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Recent years have witnessed the detection of an increasing number of complex organic
molecules in interstellar space, some of them being of prebiotic interest. Disentangling
the origin of interstellar prebiotic chemistry and its connection to biochemistry and
ultimately, to biology is an enormously challenging scientific goal where the application
of complexity theory and network science has not been fully exploited. Encouraged
by this idea, we present a theoretical and computational framework to model the
evolution of simple networked structures toward complexity. In our environment,
complex networks represent simplified chemical compounds and interact optimizing the
dynamical importance of their nodes. We describe the emergence of a transition from
simple networks toward complexity when the parameter representing the environment
reaches a critical value. Notably, although our system does not attempt to model the rules
of real chemistry nor is dependent on external input data, the results describe the emer-
gence of complexity in the evolution of chemical diversity in the interstellar medium.
Furthermore, they reveal an as yet unknown relationship between the abundances of
molecules in dark clouds and the potential number of chemical reactions that yield
them as products, supporting the ability of the conceptual framework presented here to
shed light on real scenarios. Our work reinforces the notion that some of the properties
that condition the extremely complex journey from the chemistry in space to prebiotic
chemistry and finally, to life could show relatively simple and universal patterns.
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The origin of life on Earth is far away from being unveiled. Life could have appeared
spontaneously in our early planet about 4 billion y ago, or it could have existed previously
in the outer space and been brought by dust and meteoroids, as panspermia states. An
intermediate hypothesis is the molecular panspermia, which proposes that the original
building blocks of life could have been produced in the interstellar medium (ISM)
and introduced in the early Earth by asteroids and meteorites during the Late Heavy
Bombardment that took place between 3.8 and 4.1 billion y ago, importantly enriching
prebiotic chemistry. Over 200 molecules have been detected in the ISM, with some of
them being prebiotically relevant as, for example, glycolaldehyde, urea, or ethanolamine
(1–4). Prebiotic molecules, such as glycine or ribose, have indeed been found in meteorites
and comets (5, 6), which supports the idea that prebiotic species could initially form
in interstellar space and be transferred later to planetesimals and to Earth during the
formation of the solar system.

In parallel to the efforts to understand the origin of life from the biochemical optics,
the development and advance of computation in the last 50 y propitiated the study of life
modeled as a cellular automaton (7, 8). Despite the simplicity of the rules, the different
systems under study, in particular Conway’s Game of Life (9), presented an unexpected
variety of spatiotemporal patterns and cast light on how complexity, emergence, and
self-organization arise from a simple system. More complex systems were introduced in
the eighties to model Darwinian evolution with the use of a new type of artificial life,
where organisms described as computer programs could self-replicate, adapt, and mutate
by natural selection, mostly competing for the control of the memory of the computer
[e.g., CoreWar (10) and Avida (11, 12)]. The introduction of these digital organisms to
address fundamental biological questions was supported on two main statements. First,
they provide a way to generalize life beyond the organisms detected so far in our biosphere.
Second, they allow us to perform, enlarge, and repeat experiments on a scale that is
unachievable with real entities (11).

In order to assess whether artificial life and its connection with complex networks
theory can bring light to the study of the origin of life, in this work we present a
computational framework, NetWorld, where networks interact following very simple local
rules inspired by network science and game theory, leading to a chemistry of networks.
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Our objective is to test using real astrochemical data whether a
basic digital framework can reproduce certain general properties
of the difficult transition from chemistry to biology and therefore,
describe in an abstract level the creation of the basic building
blocks of life.

1. Results

In NetWorld, every chemical compound is represented by a
network, and this allows us to apply the strength and tools
of complex network theory. From simply isolated nodes that
simulate an initial state of total lack of complexity, this artificial
chemistry shows the emergence of a transition beyond which the
environment permits the appearance of a rich variety of networks
with different spectral, topological, and dynamical properties,
mimicking in a very simplified manner the first steps of prebiotic
chemistry and its natural evolution toward complexity. We will
pay special attention to the descriptive and predictive ability of this
framework, showing that the results throw light on the chemical
evolution toward complexity of molecular clouds in the ISM and
reveal a so far unknown relationship between the abundances of
the molecules present in dark clouds and the number of chemical
reactions that have them as products.

