. Evidence of an adaptive response-like phenomenon in cells exposed to metal. Number of
γH2AX foci per cell in the 01HNG (black) and 149BR (green) cells after incubation with the indicated
concentrations of AlCl3. Each bar represents the mean ± standard error (SEM) of at least three
replicates.

3.7. Cell-Type Dependence in the Response to Metal Exposure

All the above data were obtained with human skin fibroblasts. It is noteworthy that
the RIANS model has been shown to be relevant for any other mammalian tissue [30]. The
MI stress may also be strongly dependent on the nature of the tissue. Since the brain and
endothelial cells may be concerned directly by metal exposure, the molecular response
to MI stress of human brain cells was examined. To this aim, we assessed the number
of γH2AX foci and micronuclei remaining after metal exposure for 24 h in three human
non-transformed astrocyte cell lines and one endothelial cell line. These brain cell lines
were provided from the cortex (Ha), the hippocampus (Hah), and the spinal cord (Hasp)
from the same donor and were shown to elicit different delays of RIANS [55]. The 149BR
fibroblast cell line served as a control (Figure 1). AlCl3 was chosen because of its societal
interest. Similar to the data described in Figure 1, the number of residual γH2AX foci
obeyed a pseudo-sigmoidal shape when metal concentration was plotted in a log scale.
Particularly, the number of γH2AX foci in cortex Ha astrocytes were found higher than that
in the spinal cord Hasp and the hippocampus Hah astrocytes (Figure 8A). Again, when
micronuclei yields were considered as endpoints, the cortex astrocyte Ha cell line elicited
much more micronuclei than the other two brain cell lines tested (Figure 8B).

In order to better understand these findings, we plotted the number of residual
γH2AX foci per cell against the corresponding number of micronuclei per 100 cells (Figure
8): while the skin fibroblast cell line described a linear γH2AX/micronuclei slope of about
1 (Figure 2), the slope value became 0.3 for the spinal cord astrocytes (similar to the slope
obtained with X-rays) and 0.07 for the other two brain cell lines (Figure 8C), suggesting
that 3 and 14 times more micronuclei are observed for the same number of γH2AX foci,
respectively. The HMEC cells elicited similar characteristics as those assessed in the control
fibroblasts (Figure 8). Similar conclusions were reached with pATM foci (data not shown).
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Figure 8. Evidence of a tissue-dependence in the response to metal exposure. (A,B). The number of
γH2AX foci per cell (A) and micronuclei per 100 cells (B) in the human Hasp, Ha, Hah brain cells
and the skin fibroblast 149BR cells after incubation for 24 h with the indicated concentration of AlCl3.
Each plot represents the mean ± standard error (SEM) of at least three replicates. (C) The number of
γH2AX foci shown in panel A was plotted against the corresponding number of micronuclei shown
in panel B. Solid lines indicate the result of data fitting to a linear function.

4. Discussion
4.1. The Need for a Consensual Scale to Account for Toxicity and Carcinogenicity of Metals

Due to their intense use in industry and their potential toxicity and carcinogenicity,
metals, like any other chemical agents, are submitted to specific international and national
rules in order to regulate their use and transport. Particularly, the material safety data
sheets (MSDS) usefully inform workers and users of the main dangers that they represent.
However, the MSDS content can differ drastically from one country to another. Faced with
this diversity, international authorities endeavored to get consensual decisions with the
Globally Harmonized System (GHS). Unfortunately, there is still no simple correspondence
between all the categories proposed by the different safety agencies. GHS categories do
not correspond to the groups defined by the International Agency for Research on Cancer
(IARC); for example, a chemical classified as IARC Group 2B (possibly carcinogen) could be
found in the GHS category 1B or category 2 (presumed or suspected carcinogen). All these
statements demonstrate the need for a quantitative and objective scale to account for toxic
and cancer risks, but also the necessity of examining a large panel of metal species with the
same endpoints.

In addition to these statements, it must be stressed that like with some other chem-
ical agents, exposure to metals likely leads to heterogeneous stress distribution in cells.
Moreover, some metals may produce much higher intracellular concentrations than others.
Hence, together with a quantitative and objective scale to account for toxic and cancer risks,
dose-effect curves with a large range of metal concentrations are needed to document
the biological effects of any metal exposure. Such quantification should also take into
account the role of the specific action of anions for a given metal species. Here, even if this
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aspect was not the major scope of the study, the differences observed between CdCl2 and
Cd(CH3CO2)2 are very representative of intra-species differences.

Lastly, while the production of one RI DSB requires more than 100 eV per nm3 (this
energy is reached at doses higher than 25 mGy, i.e., equivalent to that delivered during
a standard chest CT scan exam) [14], exposure to metals was long considered to be too
energetically low to directly produce numerous DSB [56]. However, the present study
pointed out that metal exposure can result in the significant production of DSB in a non-
linearly concentration-dependent manner. In the present study, we did not investigate the
way by which MI DNA damage is induced. A number of biochemical models have been
proposed to this aim and they suggest either direct or indirect formation of DNA damage
produced by the presence of metal [16,57,58]. The relevance of the RIANS model applied
to MI stress does not depend on the fact that MI DSB are directly or indirectly produced.
However, the MI DNA damage production likely appears to be strongly dependent on the
nature of the metallic species considered, and the biochemical and molecular features of
the production of MI DSB need to be investigated further.

