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Abstract 

Improving early cancer detection would have a transformative effect on patient survival and 

associated societal costs. Ideally, this would involve tests that are minimally invasive, cancer-

type specific and provide mechanistic insights. To address this need, we analyzed associations 

between 7,523 human serum proteins and 13 cancer types in 5,376 participants from the 

prospective, population-based AGES Reykjavik cohort. The study included 1,235 cancer cases 

spanning the digestive, genitourinary, respiratory, and female reproductive systems, as well as 

skin cancer. The analysis was conducted both longitudinally and cross-sectionally, with 

adjustments made for various well-established cancer risk factors. After accounting for age, sex, 

clinical, and lifestyle factors, 526 serum proteins were significantly associated with either 

prevalent (diagnosed prior to blood draw) or incident (diagnosed after blood draw) clinical 

presentation of the various types of cancer. Additionally, 776 circulating proteins were 

influenced by known genetic risk loci for various cancers, including 114 of the 526 mentioned 

above. Some serum protein associations were shared across cancer types, both prevalent and 

incident, as well as with genetic susceptibility loci. To contextualize these findings, we 

integrated our results with both internal and external datasets, including known cancer genes, 

germline genetic risk loci, tumor- and tissue-specific expression profiles, oncogenes and tumor 

suppressor genes, and circulating protein networks. This integrative analysis highlights distinct 

functional categories of protein involvement and reveals the complex and specific etiology of 

cancer. These findings support the potential for population-level surveillance, early cancer 

detection, and molecular insights into tumorigenesis. 
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Introduction 

The process of tumorigenesis is one where individual cells gain through a series of incremental 

steps, the ability to grow and survive independent of central control. Tumorigenesis is frequently 

a decades-long process marked by the accumulation of genetic alterations that lead to genomic 

instability and clonal expansion1,2, which are among the hallmarks of cancer. Environmental 

factors and genetic susceptibility can expedite this process3,4. Although many aspects of 

tumorigenesis are known2,5, significant gaps remain, emphasizing the importance of elucidating 

the underlying mechanisms to advance early detection and preventive strategies. Breast, lung, 

and colorectal cancers are the most common cancers in women, accounting for 51% of all 

new cases6, while prostate, lung, and colorectal cancers account for 48% of all incident cases in 

males6. Although the global burden of cancer-related morbidity continues to rise7, largely driven 

by population aging, cancer-related mortality has declined since peaking in 1991, likely due to 

healthier lifestyle choices, advances in therapies, and improved detection methods6. However, 

emerging evidence suggests that early-onset cancer among younger individuals is on the rise8. 

Despite the decline in mortality, cancer remains the second leading cause of death worldvide9, 

surpassed only by heart disease. 

Cancer etiology is multifactorial, with genetic and environmental factors contributing to the 

disease10. Germline (inherited), somatic, and epigenetic factors all play a role in the development 

of cancer11. Both rare high penetrance (i.e., BRCA1 and BRCA2 genes) and common low 

penetrance germline variants confer a risk of developing breast and ovarian cancers12,13. 

Recently, it has been shown that common genetic variants contribute to the risk of common 

malignancies14, with hundreds of these risk loci identified to date. Cancers also arise from 

somatic mutations in specific driver genes15,16, typically ranging from 1 to 10 driver mutations 
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per genome, depending on the cancer type, which can be sufficient to transform a normal cell 

into advanced cancer15. In addition, widespread copy number alterations, rearrangements, and 

epigenetic changes are frequently observed, particularly in later-stage cancer16,17. Importantly, 

cancer is now increasingly recognized as a complex systemic disease involving extensive 

interactions with non-tumor cells and other factors locally and systemically, indicating the need 

for a comprehensive systems-level understanding of its etiology10.  

Current clinical practice includes screening diagnostics like mammography for breast cancer, 

Pap smear for cervical cancer, and chest imaging scans for lung cancer though they have suffered 

from high false positive rates and low compliance18. Studies have employed orthogonal mass 

spectrometry to discover peptides in serum and plasma that are specific for certain established 

tumors19. Only a few such biomarkers have been identified, including the prostate-specific 

antigen (PSA, aka KLK3)20, the alpha-fetoprotein (AFP) for liver cancer21, the carcinoembryonic 

antigen (CEA) for colorectal cancer22, and cancer antigen 125 (CA-125, aka MUC16) for ovarian 

cancer23. Recent studies identifying somatic mutations or alterations in DNA methylation within 

cell-free circulating tumor-derived DNA have been designed to detect both asymptomatic and 

full-blown cancers24,25, presenting promising opportunities for early-stage cancer detection26. 