1.A. Description and Rules of the Model. An artificial chemistry
model is defined by three components: a set of all possible
structures, a set of rules that govern the interaction among struc-
tures, and an algorithm that describes the reaction domain (13).
Furthermore, depending on their level of abstraction, models can
be classified as analogous, when they try to be faithful to natural
chemistry, and abstract otherwise. According to these definitions,
NetWorld could be understood as an extremely abstract artificial
chemistry model, where nodes stand for indistinguishable basic
entities—they are unweighted and have no different properties to
represent the chemical valency or size of atoms, for example—and
the bonds between nodes are represented by undirected and un-
weighted links. In a simple case, these entities could be molecules
where nodes stand for atoms and links for their interactions. How-
ever, as its internal rules are so different from those that govern real
chemistry, our approach differs drastically from the large myriad
of artificial chemistry models that quantitatively represent real
processes through detailed descriptions of the physicochemical
interaction between atoms (13–15).

Fig. 1 presents a visual description of the evolutionary dynam-
ics described by NetWorld, and Fig. 1A shows a toy example
with four initial nodes. A rigorous explanation of the algorithm
is presented in SI Appendix, Supporting Information Texts S1–S3;
an analysis of the dependence of the computation time with
NetWorld’s parameters is introduced in SI Appendix, Supporting
Information Text S4 ; and information on the public availability
of the code is found in SI Appendix, Supporting Information Text
S5. Each process is started with an initial number n(0) =N of
isolated nodes. Nodes are neither created nor destroyed during
the process. In each time step t , the population consists of n(t)
networks that will be made of the N available nodes for the total
ensemble. At the beginning of each time step t , two networks
A and B of the total population are chosen randomly. They
interact following a simple set of rules explained below and in
SI Appendix, Supporting Information Text S1.A. They either form
a new network C , simulating the reaction A+ B → C , or fail to
join and remain as A and B . In the latter case, a different pair of
networks A′ and B ′ is chosen until one pair succeeds in forming
a new network. At the end of the time step, every network i in the
population has a partition probability

A

B

C

Fig. 1. Description of the evolutionary dynamics created by NetWorld. (A)
Sketch of the potential evolution of a simple system formed by four nodes. (B)
In every time step of a simulation, two networks get in touch and interact until
the system reaches a final network (defined by a Nash equilibrium) or a cycle
of several alternating structures. The connector links (blue) join the original
networks (red and green). (C) Example of a realization of the whole process
with environment parameter β = 2.5 and N = 20 initial isolated nodes. The
process reaches an end when a single network of size 20 is created. Insets
show the state of the system at specific times.

Pi =
2

1 + exp(μiβ)
[1]

of being divided into smaller pieces, simulating the reaction C →∑
Dj (SI Appendix, Supporting Information Text S1.B has a full

description of the partition algorithm). The stability parameter
μi is the second smallest eigenvalue associated with the Laplacian
matrix of network i . It is also known as the algebraic connectivity
or the Fiedler eigenvalue and represents the resistance of a network
to being split into different communities (16). The environment
parameter β concentrates the whole physicochemical properties
of the environment, such as the temperature or the radiation.
β is constant during the whole process, and it is the unique
relevant global parameter of our model. When a new time step
starts, the same process is repeated with the new collection of
n(t + 1) networks. Note that n(t + 1)≥ n(t)− 1 and n(t) ∈
[1,N ] for all t . The process finishes when 1) the totality of nodes
collapses in a unique structure [i.e., n(t) = 1], 2) n(t)> 1 but
no networks will accept any new connections, or 3) t reaches a
limit value of 104 steps. A typical realization of the total process
for an environment parameter β = 2.5 and N = 20 initial nodes
is plotted in Fig. 1C.