4.2. Unrepaired DSB as a Unit to Account for Toxicity of Metals?

According to the literature, the natural parameters for reflecting RI toxicity may be the
number of unrepairable DNA damage and chromosome breaks [59]. However, in the case
of metal exposure, our findings suggest two different categories of endpoints to account for
MI toxicity: those defined in the presence of metal but after a well-characterized exposure
to X-rays, and those defined in the presence of metal without exposure to X-rays. In the
first category, the number of pATM foci assessed 10 min post-irradiation and the number
of γH2AX foci assessed 24 h post-irradiation has been shown to be the best endpoints
to predict radiosensitivity (i.e., RI toxicity) [13,24]. However, 2 Gy X-rays produce much
more ATM monomers than the highest metal concentrations tested. Hence, even if X-ray
irradiation is an interesting tool to study the molecular influence of metal in the DSB
recognition and repair process, the endpoints requiring exposure to both X-rays and metal
cannot easily be used to account for MI toxicity, in practice.

By contrast, by considering that the average background assessed in human fibroblasts
does not exceed two spontaneous γH2AX foci per cell, the threshold metal concentration to
reach more than two γH2AX foci per cell (TMC>2) has been defined (Table 1) and served as
an endpoint of MI toxicity. However, the TMC>2 parameter may not include the HRS-like
phenomenon observed and may be strongly dependent on the individual response to
genotoxic stress. Since eight unrepaired RI DSB were shown to correspond to 100% RI
cell lethality [13], the threshold metal concentration to reach more than eight γH2AX foci
per cell (TMC>8) was also investigated (Table 2). Interestingly, TMC>8, better than TMC>2,
appeared to be correlated to the number of γH2AX foci assessed 24 h post-irradiation and
the number of γH2AX foci or pATM assessed 10 min post-irradiation (Figure S6). However,
again, TMC>8, may reflect a range of MI toxicity that is rarely reached, even after accidental
exposure. Hence, further experiments are needed to document better the interest and the
validity domain of both TMC parameters.

In addition to the precited molecular endpoints, it is noteworthy that the RIANS
model is also based on the ATM-metal complex affinity and stability. Some chemical
features may reflect these features well. This is notably the case of the Misono softness
parameter [60] that quantifies the soft character of the metal ions and their ability to form
covalent bonds, notably with the ATM reactive base sites, according to the hard and soft
acid and base principle [61] (i.e., corresponding to an increasing stability of the ATM-
metal complexes) (Table 2). Interestingly, a quantitative correlation was found between
the Misono softness parameter, the TMC>8, and the number of γH2AX foci assessed 24 h
post-irradiation (Figure S6), supporting the importance of the chemical stability of the
ATM-metal complexes in the nucleo-shuttling of the ATM protein: the more stable the ATM-
metal complexes, the larger the delay of the nucleo-shuttling of the ATM protein, the higher the
toxicity of the metal.
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Table 2. Major biochemical and radiobiological values for the metallic species tested.

Metallic
Species

Misono
Softness

Parameter

TMC > 2$$$$
(µM)

TMC > 8$$$$
(µM)

γH2AX Foci
at 24 h 2

MRE11 Foci
at 4 h 3

WHO Limits
in Tap Water

(µM)

Na2CrO4 na 1 0.003 0.06 21 (1 µM) 8 (1 µM) 0.2

NiCl2 2.82 0.03 9 21 3 0.15

Pb(NO3)2 3.58 0.1 30 16 15 0.03

AlCl3 1.6 1 1000 7 4 1.5

FeCl3 3.09 3 300 9 5 1.2

ZnCl2 2.34 3 700 6 1 22

CdCl2 3.04 3 100 12 2 0.03

Cd(CH3CO2)2 3.04 3 100 na 1 na 1 na 1

C12H10Cd3O14 3.04 10 100 na 1 na 1 na 1

PdCl2 na 1 10 100 na 1 na 1 na 1

CuCl2 2.89 10 800 14.9

CuSO4 2.89 10 100 12 12 12.5
1 Non available; 2 Number of γH2AX foci assessed 24 h post-irradiation and exposed to 100 µM with the notable exception of Na2CrO4
(data shown in Figures 3A,B and 5C) corrected by the number of foci without metal concentration (irradiation only); 3 Number of MRE11
foci assessed 4 h post-irradiation and exposure to 100 µM with the notable exception of Na2CrO4 (data shown in Figure 5B,D) corrected by
the number of foci without metal concentration (irradiation only).

How to test the biological relevance of the above parameters to reflect toxicity? By con-
sidering normal (radioresistant) human cells, and for each metallic species tested here,
the TMC>2 was compared with the maximal concentrations of metal recommended in tap
water by the World Health Organization (WHO) [62] (Table 2, Figure 9). With the notable
exception of Cd and Cr, the TMC>2 values were found to be in acceptable agreement
with the recommended concentration limits (i.e., six metal elements tested among eight).
By contrast, TMC>2 values significantly underestimated the WHO recommendation for Cd,
while it was the inverse for Cr (Figure 9). Further investigations are needed to document
better the link between TMC and the metal concentration limits.