Less research has focused on large-scale, unbiased proteome analysis of proteins associated with 

different types of cancer. However, a recent study utilizing a multiplex proteomics platform to 

quantify 1,463 plasma proteins identified several associations with various cancer types in the 

UK Biobank data27, highlighting the connection between the plasma proteome and cancer 

development. 

Given these early results, a more comprehensive prospective population-based survey of 

circulating proteins and their associations to prevalent (prior diagnosis) and future cancers would 
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be a valuable advancement to the field. Indeed, proteins are essential players in all biological 

processes, directly influencing the development and progression of diseases like cancer. They 

also connect genotype variation to disease-related outcomes, thereby revealing disease-specific 

mechanisms. Although the specific functional roles of most circulating proteins are not yet fully 

understood, our previous findings suggest that they reflect highly coordinated inter-individual 

variations in protein levels, indicating the involvement of systemic regulatory pathways or global 

homeostasis28,29. Plasma and serum proteins have been associated with a broad spectrum of 

diseases of different etiologies28-38. While many proteins in biofluids such as serum and plasma 

have been associated with various diseases and exhibit coordinated regulation, their potential 

links to cancer remain largely unexplored, highlighting a critical yet understudied area of 

research. 

The current study details the application of the highly sensitive aptamer-based technology to 

assess the relationship of 7,523 serum proteins to 13 different cancer types in 5,376 older adults 

from the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study 

(AGES) cohort39. We investigated the association between the circulating proteome and cancer 

diagnosis prior to the time of blood draw or diagnosed within the subsequent 13.6 years. 

Additionally, we investigated sex-specific effects for cancers that are not inherently sex-specific, 

accounted for established clinical and lifestyle risk factors, and examined the relationship 

between the serum proteome and genetic risk factors across different cancer types. This study 

offers a detailed understanding of the serum proteomic signatures associated with various cancer 

types, providing mechanistic insights into potential biomarkers for early detection and 

personalized cancer risk assessments.  
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Results 

Study population and study overview 

The present study builds on the population-based, prospective AGES cohort39 of older adults (N 

= 5,764, mean age 76.6 ± 5.6 years, age range 66-96 years, 57% female), which is extensively 

annotated for disease risk factors, disease endpoints, comorbidities, genotype and deep serum 

proteomics data and includes real-time follow-up information. Table 1 summarizes selected 

baseline characteristics of the prospective, population-based AGES study (n = 5,376), in which 

7,523 circulating serum proteins were measured. The table presents sex-stratified demographic, 

biochemical, clinical, physiological, and anthropometric data, with cancer types grouped by 

shared organ systems. Data are shown separately for individuals with a prior cancer diagnosis 

(prevalent cases) and those at future risk (incident cases). These encompass 13 different cancer 

types, including those of the digestive system (esophagus, stomach, colon, rectum, and 

pancreas), genitourinary system (kidney, prostate, and bladder), the female reproductive system 

(breast, ovary, and corpus uteri), respiratory system (lung and bronchus), and skin (melanoma). 

Incident cancer refers to newly diagnosed cases during the follow-up period. In this study, 

follow-up for incident cancer cases lasted up to 13.6 years from baseline, with person-years 

calculated from the participant’s first AGES study visit until the earliest of cancer diagnosis, 

death, or end of follow-up. Prevalent cancer cases at the AGES baseline visit refer to patients 

who had already been diagnosed with cancer before enrollment in the study, many of whom had 

likely undergone cancer-related treatment. The number of patients diagnosed with each of the 13 

cancer types examined in this study is detailed in Supplementary Table S1, while an overview of 

the study is provided in Figure 1. 
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Across 13 distinct cancer types, 1,235 individuals were identified as either prevalent or incident 

cases (Table 1 and Supplementary Table S2). There were 1,414 diagnoses overall (Figure 2A), 

with 179 individuals diagnosed with more than one type of cancer. We will use the abbreviations 

for each cancer type as presented in Figure 2A from this point onward. In the AGES study, 62% 

of cases (n = 770) were diagnosed with new-onset cancer during the 13.6 year follow-up period. 