The interaction between the two networks A and B chosen
randomly at time t to give rise to network C requires special
attention (Fig. 1B). It is inspired by a connecting method already
applied to socioeconomic networks (17, 18), and it is grounded
in the extensive work devoted to the description of the compe-
tition/cooperation between networks developed during the last
decade for ordinary interactions (19–22) or more recently, for
higher-order interactions (23–25). We randomly choose one node
a in A and one node b in B (connector nodes from now on) and
connect them through an undirected link (connector link from
now on). This new link is accepted only if both connector nodes
a and b increase their dynamical importance in the network,
measured as I = λ1ul .λ1 is the largest eigenvalue of the adjacency
matrix of the new network formed by A, B , and the connector
link just added, and �u represents its associated eigenvector, L1
normalized such that

∑
uk = 1. ul is the eigenvector centrality

of connector node l , and it measures the importance of a node
based on how well connected it is and how important its neighbors
are. Both λ1 and �u are important measurements of the dynamical
properties associated with a complex network. If there was a
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Fig. 2. Description of the diversity of structures created by NetWorld for different values of the environment parameter β and N = 40 initial nodes. (A)
Histogram of network sizes (number of nodes in a network) for β = 1.8. A log-normal fitting is plotted with a bold line (goodness of fit of r = 0.993). Dependence
with β of (B) the size of the networks, (C) the average degree�k, (D) the maximum eigenvalue λ1, (E) the degree entropy H [calculated as H = −

∑K
i=1 pi × log2(pi),

where pi is the fraction of nodes of degree i and K is the maximum degree], and (F) the stability parameter μ. (G) Principal components analysis (PCA) of the
system: First (blue; 54% of variability) and second (yellow; 21% of variability). (H) Number of different configurations Nconf as a function of β. Exponential
approximations are plotted as dashed lines [Nconf = 2.56 exp(1.43β), r = 0.971 for β < βcrit and Nconf = 0.03 exp(4.25β), r = 0.998 for β > βcrit]. The critical
value of β (βcrit ≈ 1.55) is remarked. In B–F, every single network is represented by a blue dot, and the average value and the 10 to 90 percentile range for each
β are plotted in red.

dynamical process of the type �m(t + 1) = G�m(t) evolving on a
network of adjacency matrix G, it is known that �m(t)→ �u when
t →∞, and the population growth rate would be λ1 (17). The
process of choosing randomly a new pair of nodes a ′ in A and b′

in B—already connected through a connector link from a to b—
and checking whether they accept a link or not is repeated, taking
into account that, for simplicity and without loss of generality,
only one connector link per node is allowed (18), and therefore,
any preexisting connector links associated with nodes a ′ and b′

are erased. In general, this algorithm leads to the connection of A
and B through a cascade and rewiring of connector links until the
total network C = A+ B reaches a Nash equilibrium or a cycle
between several final configurations, and in the latter case, one of
the final cyclic configurations is chosen randomly as C . If no links
are accepted between A and B when all possible connections be-
tween both networks have been tried, we suppose that they do not
react, and A and B remain unchanged. In this case, the time is not
increased and the interaction between two other networks starts.

In summary, our framework is grounded in the simulation of
abstract networked entities that evolve following rules inherited
from network science and game theory, and there is a total absence
of machine learning techniques or any kind of fitting with real data
in the different steps of the model.