Figure 9. Comparison between TMC > 2 metal concentration limits in tap water. The TMC > 2
values shown in Tables 1 and 2 were plotted against the metal concentration limits in tap water
recommended by the WHO (Table 2). The dotted line corresponds to a one-to-one correlation.
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4.3. Misrepaired DSB as a Unit to Account for Carcinogenicity of Metals?

Likely because the intrinsic mechanisms of carcinogenesis are still unknown, one of
the most important challenges of genotoxicology is to define reliable and very specific
parameters for quantifying carcinogenic risk separately from the toxicity risk [50]; metal
biology is not an exception.

It is noteworthy that the ATM-dependent phosphorylation of H2AX (i.e., the formation
of γH2AX foci) reflects the DSB recognized specifically by the NHEJ pathway. If the
ATM nucleoshuttling is delayed, DSB may not be recognized by NHEJ but by the error-
prone recombination-like pathway. Interestingly, in the particular case of cancer-prone
syndromes, the error-prone recombination-like process may be out of control: this is the
hyper-recombination phenomenon. The hyper-recombination phenomenon is responsible
for the production of additional DSB that may not be revealed by γH2AX foci [50]. Since
unrepaired DSB may lead to the formation of micronuclei indifferently of the DSB repair
and signaling pathway, hyper-recombination may contribute to an increase of the number
micronuclei faster than the number of γH2AX foci. Hence, the γH2AX foci/micronuclei
ratio may be a promising endpoint for cancer-proneness while the number of residual
γH2AX foci may be more specific to toxicity [50].

As developed in Section 3.5, in the frame of the RIANS model, abnormal MRE11 activ-
ity and abnormal MRE11 foci kinetics appear to be correlated to the hyper-recombination
phenomenon and cancer proneness, but not necessarily to toxicity [13,30,50]. By plot-
ting the Misono softness parameter against the number of γH2AX foci assessed 24 h
post-irradiation (Figure S7A) and against the number of MRE11 foci assessed 4 h post-
irradiation (Figure S7B), a certain linearity appears with the γH2AX data, but not with
the MRE11 data (Figure S7), suggesting that the ATM-metal complex affinity and stability
reflected by the Misono softness parameter may influence the γH2AX-dependent pathway
but not the MRE11-dependent pathway. However, again, considering the relatively low
number of MI DSB after realistic exposure to metal, the parameters based on the combina-
tion of RI and MI stress cannot be easily applied, in practice. Further investigations will be
necessary to identify more specific endpoints to account for metal carcinogenicity.

4.4. Toward a Unified Model for Understanding the Response to Metals?

Our findings showed a coherent and quantitative link between γH2AX foci, pATM
foci, MRE11 foci, micronuclei, and HDC cells for all the metallic species tested. Data are in
agreement with a delay of the ATM nucleoshuttling that would occur at high concentrations
depending on the metal. The HRS-like, the adaptive response phenomena, and the tissue-
dependence of the response of metal exposure were also described and predicted by the
RIANS model. Hence, a general mechanistic model can be proposed (Figure 10): metals
that enter into cells can create, via direct or indirect Fenton-like reactions, an oxidative
stress that induces ATM monomerization in the cytoplasm and DSB in the nucleus (similar
to ionizing radiation and hydrogen peroxide [63]). The rates of ATM monomerization and
of the formation of DSB are strongly dependent on cell type and metal species. At a certain
threshold concentration of metal, metals form with ATM some complexes that delay the
nucleo-shuttling of ATM. Such a delay prevents the full recognition and repair of MI DSB
via NHEJ, which leads to toxicity and/or carcinogenicity. At low concentrations of metals,
if the rate of ATM monomerization is too low, an HRS-like phenomenon may occur. Lastly,
in cells with a large cytoplasm, the mean free path of ATM may be longer, which leads
to a significant delay in the nucleoshuttling of ATM and influences the response to metal
exposure (Figure 10).
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Figure 10. Mechanistic model of metal action. As detailed in the discussion, the presence of metal
species may contribute to monomerizing ATM and/or inducing DSB. If the nucleo-shuttling of ATM
is delayed, DSB will be not recognized by the NHEJ pathway. There are two possible consequences:
either DSB are unrepaired, which triggers cell death and toxicity, or DSB are misrepaired by an
alternative DSB repair pathway, which triggers genomic instability and carcinogenicity.

5. Conclusions

Our findings obtained with different assays and endpoints (γH2AX, pATM, MRE11,
micronuclei) and with several metallic species suggest that exposure to metal leads to the
production of DSB, whether direct or indirect, and the activation of the ATM protein kinase.
Like after exposure to ionizing radiation, exposure to metal is consistent with a model
based on the production of ATM monomers in the cytoplasm that diffuse into the nucleus
at a specific rate and extent depending on the metallic species and on their concentration.
At high metal concentrations, some ATM-metal complexes prevent the diffusion of ATM
monomers in the nucleus, which impairs the DSB recognition and repair, leading to toxicity
and/or carcinogenicity. Some specific biomarkers are proposed to better evaluate the risks
associated with exposure to metal.