The exceptions to this were cancer cases of the female reproductive system, especially breast 

cancer (BRC) which had high prevalence of breast cancer patients at the baseline visit (Table 1 

and Supplementary Table S1). Supplementary Tables S2-S7 provide descriptive statistics 

stratified by all 13 cancers combined or categorized by cancer types within the same body 

system, with prevalent and incident cases considered together. Potential variations in the 

distribution of known risk factors are indicated. Among the many modifiable risk factors, 

tobacco smoking, alcohol consumption and obesity continue to be the most important risk factors 

for the onset of many different types of cancer40,41. For example, patients with cancers of the 

digestive and female reproductive systems exhibit significantly different distributions of BMI 

categories (Supplementary Tables S3 and S6). Additionally, smoking status showed significant 

associations with all different cancer types, apart from skin cancer (Supplementary Tables S2-

S7). Furthermore, individuals with genitourinary malignancies consumed significantly more 

alcohol than those without these cancers (Supplementary Table S4). In addition to the 13 cancer 

types described above, there were 684 individual cases of other distinct cancer diagnoses in the 

AGES study. Unlike the strong associations usually seen between the 13 prevalent cancers and 

different lifestyle factors, these 684 patients showed no such links to common risk factors 

(Supplementary Table S8). 
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To evaluate the association between serum proteins and incident cancers diagnosed after the 

blood draw, a time-to-event Cox proportional-hazards model42 was applied to the log2-

transformed serum proteomics data. For examining the associations of serum proteins with 

prevalent cancers diagnosed before blood draw, logistic regression analysis was used. Unless 

otherwise noted, all regression analyses were adjusted for age, sex, and estimated glomerular 

infiltration rate (eGFR), which we will refer to as the "standard covariates". To account for 

multiple hypothesis testing, the false discovery rate (FDR) was adjusted using the Benjamini-

Hochberg method43. Leveraging the opportunity to compare different patient groups within the 

AGES study, providing a form of internal validation for findings beyond a single cancer type, 

and to maximize discovery across the sample, we report results using both FDR thresholds of 

<0.05 and <0.10 as noted. 

In this study, we explored the relationships between thousands of proteins and 13 types of 

cancer, as well as a broader category encompassing any type of cancer. Given the extensive 

scope of the analysis, we have highlighted select findings in the Results section to illustrate the 

study’s breadth and significance. To underline key cancer-related biological processes and 

mechanisms represented in the findings, we attempt to categorize the highlighted cancer-

associated proteins into four functional groups based on their potential roles in cancer: tumor-

specific (oncogenes and/or tumor suppressor genes), tissue-specific (reflecting the tumor’s tissue 

of origin), genetic susceptibility (common low-penetrance germline variants), and a broad 

category of tumor–host interaction proteins, encompassing external factors (e.g., lifestyle, 

systemic influences), tumor microenvironment (TME), and epithelial–mesenchymal transition 

(EMT). A comprehensive and detailed discussion of each of the different cancer types is 
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provided in the Supplementary Text (of Supplementary Information). To facilitate readability, 

each tumor type in the Supplement is organized based on its tissue of origin.  

Observational study linking the serum proteome to incident cancers 

In the Cox regression analyses, 328 proteins were associated with at least one of the 13 incident 

cancers at FDR < 0.05 (Supplementary Table S9, Table 2, Figure 2B, and Supplementary Text), 

and 535 proteins at FDR < 0.10 (Supplementary Table S9), using various covariate adjustments, 

as well as sex-specific analyses for cancers that are not inherently linked to a particular sex. The 

overlap in findings across different cancer types was limited to only a few serum proteins, 

highlighting the origin-specificity of these associations. For instance, at FDR < 0.05, SIGLEC6 

was associated with incident bladder cancer (BLC) and pancreatic cancer (PAC), while 

HAVCR1 was linked to incident kidney cancer (KIC) and lung cancer (LUC) (Supplementary 

Table S9). Additionally, 11 other proteins, including MPP2, TRAT1, TMEM106A, UBE2E3, 