1.B. Description of the Artificial Chemosphere Created at
NetWorld: Transition toward Complexity. Every simulation of
the whole process throughout this work started from N = 40
initial isolated nodes, lasted a maximum of 104 time steps, and
was repeated 25 times for each value of the environment parameter
β in the range β = [0, 2.7]. The limit case β →∞ does not permit
any network partition (P = 0 in Eq. 1) and is also studied.
All structures detected at the end of any time step for all

realizations of each β, even if they were destroyed later, represent
its diversity. The relative abundance of each configuration is
given by the probability of finding it in the set of networks
accumulated during all times and realizations (SI Appendix,
Supporting Information Text S2 has a detailed explanation of how
to compute the number of different configurations and the relative
abundance in a simulation).
1.B.1. Diversity vs. environment. We start by focusing on how
the environment shapes the networks emerging in the system.
Fig. 2 shows the topological and structural description of the
diversity created for a wide range of values of the environment
parameter. For β = 0, every network of two nodes (i.e., the first
to be created from isolated nodes) immediately breaks up, and
only isolated nodes are found for all times. When β grows, the
partition probability P of a network decreases (Eq. 1), and diverse
structures emerge; however, it is not until large values of β are
reached (β = 2.5 for N = 40) that networks of the maximum
possible size are created, as shown in Fig. 2B.* The size, the mean
degree �k , the largest eigenvalue of the adjacency matrix λ1, and
the degree entropy of the created structures H (plotted in Fig. 2B–
E) positively correlate with β, as shown in the first component of
the principal components analysis (PCA) calculated for the whole
ensemble of existing structures and plotted in Fig. 2G (26). On
the contrary, the average stability of the networks μ̄ correlates
negatively with β (Fig. 2F and the second component of the
PCA in Fig. 2G), as more extensive and heterogeneous structures
(i.e., with large entropy H ) are in general easier to divide, but

*Note that, in opposition to real chemistry, in our model all nodes are equal, and therefore,
there are very few potential configurations of small size (e.g., there is only one for size 2,
while there is a large number of molecules of two atoms in nature).
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the low partition probability of networks for large β permits their
appearance and survival.

Importantly, in Fig. 2H, the growth of the number of different
configurations with β suffers a transition around βcrit = 1.55
such that beyond that critical point, the diversity explodes expo-
nentially faster than before it. While the 10 to 90 percentile range
plotted in red in Fig. 2B–F shows that the population is formed by
a large number of networks with similar topological properties, for
β > βcrit there is also a rare chemosphere of structures that show
very different topologies from the one of the majority, introducing
a large amount of variability. Note that the existence of long tails
of low-abundance entities is a typical property of real complex
systems, notably ecological communities (27, 28). In summary,
for low values of β, the main bricks of future complexity are
formed, but only when a critical state of the environment is
reached may these motifs be sufficiently abundant and interact
successfully to enrich the system with a large number of new
structures. This new population is made of very diverse entities,
where 1) regular/robust structures but also, 2) heterogeneous/less
stable networks can be detected. The former are made out of
very similar blocks that, from the optics of information theory,
would not code complex information but show redundancy, a
fundamental property to prevent attacks and failures when basic
tasks must be developed. The latter consist of complex networks
where more information could be coded, but they are more
sensitive to divisions, external perturbations, or losses of nodes.
1.B.2. Abundance vs. environment. Fig. 3 describes the relative
abundance of the networked structures obtained for the different

A

C

B

Fig. 3. Analysis of the relative abundance of structures created by NetWorld
for different values of the environment parameter β and N = 40 initial nodes.
(A) Abundance of each structure as a function of β. Each color represents
a different structure (some of them shown in the insets), but all structures
emerged for β > βcrit are plotted in dark blue for clarity. (B) Normalized

entropy Hnorm as a function of β. Hnorm = −
∑Nconf

i=1 pi × log2 pi/ log2(Nconf ),
where pi is the relative abundance of configuration i and Nconf is the number
of different configurations. Linear approximations are plotted as dashed
lines: Hnorm = (0.006 ± 0.004) + (0.121 ± 0.005)β for β < βcrit and Hnorm =
(0.20 ± 0.01) − (0.006 ± 0.005)β for β > βcrit . The critical value of βcrit ≈
1.55 is remarked. (C) Abundance rank for different values of β (excluding
isolated nodes). β ∈ [0.1, 2.7]; β grows from left to right in intervals of Δβ =
0.2. The abundance rank for βcrit = 1.55 is plotted as the brown line, and that
for β → ∞ (i.e., when the environment does not permit any network partition)
is plotted as black circles.