While metal nanoparticles are currently used as theranostic agents for cancer radiother-
apy, there is some evidence that they may also result in producing DSB that may participate
in the response of treated tumors or exposed healthy tissues [64]. Further experiments will
be therefore needed to link the data involving nanoparticles to those involving metal salts.

6. Patents

WO2017029450—Individual method predictive of the DNA-breaking genotoxic effects
of chemical or biochemical agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11101462/s1, Figure S1: Mitoses and metal exposure; Figure S2: Effect of ZoPra treatment
and exposure to metal; Figure S3: Correlation between γH2AX data obtained after 24 h exposure
to metal followed by irradiation and γH2AX data obtained without exposure to metal; Figure S4:
Correlations between TMC, number of γH2AX foci, and Misono softness parameters.

https://www.mdpi.com/article/10.3390/biom11101462/s1
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Biomolecules 2021, 11, 1462 18 of 21

Author Contributions: Conceptualization, B.F., L.C. and N.F.; data acquisition and methodology,
M.V., L.S., M.L.F., E.B., S.P., A.G. and C.D.; data analysis, L.B. and N.F.; writing—original draft
preparation, B.F., L.C. and N.F.; writing—review and editing, M.V., L.S., M.L.F., E.B., S.P., A.G., C.D.
and L.B.; project administration and funding acquisition, N.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Institut National du Cancer (INCA) (GRRAAL Project),
the Agence Nationale pour le Recherche (ANR) (HEMI-BREAKS Project), the Plan Cancer/AVIESAN
grants (BACCHUS Project), the Commissariat General à l’Investissement (Programmes Investisse-
ment d’Avenir (INDIRA Project), the Cancéropôle Rhône-Alpes (EURIPIDE project) and the EU
FetOpen call projects (SCANnTREAT project).

Institutional Review Board Statement: As already mentioned in Materials and Methods, this study
has been performed with a human fibroblast cell line, namely the 01HNG cell line, that belongs to
the COPERNIC collection of the lab that has been approved by the regional Ethical Committee. Cell
lines were declared under the numbers DC2008-585, DC2011-1437 and DC2021-3957 to the Ministry
of Research.

Informed Consent Statement: All the anonymous donors of the COPERNIC collection evoked above
were informed and signed consent according to the ethics and regulatory recommendations, notably
for their consent to participate and for publication of anonymous data.

Data Availability Statement: The data presented here are either present in a deposed database (see
materials and methods) or will be made available on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IARC. Inorganic and organic lead compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 87, 1. Available online:

https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-
Humans/Inorganic-And-Organic-Lead-Compounds-2006 (accessed on 3 October 2021).

2. IARC. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Working Group views and
expert opinions, Lyon, 9–16 February 1993. IARC Monogr. Eval. Carcinog. Risks Hum 1993, 58, 1–415. Available online:
https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-
Humans/Beryllium-Cadmium-Mercury-And-Exposures-In-The-Glass-Manufacturing-Industry-1993 (accessed on 3 October
2021).

3. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic
consequences (a review). Biochimie 2006, 88, 1549–1559. [CrossRef]

4. Drago, D.; Bolognin, S.; Zatta, P. Role of metal ions in the abeta oligomerization in Alzheimer’s disease and in other neurological
disorders. Curr. Alzheimer Res. 2008, 5, 500–507. [CrossRef]

5. Boll, M.C.; Alcaraz-Zubeldia, M.; Montes, S.; Rios, C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x)
content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem. Res. 2008, 33, 1717–1723. [CrossRef]

6. Charlet, N.; Chapron, Y.; Faller, P.; Kirsch, R.; Stone, A.T.; Baveye, P.C. Neurodegenerative diseases and exposure to the
environmental metals Mn, Pb, and Hg. Coord. Chem. Rev. 2012, 256, 2147–2163. [CrossRef]

7. Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern
Chile due to arsenic in drinking water. Am. J. Epidemiol. 1998, 147, 660–669. [CrossRef]

8. Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith,
M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect. 1992, 97, 259–267. [CrossRef] [PubMed]

9. Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased
mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ.
Health Perspect. 2006, 114, 1293–1296. [CrossRef]

10. Wild, P.; Bourgkard, E.; Paris, C. Lung cancer and exposure to metals: The epidemiological evidence. Cancer Epidemiol. 2009, 472,
139–167.

11. Gastaldo, J.; Viau, M.; Bencokova, Z.; Joubert, A.; Charvet, A.M.; Balosso, J.; Foray, N. Lead contamination results in late and
slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol. Lett. 2007, 173,
201–214. [CrossRef]

12. Viau, M.; Gastaldo, J.; Bencokova, Z.; Joubert, A.; Foray, N. Cadmium inhibits non-homologous end-joining and over-activates
the MRE11-dependent repair pathway. Mutat. Res. 2008, 654, 13–21. [CrossRef] [PubMed]