TREM2, CREBBP, ITIH1, and RAB22A, were associated with multiple types of incident cancer 

at FDR < 0.05 or < 0.10 (Supplementary Table S9). Interestingly, CREBBP is a tumor-specific 

protein encoded by well-established tumor suppressor gene44,45, with an enriched mutation 

frequency across several cancer types (https://depmap.org/portal)46. The other proteins may play 

diverse roles in tumor–host interactions, including immune modulation (SIGLEC6, MPP2, 

TRAT1)47-49, EMT and/or metastasis (TMEM106A, RAB22A)50,51, TME remodeling 

(TREM2)52, and cellular senescence (UBE2E3)53. The kidney-specific expression of HAVCR1 

(https://www.proteinatlas.org/), together with its association with incident KIC, suggests it may 

reflect tumor burden and could potentially contribute to organ-specific mechanisms of 

tumorigenesis.  
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Several genes, gene expression traits, and proteins corresponding to serum proteins associated 

with new-onset cancers in the AGES study have been previously linked to their respective cancer 

types. For instance, CXCL8 (aka IL8), is a known pro-tumor effector in colon cancer (COC) 

involved in resistance to immune checkpoint inhibitors and TME modulation54,55. Consistently, 

our study showed a positive association between CXCL8 and COC (Supplementary Table S9, 

Figure 3A). Furthermore, KLK3 (aka PSA), a glycoprotein enzyme primarily produced by the 

prostate gland and one of the most recognized prostate cancer (PRC) biomarkers linked to 

various PRC-related clinical outcomes56, was positively associated with incident PRC in the 

AGES study (Supplementary Table S9, Figure 3A). Another example is acid phosphatase ACP3 

(aka PAP), a protein produced specifically by the prostate gland and strongly associated with 

incident PRC (Supplementary Table S9, Figure 3A). Elevated serum levels of ACP3 have been 

associated with accelerated progression of PRC57, and the protein is a key target for cellular 

immunotherapy, which has been shown to improve survival in men with metastatic prostate 

cancer58. The observed associations of the prostate-specific proteins KLK3 and ACP3 with 

incident prostate cancer are anticipated, given their established use as clinical biomarkers for the 

disease. WNT10B is an additional example, associated with incident BRC in the AGES study 

(Supplementary Table S9, Figure 3A), and previously linked to BRC59,60, particularly aggressive 

subtypes like triple-negative BRC. This association is thought to be driven by activation of the 

Wnt/β-catenin pathway, which is crucial for development and tissue homeostasis but also 

contributes to poor prognosis and increased metastasis in BRC patients59,60. Several other 

proteins or associated genes have previously been linked to various cancer types. Examples 

include CTNNB161, BCL2L1462, WNT7A63-65, PTPN666, PRKCZ67, WFDC2 (aka HE4)68-70 and 

EPOR71, all of which were associated with one or more incident cancer type at an FDR < 0.05 in 
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the AGES study (Supplementary Table S9). While CTNNB1 is a well-established canonical 

oncogene44,45, EPOR has more recently been implicated as an oncogene44,45, with truncated 

rearrangements identified in certain forms of leukemia72,73. Cancer-related roles of the remaining 

proteins are likely mediated through tumor–host interactions. These include inflammation and 

the mucin network (BCL2L14)74, the TME and metastasis (WNT7A)75, as well as various 

immune-related functions (PTPN6, PRKCZ, and WFDC2)67,76,77. 

Observational study linking the serum proteome to prevalent cancers  

Logistic regression of prevalent cancers with sufficient case numbers (n ≥ 10) identified 223 

associated serum proteins at FDR < 0.05 (Supplementary Table S10, Table 2, Figure 2B, and 

Supplementary Text), and 350 proteins associated at FDR < 0.10. (Supplementary Table S10). 

Consistent with the results from the analysis of incident cancer types, the overlap of proteins 

associated with different prevalent cancer types was confined to just a few, notably the trefoil 

factors TFF2 and TFF3, which were linked to both stomach cancer (STC) and BRC at FDR < 

0.05 (Supplementary Table S10, Figure 3B). TFF2 and TFF3 are specifically expressed in 

mucin-secreting epithelial tissues of the gastric mucosa and gastrointestinal tract78, respectively, 

where they contribute to maintaining epithelial integrity79. While their altered expression in STC 

suggests a context-dependent role in tumor biology, their involvement in BRC remains unclear. 