environments: that is, the probability of finding them in the set
of networks accumulated during all times and realizations. In
Fig. 3A, we plot the relative abundance of each configuration as
a function of β, and it is clear that the simplest structures are
created at low values of β and are especially abundant. A gradual
appearance of larger and/or more complex configurations takes
place for moderate β, and beyond β = βcrit , a cascade of new
configurations leads to the exponential emergence of diversity al-
ready measured in Fig. 2H. The sharpness of the transition toward
complexity is specially visible in Fig. 3B, where the normalized
entropy of the total ensemble of networks Hnorm (29) shows a
transition from a linear growth with β to a constant value. For
β < βcrit , the abundances of the few structures that exist tend to
be more uniformly distributed when β grows (Fig. 3A), increasing
the entropy of the system (which reaches the maximum value
Hnorm = 1 when all abundances are equal; the mathematical
expression for Hnorm is in Fig. 3). However, once the critical
environment is surpassed, the growth in complexity due to the
tendency toward the relative abundance uniform distribution is
balanced by the exponential emergence of diversity. Finally, in
Fig. 3C, we plot the abundance ranks of the population for differ-
ent values of β. For low β, the curves are very skewed and show
exponential decays, typical behavior of ecological environments
with little diversity (30). When β grows and crosses the critical
value (brown line), the curves gradually lose skewness and become
power laws, showing long tails as a consequence of a large diversity
of rare configurations, and tend toward the limit case of the
process in which β =∞ and the structures cannot divide.

1.C. Application to a Real Scenario: Chemical Complexity in the
Interstellar Medium. Molecules are an important component
of the ISM since they regulate its ionization state and energy
dissipation. Molecules are typically found in interstellar clouds
where the amount of interstellar dust and thus, of visual extinction
Av is large enough to prevent the photodissociation of molecular
species by the external interstellar ultraviolet (UV) radiation field,
which enables their formation and survival. The level of chem-
ical complexity in interstellar clouds is, however, very different
depending on their level of extinction and on the available amount
of molecular hydrogen (H2) and carbon monoxide (CO) within
them (31). In this way, interstellar clouds can be classified as
diffuse atomic [with a fraction f of H2 with respect to the total
amount of atomic H of f(H2) < 10%], diffuse molecular [f(H2)
> 10%], translucent [f(H2) > 10% and with a fraction of CO
with respect to the total amount of atomic C of f(CO) < 90%],
or dense clouds [f(H2) > 10% and f(CO) > 90%]. The chemistry
in diffuse atomic clouds is very limited (31), while the chemistry
in dense clouds presents a very high level of chemical complexity
(e.g., refs. 32 and 33). Therefore, we use here the molecular
abundances measured toward diffuse molecular, translucent, and
dense clouds as test cases for the applicability of the digital
environment NetWorld to real scenarios.

In Fig. 4A, we show the abundances of the chemical
compounds detected toward four interstellar clouds ranked
in the order of their decreasing magnitude: 1) the interstellar
cloud ζ Ophiuci, a diffuse molecular cloud where only a few
molecules have been found (31) (dust extinction is so weak
[Av = 1.06 magnitude] that UV radiation destroys most of
the molecular material); 2) the translucent cloud located in the
direction of the ultracompact HII region K4 in the Sagittarius
B2 massive star-forming region (34, 35) (this cloud has an
extinction of Av = 2.0 mag, just enough to enable the formation
of new molecular species and to protect the molecular content
recently formed within the cloud, playing the role of the critical
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Fig. 4. Comparison between the results of the digital environment NetWorld
(×) and the evolution of chemical complexity of interstellar clouds, the
astrochemical environment where the most basic bricks of life are created (◦).
All abundance sets shown were L1 normalized (the sum is one). (A) Abundance
rank of the molecular compounds detected in four interstellar clouds: the
diffuse molecular cloud ζ Ophiuci (31), the translucent cloud located in the
direction of the ultracompact HII region K4 in the SgrB2 molecular complex (a
cloud in the transition from the diffuse regime to the dense regime) (34, 35),
and the dense clouds L134N (Serpens) and TMC-1 (Taurus) (36). (B) Abundance
rank obtained in NetWorld for N = 40 initial nodes and environments that
are qualitatively compatible with the four sets of real data plotted in A.
The abundance rank for βcrit = 1.55 is plotted as the brown line. (C and D)
Comparison between the abundances in TMC-1 and L134N dense clouds with
NetWorld simulations for β = 1.8 and 1.7, respectively. (E) Dependence of
abundances of the molecules detected in L134N and TMC-1 on the number
of astrophysical reactions that have them as products. (F) Dependence of
abundances of networks of size 10 created by NetWorld (in the limit β = ∞
for simplicity) on the number of paths used to create them. Curve fits are
shown in E and F as dashed lines. Note that CO abundances are out of range
in E for clarity but were considered in the fits.