13. Joubert, A.; Zimmerman, K.M.; Bencokova, Z.; Gastaldo, J.; Rénier, W.; Chavaudra, N.; Favaudon, V.; Arlett, C.; Foray, N. DNA
double-strand break repair defects in syndromes associated with acute radiation response: At least two different assays to predict
intrinsic radiosensitivity? Int. J. Radiat. Biol. 2008, 84, 1–19. [CrossRef] [PubMed]

https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Inorganic-And-Organic-Lead-Compounds-2006
https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Inorganic-And-Organic-Lead-Compounds-2006
https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Beryllium-Cadmium-Mercury-And-Exposures-In-The-Glass-Manufacturing-Industry-1993
https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Beryllium-Cadmium-Mercury-And-Exposures-In-The-Glass-Manufacturing-Industry-1993
http://doi.org/10.1016/j.biochi.2006.10.001
http://doi.org/10.2174/156720508786898479
http://doi.org/10.1007/s11064-008-9610-3
http://doi.org/10.1016/j.ccr.2012.05.012
http://doi.org/10.1093/oxfordjournals.aje.a009507
http://doi.org/10.1289/ehp.9297259
http://www.ncbi.nlm.nih.gov/pubmed/1396465
http://doi.org/10.1289/ehp.8832
http://doi.org/10.1016/j.toxlet.2007.08.003
http://doi.org/10.1016/j.mrgentox.2008.04.009
http://www.ncbi.nlm.nih.gov/pubmed/18539077
http://doi.org/10.1080/09553000701797039
http://www.ncbi.nlm.nih.gov/pubmed/18246480


Biomolecules 2021, 11, 1462 19 of 21

14. Foray, N.; Bourguignon, M.; Hamada, N. Individual response to ionizing radiation. Mutat. Res. Rev. 2016, 770, 369–386. [CrossRef]
15. Morales, M.E.; Derbes, R.S.; Ade, C.M.; Ortego, J.C.; Stark, J.; Deininger, P.L.; Roy-Engel, A.M. Heavy Metal Exposure Influences

Double Strand Break DNA Repair Outcomes. PLoS ONE 2016, 11, e0151367. [CrossRef]
16. Rittich, B.; Spanova, A.; Falk, M.; Benes, M.J.; Hruby, M. Cleavage of double stranded plasmid DNA by lanthanide complexes.

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 800, 169–173. [CrossRef]
17. Tenan, M.R.; Nicolle, A.; Moralli, D.; Verbouwe, E.; Jankowska, J.D.; Durin, M.A.; Green, C.M.; Mandriota, S.J.; Sappino, A.P.

Aluminum Enters Mammalian Cells and Destabilizes Chromosome Structure and Number. Int. J. Mol. Sci. 2021, 22, 9515.
[CrossRef]

18. Zhang, S.; Hao, S.; Qiu, Z.; Wang, Y.; Zhao, Y.; Li, Y.; Gao, W.; Wu, Y.; Liu, C.; Xu, X.; et al. Cadmium disrupts the DNA damage
response by destabilizing RNF168. Food Chem. Toxicol. 2019, 133, 110745. [CrossRef]

19. Shah, A.J.; Lakkad, B.C.; Rao, M.V. Genotoxicity in lead treated human lymphocytes evaluated by micronucleus and comet assays.
Indian J. Exp. Biol. 2016, 54, 502–508.

20. DeLoughery, Z.; Luczak, M.W.; Ortega-Atienza, S.; Zhitkovich, A. DNA double-strand breaks by Cr(VI) are targeted to euchro-
matin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination. Toxicol. Sci. Off. J. Soc. Toxicol. 2015,
143, 54–63. [CrossRef] [PubMed]

21. Pottier, G.; Viau, M.; Ricoul, M.; Shim, G.; Bellamy, M.; Cuceu, C.; Hempel, W.M.; Sabatier, L. Lead Exposure Induces Telomere
Instability in Human Cells. PLoS ONE 2013, 8, e67501. [CrossRef] [PubMed]

22. Ayene, I.S.; Koch, C.J.; Krisch, R.E. DNA strand breakage by bivalent metal ions and ionizing radiation. Int. J. Radiat. Biol. 2007,
83, 195–210. [CrossRef] [PubMed]

23. Rothkamm, K.; Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray
doses. Proc. Natl. Acad. Sci. USA 2003, 100, 5057–5062. [CrossRef] [PubMed]

24. Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.; Forcheron, F.; Viau,
M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a
Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 450–460. [CrossRef] [PubMed]

25. Belkacemi, Y.; Colson-Durand, L.; Granzotto, A.; Husheng, S.; To, N.H.; Majdoul, S.; Guet, S.; Herve, M.L.; Fonteneau, G.;
Diana, C.; et al. The Henri Mondor Procedure of Morbidity and Mortality Review Meetings: Prospective Registration of Clinical,
Dosimetric, and Individual Radiosensitivity Data of Patients With Severe Radiation Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2016,
96, 629–636. [CrossRef]

26. Pereira, S.; Bodgi, L.; Duclos, M.; Canet, A.; Ferlazzo, M.L.; Devic, C.; Granzotto, A.; Deneuve, S.; Vogin, G.; Foray, N. Fast
and binary assay for predicting radiosensitivity based on the nucleoshuttling of ATM protein: Development, validation and
performances. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 353–360. [CrossRef]

27. Vogin, G.; Bastogne, T.; Bodgi, L.; Gillet-Daubin, J.; Canet, A.; Pereira, S.; Foray, N. The Phosphorylated ATM Immunofluorescence
Assay: A High-performance Radiosensitivity Assay to Predict Postradiation Therapy Overreactions. Int. J. Radiat. Oncol. Biol.
Phys. 2018, 101, 690–693. [CrossRef] [PubMed]