An additional four proteins, C7, OMD, LRRC15, and CLIC4, were associated with more than 

one prevalent cancer type at FDR < 0.05 or <0.10, primarily STC, BRC, PRC, and rectal cancer 

(REC) (Supplementary Table S10). For instance, the serum protein CLIC4 was positively 

associated with prevalent STC at FDR < 0.05 (Supplementary Table S10, Figure 3B), and with 

prevalent BRC and REC at FDR < 0.10 (Supplementary Table S10). Notably, CLIC4, a protein 

involved in ion transport and present in both soluble and membrane-bound forms, has been 
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linked to various cancer types, primarily due to its role in the TME and regulation of oxidative 

stress80, with elevated expression serving as a negative prognostic factor for patient survival81. 

The serum proteins C7, OMD, and LRRC15 have also been linked to pathways involved in 

tumor-host interactions82-84. Well-established cancer-associated genes encoding proteins like 

GKN2 and MSMB, which are known to be linked to stomach and prostate cancers85,86, 

respectively, were specifically associated with the prevalent forms of these cancer types in the 

AGES study, with no connection to other prevalent cancers (Supplementary Table S10, Figure 

3B, and Supplementary Text). Notably, the stomach-specific protein CBLIF, whose role in 

cancer remains unclear, also showed specificity for prevalent STC in this analysis 

(Supplementary Tables S10-S11, Figure 3B). These proteins are primarily expressed in the 

organs where their respective tumors arise: GKN2 and CBLIF in the stomach, and MSMB in the 

prostate. All three proteins exhibit a negative association with their respective prevalent cancer 

types in the AGES study (Supplementary Tables S10, Figure 3B). The inverse relationship of 

these proteins with the respective cancers diagnosed before protein measurements may be 

attributed to some patients in the cohort having undergone partial or total gastrectomy or 

prostatectomy. Supporting the negative association results in the AGES study, however, both 

GKN2 and MSMB have previously been shown to be secreted and downregulated in their 

respective cancers87,88. Therefore, treatment alone is unlikely to fully account for the observed 

reduction in these protein levels.  

In many cases, the proteins associated with cancer are specifically expressed in the tissue of 

tumor origin. The proteins linked to prevalent STC are particularly noteworthy due to their 

enrichment in the stomach and the broader gastrointestinal tract, as illustrated in Figure 4. More 

to the point, with 25 cases diagnosed with STC prior to study enrollment and protein 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2025. ; https://doi.org/10.1101/2025.06.04.25328977doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.04.25328977
http://creativecommons.org/licenses/by-nc/4.0/


-13- 
 

measurements (Figure 4A), a total of 33 serum proteins were significantly associated with 

prevalent STC at FDR < 0.05 (Figure 4B). Many of the proteins associated with prevalent STC, 

notable for their previous links to gastric cancer as mentioned above, are exclusively expressed 

in regions of the digestive system (Figure 4C-D, and Supplementary Table S11). Supplementary 

Figures S1–S5 display volcano plots of serum proteins associated with various incident and/or 

prevalent cancer types, organized by the body system corresponding to the tumor's site of 

diagnosis. 

The impact of additional covariate adjustments and sex-specific analyses 

The most common modifiable risk factors for cancer include tobacco use, alcohol consumption, 

and excess body weight (overweight and obesity). In addition to adjusting for age, sex (where 

applicable), and eGFR, we accounted for these factors when supported by epidemiological 

evidence linking them to specific types of cancer. Considering the established epidemiological 

associations between body height and the risk of PRC89, and blood pressure and KIC6, we 

included adjustments for these factors in our analysis (Supplementary Tables S9-S10, 

Supplementary Text). Some cancer types were more influenced than others by the inclusion of 

additional adjustments for well-established risk factors specific to each cancer type, and in some 

cases additional proteins were detected (Supplementary Text, Supplementary Figure S6A-N). 

Finally, for many cancers that are not inherently sex-specific, new serum protein associations 

were identified when the data was analyzed separately for each sex (Supplementary Tables S9-

S10, Supplementary Text). 