transition in the model); and 3) L134N (Serpens) and 4) TMC-1
(Taurus), two dense clouds with Av > 10 mag where extensive
numbers of both simple and complex molecules have been
synthesized thanks not only to the protection of the high Av

but also, to the high fraction of CO present (36). We refer to
SI Appendix, Supporting Information Text S6 for an explanation
on how we have obtained the molecular abundances toward the
different clouds used in our analysis. Fig. 4B shows the abundance
rank obtained with NetWorld for four different environments that
are qualitatively compatible with these four sets of real data: a low
value of β representing a harsh environment where most created
compounds are rapidly destroyed, a value close to the critical βcrit

beyond which complexity expands, and two values of β slightly
over this transition point. We include the critical environment
βcrit = 1.55 for comparison. In Fig. 4C and D, we focus on
the potential quantitative agreement between real data and the
results of the artificial framework. We compare the abundance
ranks for TMC-1 and L134N with those of NetWorld’s β = 1.8
and 1.7, respectively. The abundances are provided excluding the
most frequent elements of each ensemble, H2 in the molecular
abundances and the isolated nodes in NetWorld. The real and
numerical curves show a quantitative agreement between the

number of molecules present in the cloud and the number of
configurations in NetWorld and also, in the relative abundance
for a large set of molecules and configurations. The framework
does not reproduce, however, the truncation shown in the real
curves for the two to three lowest abundances, but this behavior
would disappear if new real data were introduced. Note that the
astrochemical datasets of molecular species and their measured
abundances remain largely incomplete even for the most observed
clouds, such as TMC-1, and especially for low-abundance species
or very large molecules that are more difficult to detect (e.g.,
refs. 32 and 37). It is also remarkable that the values of β that
best fit the astrochemical data of L134N and TMC-1 (β = 1.7
and 1.8) are slightly beyond βcrit = 1.55 and thus, belong to a
regime in which expansion of their chemical diversity is expected.
Indeed, recent observational works toward the TMC-1 dense
cloud have revealed the presence of small polycyclic aromatic
hydrocarbons, demonstrating the ability of these environments to
generate complex molecular structures (32, 33, 37).

Finally, a relevant pattern obtained in NetWorld is that the
relative abundances of the different structures correlate with the
number of paths identified to create them, following a very
simple functional dependence of the type y ∝ xα (Fig. 4F )
(α= 1.2± 0.2 for networks of size 10, N = 40, and β =∞)
(SI Appendix, Supporting Information Text S3 has details on how
to compute the number of paths to reach a configuration†). Note
that this is a highly nontrivial result, as different paths have in
general very different occurrence probabilities, and this expected
diversity could in principle spoil the correlation. In order to check
whether a similar relationship might also emerge in astrochemical
environments, we plotted in Fig. 4E the dependence of the
molecular abundances measured toward the dense clouds L134N
and TMC-1 on the number of chemical reactions that have them
as products as a simple proxy for the chemical paths. The number
of chemical reactions is extracted from the astrochemical reac-
tion dataset KIDA (KInetic Database for Astrochemistry) (38).
Surprisingly, the abundance data correlate with the number of
reactions following the same functional dependence as NetWorld’s
simulations (y ∝ xα, where αTMC−1 = 1.0± 0.2, r = 0.57,
and p = 2 · 10−6 and αL134N = 1.2± 0.3, r = 0.54, and p =
6 · 10−4) (SI Appendix, Supporting Information Text S7 ). In addi-
tion, the α-coefficient of the power law that relates these two mag-
nitudes is close to one, indicating that the abundance of a certain
molecule would be expected to be approximately proportional to
the number of reactions that create it.