28. Maalouf, M.; Granzotto, A.; Devic, C.; Bodgi, L.; Ferlazzo, M.; Peaucelle, C.; Bajard, M.; Giraud, J.Y.; Balosso, J.; Herault, J.; et al.
Influence of Linear Energy Transfer on the Nucleo-shuttling of the ATM Protein: A Novel Biological Interpretation Relevant for
Particles and Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 709–718. [CrossRef]

29. Berthel, E.; Ferlazzo, M.; Devic, C.; Bourguignon, M.; Foray, N. What does the History of Research on the Repair of DNA
Double-Strand Breaks Tell Us?—A Comprehensive Review of Human Radiosensitivity. Int. J. Mol. Sci. 2019, 20, 5339. [CrossRef]

30. Berthel, E.; Foray, N.; Ferlazzo, M.L. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual
Response to High- and Low-Dose of Radiation? Cancers 2019, 11, 905. [CrossRef]

31. Bodgi, L.; Foray, N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the
linear-quadratic model. Int. J. Radiat. Biol. 2016, 92, 117–131. [CrossRef]

32. Foray, N.; Fertil, B.; Alsbeih, M.G.; Badie, C.; Chavaudra, N.; Iliakis, G.; Malaise, E.P. Dose-rate effect on radiation-induced DNA
double-strand breaks in the human fibroblast HF19 cell line. Int. J. Radiat. Biol. 1996, 69, 241–249. [CrossRef]

33. Foray, N.; Priestley, A.; Alsbeih, G.; Badie, C.; Capulas, E.P.; Arlett, C.F.; Malaise, E.P. Hypersensitivity of ataxia telangiectasia
fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int. J. Radiat. Biol. 1997, 72,
271–283. [PubMed]

34. Gastaldo, J.; Bencokova, Z.; Massart, C.; Joubert, A.; Balosso, J.; Charvet, A.M.; Foray, N. Specific molecular and cellular events
induced by irradiated X-ray photoactivatable drugs raise the problem of co-toxicities: Particular consequences for anti-cancer
synchrotron therapy. J. Synchrotron Radiat. 2011, 18, 456–463. [CrossRef] [PubMed]

35. Varela, I.; Pereira, S.; Ugalde, A.P.; Navarro, C.L.; Suarez, M.F.; Cau, P.; Cadinanos, J.; Osorio, F.G.; Foray, N.; Cobo, J.; et al.
Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging.
Nat. Med. 2008, 14, 767–772. [CrossRef]

36. Foray, N.; Marot, D.; Gabriel, A.; Randrianarison, V.; Carr, A.M.; Perricaudet, M.; Ashworth, A.; Jeggo, P. A subset of ATM- and
ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J. 2003, 22, 2860–2871. [CrossRef]

37. Ferlazzo, M.; Berthel, E.; Granzotto, A.; Devic, C.; Sonzogni, L.; Bachelet, J.T.; Pereira, S.; Bourguignon, M.; Sarasin, A.; Mezzina,
M.; et al. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated
with a delayed radiation-induced ATM nuclear localization. Int. J. Radiat. Biol. 2019, 96, 1–17. [CrossRef] [PubMed]

http://doi.org/10.1016/j.mrrev.2016.09.001
http://doi.org/10.1371/journal.pone.0151367
http://doi.org/10.1016/j.jchromb.2003.09.011
http://doi.org/10.3390/ijms22179515
http://doi.org/10.1016/j.fct.2019.110745
http://doi.org/10.1093/toxsci/kfu207
http://www.ncbi.nlm.nih.gov/pubmed/25288669
http://doi.org/10.1371/journal.pone.0067501
http://www.ncbi.nlm.nih.gov/pubmed/23840724
http://doi.org/10.1080/09553000601146956
http://www.ncbi.nlm.nih.gov/pubmed/17378528
http://doi.org/10.1073/pnas.0830918100
http://www.ncbi.nlm.nih.gov/pubmed/12679524
http://doi.org/10.1016/j.ijrobp.2015.11.013
http://www.ncbi.nlm.nih.gov/pubmed/26867874
http://doi.org/10.1016/j.ijrobp.2016.05.027
http://doi.org/10.1016/j.ijrobp.2017.10.029
http://doi.org/10.1016/j.ijrobp.2018.03.047
http://www.ncbi.nlm.nih.gov/pubmed/29893278
http://doi.org/10.1016/j.ijrobp.2018.10.011
http://doi.org/10.3390/ijms20215339
http://doi.org/10.3390/cancers11070905
http://doi.org/10.3109/09553002.2016.1135260
http://doi.org/10.1080/095530096146084
http://www.ncbi.nlm.nih.gov/pubmed/9298107
http://doi.org/10.1107/S0909049511006017
http://www.ncbi.nlm.nih.gov/pubmed/21525655
http://doi.org/10.1038/nm1786
http://doi.org/10.1093/emboj/cdg274
http://doi.org/10.1080/09553002.2020.1694189
http://www.ncbi.nlm.nih.gov/pubmed/31738647