We caution, however, that the latter analysis could suffer from
important biases. First, the molecular inventory of the ISM is far
from complete. Small molecules that do not have dipole moment,
such as N2 or CH4, cannot be observed at radio wavelengths.
Furthermore, large molecules not only show low abundances but
also their partition function is so large that it spreads the emission
across many energy levels, making the molecular line intensities
very weak. Recent spectroscopic surveys carried out toward chemi-
cally rich sources, such as SgrB2 N2 (39), IRAS16293-2422 (40),
TMC-1 (32, 37), or G+0.693 (e.g., refs. 3 and 4) with ALMA
(Atacama large millimeter/submillimeter array), the GBT (Green
Bank telescope), or the Yebes 40m telescope, have boosted the
detection rate of new molecular species in the ISM in the past
decade (reviewed in ref. 41), which is starting to alleviate this
potential issue. Second, the astrochemical reaction databases are
strongly biased to small molecules. All these chemical networks

†We calculated the number of paths of each configuration for β = ∞ (with no loss of
generality), as it is the case where there is no network partition and the computation is
simpler.
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are based on the pioneering work in ref. 42, which had the
goal of investigating the interstellar chemistry of small molecular
species. In addition, experimental and theoretical works of gas-
phase reactions are extremely challenging especially at the low
temperatures typical of interstellar conditions, in particular of
radical–radical reactions (43, 44), and not all reactions yielding
the same product are equally efficient due to the existence of, for
example, high energy barriers. Because of all these reasons, the
number of detected molecules and the datasets of reactions that
can have them as products are inaccurate.

To address these limitations, we have statistically verified that
the correlations between the molecular abundances and the num-
ber of reactions shown in Fig. 4E for the interstellar clouds TMC-
1 and L134N still hold when removing the effect of a controlling
variable, such as the molecular size, understood as the number of
atoms contained within a molecule (partial correlation coefficient
r ′ = 0.49 and p′ = 7 · 10−5 for TMC-1 and r ′ = 0.42 and p′ =
0.007 for L134N) (SI Appendix, Supporting Information Text S7
has more details). This result points to the correlation detected
being independent of potential biases due to the molecular size. A
thorough statistical analysis, considering other astrochemical mag-
nitudes related to the molecules found in different astrophysical
environments, will be carried out in the future.

2. Discussion

In this work, we have introduced a conceptual and computa-
tional framework called NetWorld describing the evolution of
networked structures, where nodes interact following exclusively
the optimization of their own dynamical importance. Our results
show that, although there is not a causal relationship between Net-
World’s framework and real astrochemical phenomena, a simple
model grounded in network science and game theory captures
key properties of the process toward chemical complexity and the
creation of the building blocks of life. In particular, while our
approach does not try to mimic real astrochemistry, it succeeds
to explain the emergence of interstellar molecular complexity
and points out as yet unknown astrochemical relationships that
could be of importance in our understanding of the formation of
prebiotic species in interstellar space.