Biomolecules 2021, 11, 1462 20 of 21

38. Colin, C.; Devic, C.; Noël, A.; Rabilloud, M.; Zabot, M.-T.; Pinet-Isaac, S.; Giraud, S.; Riche, B.; Valette, P.-J.; Rodriguez-Lafrasse,
C.; et al. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells. Int. J.
Radiat. Biol. 2011, 87, 1103–1112. [CrossRef]

39. Bodgi, L.; Granzotto, A.; Devic, C.; Vogin, G.; Lesne, A.; Bottollier-Depois, J.F.; Victor, J.M.; Maalouf, M.; Fares, G.; Foray,
N. A single formula to describe radiation-induced protein relocalization: Towards a mathematical definition of individual
radiosensitivity. Int. J. Theor. Biol. 2013, 333, 135–145. [CrossRef]

40. Grote, S.J.; Joshi, G.P.; Revell, S.H.; Shaw, C.A. Observations of radiation-induced chromosome fragment loss in live mammalian
cells in culture, and its effect on colony-forming ability. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1981, 39, 395–408.
[CrossRef]

41. Nascarella, M.A.; Stoffolano Jr, J.G.; Stanek 3rd, E.J.; Kostecki, P.T.; Calabrese, E.J. Hormesis and stage specific toxicity induced by
cadmium in an insect model, the queen blowfly, Phormia regina Meig. Environ. Pollut. 2003, 124, 257–262. [CrossRef]

42. Bleavins, K.; Perone, P.; Naik, M.; Rehman, M.; Aslam, M.N.; Dame, M.K.; Meshinchi, S.; Bhagavathula, N.; Varani, J. Stimulation
of fibroblast proliferation by insoluble gadolinium salts. Biol. Trace Elem. Res. 2012, 145, 257–267. [CrossRef] [PubMed]

43. Philips, N.; Hwang, H.; Chauhan, S.; Leonardi, D.; Gonzalez, S. Stimulation of cell proliferation and expression of
matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect Tissue Res. 2010, 51, 224–229.
[CrossRef] [PubMed]

44. Beyersmann, D.; Haase, H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 2001, 14,
331–341. [CrossRef]

45. Wagner, S.; Hussain, M.Z.; Hunt, T.K.; Bacic, B.; Becker, H.D. Stimulation of fibroblast proliferation by lactate-mediated oxidants.
Wound Repair Regen. 2004, 12, 368–373. [CrossRef]

46. Ferlazzo, M.L.; Bach-Tobdji, M.K.E.; Djerad, A.; Sonzogni, L.; Burlet, S.F.; Devic, C.; Granzotto, A.; Bodgi, L.; Djeffal-Kerrar, A.;
Foray, N. Radiobiological characterization of tuberous sclerosis: A delay in the nucleo-shuttling of ATM may be responsible for
radiosensitivity. Mol. Neurobiol. 2017, 55, 4973–4983. [CrossRef]

47. Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; Bodgi, L.; Lartin, O.; Devic, C.; Vogin, G.; Pereira, S.; Foray, N. Mutations of
the Huntington’s Disease Protein Impact on the ATM-Dependent Signaling and Repair Pathways of the Radiation-Induced
DNA Double-Strand Breaks: Corrective Effect of Statins and Bisphosphonates. Mol. Neurobiol. 2014, 49, 1200–1211. [CrossRef]
[PubMed]

48. Varela, I.; Cadinanos, J.; Pendas, A.M.; Gutierrez-Fernandez, A.; Folgueras, A.R.; Sanchez, L.M.; Zhou, Z.; Rodriguez, F.J.; Stewart,
C.L.; Vega, J.A.; et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature
2005, 437, 564–568. [CrossRef] [PubMed]

49. Renier, W.; Joubert, A.; Bencokova, Z.; Gastaldo, J.; Massart, C.; Foray, N. Consequences of the bleed-through phenomenon
in immunofluorescence of proteins forming radiation-induced nuclear foci. Int. J. Radiat. Biol. 2007, 83, 543–549. [CrossRef]
[PubMed]

50. El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.;
Combemale, P.; et al. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int. J. Mol. Sci. 2021, 22, 7158.
[CrossRef]

51. Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and possible mechanisms.
Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [CrossRef]

52. Calabrese, E.J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 2008, 29, 249–261.
[CrossRef]

53. Calabrese, E.J. Hormesis: A fundamental concept in biology. Microb. Cell 2014, 1, 145–149. [CrossRef]
54. Devic, C.; Ferlazzo, M.L.; Foray, N. Influence of Individual Radiosensitivity on the Adaptive Response Phenomenon: Toward a

Mechanistic Explanation Based on the Nucleo-Shuttling of ATM Protein. Dose-Response Publ. Int. Hormesis Soc. 2018, 16, 1–11.
[CrossRef]

55. Granzotto, A.; Bencokova, Z.; Vogin, G.; Devic, C.; Joubert, A.; Balosso, J.; Foray, N. DNA double-strand breaks repair and
signaling of human gliomas and normal brain cells in response to radiation: Po-tential impact of the ATM- and BRCA1-dependent
pathways. In Brain Tumors/Book 3; Abujamra, A.L., Ed.; Intechweb: Rijeka, Croatia, 2011.