Multiple methods have been proposed to map real chemistry to
artificial chemistry models. Graphs, binary strings, and character
strings or numbers, among others, have been used to represent
molecules (45–48). Our networks describe molecules where atoms
are nodes and their interactions are links. Beyond this mapping,
one could add properties and impose more complex rules of
interaction in order to get closer to real chemistry. Node labels
and properties might be introduced to represent the atom type,
hybridization type, charge, valency, or radicals. Moreover, an
energy function could be used to choose the structure resulting
from a reaction on the basis of the change of energy (14). Based
on the current state of our framework, adding these features
in NetWorld is possible and a priori, computationally feasible.
However, we stress that fundamental features of NetWorld are its
simplicity and abstraction, as we aim to present a framework that
transcends chemistry to describe the interaction between complex
structures of different nature and in diverse environments from
nodes representing atoms to biomolecules or even species.

In the same line of thought, the natural transition toward
complexity that emerged from our computational environment
has also been observed in complex ecosystems. In particular, Fisher
and Mehta (30) reported a strikingly similar pattern in which
the skewness of biodiversity rank–abundance curves decreased
and the overall diversity increased with carrying capacity,

highlighting the sharp transition between stochastic neutral
regimes and selection-dominated niche regimes. The environment
parameter β introduced here and the dust extinction Av in
interstellar chemistry—two quantities directly related since the
rate constants of interstellar UV photodestruction reactions
depend exponentially of −Av (49)—could be understood as
loose proxies for the carrying capacity in the ecological context,
in the sense that low β/low Av results in a “harsher” environment
that limits network/molecules/species richness. Continuing the
analogy, in the low-β/low-Av regime, our network communities
and the interstellar molecular abundances show a highly skewed
abundance distribution (Fig. 4A and B) and are indeed dominated
by stochasticity (the partition probability P introduced in Eq. 1
and the interaction with UV radiation, respectively). On the other
hand, in the high-β/high-Av regime, they present low skewness
and high diversity and are dominated by the selection of structures
with a higher number of paths/reactions leading to them (as
shown in Fig. 4E and F ). All in all, we believe that the similarities
between 1) the results in ref. 30 based on models that are firmly
rooted in classical ecological theory and checked with real data, 2)
those obtained from molecular abundances in interstellar clouds,
and 3) the ones introduced by our computational environment,
derived from a simple framework with no a priori ecological or
chemical assumptions, are not coincidental. They instead hint that
the long path from the creation of the basic prebiotic compounds
in the ISM to the origin of life and its evolution on the early Earth
could show universal patterns and common phenomenologies at
all scales and across all stages.

Finally, while we have exclusively used sets of isolated and
indistinguishable nodes as initial conditions and have focused
on the description of the emerging diversity created, the frame-
work here introduced could be of use in many other contexts.
Advancing the subject of the origin and evolution of early life,
potentially fruitful lines of future work could be the analysis of
the interaction of small motifs to simulate the polymerization
of simple chemical compounds, resembling the phenomenology
present in the RNA World, or the search for autocatalytic reactions
that could help us advance toward a protoreplication of networks,
where the concepts of mutation and fitness could be analyzed as
emerging properties of the system instead of introducing them ad
hoc as has been done so far in the literature.

Data Availability. MATLAB implementation of the codes used has been
deposited in GitHub (https://github.com/MiguelGarciaSanchez/NetWorld) (50).
Previously published data were used for this work; they were taken from tables
of abundances of molecules in different molecular clouds in refs. 31 and 34–36.
(SI Appendix, Supporting Information Text S6 has more details).
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49. J. Holdship, S. Viti, I. Jiménez-Serra, A. Makrymallis, F. Priestley, UCLCHEM: A gas-grain chemical code
for clouds, cores, and c-shocks. Astron. J. 154, 38 (2017).

50. M. Garcı́a-Sánchez, NetWorld [Computer software and implementation details]. GitHub.
https://github.com/MiguelGarciaSanchez/NetWorld. Deposited 2 March 2022.

PNAS 2022 Vol. 119 No. 30 e2119734119 https://doi.org/10.1073/pnas.2119734119 7 of 7

https://github.com/MiguelGarciaSanchez/NetWorld
https://doi.org/10.1073/pnas.2119734119