56. Hartwig, A. Current aspects in metal genotoxicity. Biometals 1995, 8, 3–11. [CrossRef]
57. Lay, P.A.; Levina, A. Activation of Molecular Oxygen during the Reactions of Chromium(VI/V/IV) with Biological Reductants:

Implications for Chromium-Induced Genotoxicities. J. Am. Chem. Soc. 1998, 120, 6704–6714. [CrossRef]
58. Levina, A.; Codd, R.; Dillon, C.T.; Lay, P.A. Chromium in Biology. In Toxicology and Nutritional Aspects Progress in Inorganic

Chemistry; Karlin, K.D., Ed.; Wiley Publishers: New York, NY, USA, 2003; Volume 51, pp. 145–250.
59. Averbeck, D.; Candeias, S.; Chandna, S.; Foray, N.; Friedl, A.A.; Haghdoost, S.; Jeggo, P.A.; Lumniczky, K.; Paris, F.; Quintens,

R.; et al. Establishing mechanisms affecting the individual response to ionizing radiation. Int. J. Radiat. Biol. 2020, 96, 297–323.
[CrossRef] [PubMed]

60. Misono, M.; Ochini, E.; Saito, Y.; Yoneda, Y. A new dual parameter scale for the strength of Lewis acids and bases with the
evaluation of their softness. J. Inorg. Nucl. Chem. 1967, 29, 2685–2691. [CrossRef]

61. Pearson, R.G. Hard and Soft acids and bases, Part I. J. Chem. Educ. 1968, 45, 581–587. [CrossRef]

http://doi.org/10.3109/09553002.2011.608410
http://doi.org/10.1016/j.jtbi.2013.05.020
http://doi.org/10.1080/09553008114550491
http://doi.org/10.1016/S0269-7491(02)00479-7
http://doi.org/10.1007/s12011-011-9176-9
http://www.ncbi.nlm.nih.gov/pubmed/21882070
http://doi.org/10.3109/03008200903288431
http://www.ncbi.nlm.nih.gov/pubmed/20053132
http://doi.org/10.1023/A:1012905406548
http://doi.org/10.1111/j.1067-1927.2004.012315.x
http://doi.org/10.1007/s12035-017-0648-6
http://doi.org/10.1007/s12035-013-8591-7
http://www.ncbi.nlm.nih.gov/pubmed/24277524
http://doi.org/10.1038/nature04019
http://www.ncbi.nlm.nih.gov/pubmed/16079796
http://doi.org/10.1080/09553000701436810
http://www.ncbi.nlm.nih.gov/pubmed/17613127
http://doi.org/10.3390/ijms22137158
http://doi.org/10.1016/S0360-3016(00)01471-1
http://doi.org/10.1177/0960327109363973
http://doi.org/10.15698/mic2014.05.145
http://doi.org/10.1177/1559325818789836
http://doi.org/10.1007/BF00156151
http://doi.org/10.1021/ja974240z
http://doi.org/10.1080/09553002.2019.1704908
http://www.ncbi.nlm.nih.gov/pubmed/31852363
http://doi.org/10.1016/0022-1902(67)80006-X
http://doi.org/10.1021/ed045p581


Biomolecules 2021, 11, 1462 21 of 21

62. WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004. Available online: https://www.who.int/water_
sanitation_health/dwq/GDWQ2004web.pdf (accessed on 3 October 2021).

63. Paull, T.T. Mechanisms of ATM Activation. Annu. Rev. Biochem. 2015, 84, 711–738. [CrossRef] [PubMed]
64. Pagacova, E.; Stefancikova, L.; Schmidt-Kaler, F.; Hildenbrand, G.; Vicar, T.; Depes, D.; Lee, J.H.; Bestvater, F.; Lacombe, S.;

Porcel, E.; et al. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer
Therapy. Int. J. Mol. Sci. 2019, 20, 588. [CrossRef] [PubMed]

https://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
https://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
http://doi.org/10.1146/annurev-biochem-060614-034335
http://www.ncbi.nlm.nih.gov/pubmed/25580527
http://doi.org/10.3390/ijms20030588
http://www.ncbi.nlm.nih.gov/pubmed/30704035

	Introduction 
	Materials and Methods 
	Cell Lines 
	Metals 
	Treatment with Zoledronate and Pravastatine (ZoPra) 
	Irradiations 
	Immunofluorescence 
	Statistical Analysis 

	Results 
	Unrepaired MI DSB Assessed with Different Endpoints 
	Influence of the Presence of Metal during the RI DSB Recognition and Repair Process 
	Influence of the Presence of Metal on the Nucleo-Shuttling of the ATM Protein 
	Influence of the Presence of Metal on the Activity of the MRE11 Nuclease 
	The Hypersensitivity Phenomenon Observed after Exposure to Low Metal Concentrations 
	The Adaptive Response Observed after Exposure to Low Metal Concentrations 
	Cell-Type Dependence in the Response to Metal Exposure 

	Discussion 
	The Need for a Consensual Scale to Account for Toxicity and Carcinogenicity of Metals 
	Unrepaired DSB as a Unit to Account for Toxicity of Metals? 
	Misrepaired DSB as a Unit to Account for Carcinogenicity of Metals? 
	Toward a Unified Model for Understanding the Response to Metals? 

	Conclusions 
	Patents 
	References