The cancer type most affected by the inclusion of additional covariate adjustment beyond the 

standard covariates, was LUC (Supplementary Figure S6I). This is not surprising, considering 

the high proportion of current smokers in the combined LUC patient group (38.8% vs. 11.4%) 
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and the low proportion of never smokers (7.6% vs. 43.6%) (Supplementary Table S5). In this 

study, 216 serum proteins were significantly associated with incident LUC (Supplementary 

Table S9), and six proteins with prevalent LUC (Supplementary Table S10), at FDR of < 0.05 

when using standard covariates only. After adjustment for smoking, 10 proteins remained 

significant for the incident LUC, while no proteins remained significant for prevalent LUC. The 

proteins still significantly associated with incident LUC included WFDC2, SCGB3A1, CLEC3B, 

CNTN3, and GDF11 (Supplementary Table S9). Notably, WFDC2, SCGB3A1, and CLEC3B 

are differentially regulated in tumors of LUC or lung squamous cell carcinoma (Supplementary 

Table S11). For instance, SCGB3A1 is specifically expressed in the lung (Supplementary Table 

S11), and lower levels of this protein have been reported in non-small cell lung cancer, 

suggesting a role in modulating tumor progression90,91. Moreover, SCGB3A1 and WFDC2 are 

markers of early secretory cells in the lung conducting airway epithelium and may thus help 

identify distinct cell populations within tumors92,93. The serum proteins CLEC3B and GDF11 

have been linked to tumor-host interactions, through their involvement in EMT94 and the TME95, 

respectively. Further, GDF11, a negative regulator of muscle growth and a member of the 

transforming growth factor-beta (TGF-β) superfamily, has been associated with muscle wasting 

in lung cancer-related cachexia in mouse models96. Given the strong influence of smoking on 

lung cancer, proteins associated with the disease may reflect interactions with smoking status, 

potentially capturing biological responses to tobacco exposure. 

Since we adjusted for eGFR as part of the standard covariates in all our analyses, we anticipated 

that this would most likely influence the observational findings related to KIC, as tumors 

affecting the kidneys are likely to cause renal dysfunction. In fact, when adjusting for age and 

sex alone, 624 serum proteins were associated with prevalent KIC at an FDR < 0.05, and these 
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proteins were also independently linked to eGFR (data not shown). When eGFR was included as 

a covariate, three proteins were found to be associated with prevalent KIC (Supplementary Table 

S10). Excluding eGFR from the incident KIC adjustment model yielded three significant protein 

associations, including HAVCR1, which also appeared among the four proteins identified when 

eGFR was included (Supplementary Text). This may indicate that renal dysfunction was already 

present in KIC patients at the baseline visit but had not yet manifested during the prodromal 

phase of the disease. The proteins associated with either incident or prevalent KIC using the 

standard covariate adjustment remained significantly linked to KIC after further adjustment for 

additional covariates (Supplementary Tables S9-S10, Supplementary Text). 

In certain types of cancer, including incident esophageal cancer (ESC), prevalent STC, prevalent 

REC, prevalent BRC, incident and prevalent corpus uteri cancer (CUC), incident ovarian cancer 

(OVC), and prevalent cutaneous melanoma (CMC), full adjustment led to a reduction in the total 

number of protein associations (Supplementary Figure S6A-B, D, J-L, M, Supplementary Text), 

though many associations remain. In contrast, for other cancers, full adjustment had little effect 

or led to the identification of additional protein associations, as seen in incident STC, incident 

and prevalent KIC and PRC, incident and prevalent BLC (Supplementary Figure S6B, F-H, and 

Supplementary Text). Among proteins highlighted above, several remained robust to additional 

covariate adjustments beyond the standard set, including KLK3 and ACP3 for incident PRC, 

MSMB for prevalent PRC, and WFDC2 and SCGB3A1 for incident LUC, among others 

(Supplementary Tables S9–S10). Proteins that became significant only after full adjustment 

included, for example, APOM for incident PRC, TNFSF4 (aka OX40L) for incident STC, 

POLR1C and CHST12 for incident PAC, TSTA3 for incident KIC, and PAGR1 and UBE2E3 for 

incident CUC (Supplementary Table S9 and Supplementary Text). Although the roles of 
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POLR1C and TSTA3 in cancer remain unclear, the other proteins have been implicated in 

various aspects of tumor-host interactions97-99. For example, immunotherapy may increase 

OX40L levels, a stimulatory checkpoint on dendritic cells, while concurrently decreasing the 

expression of the inhibitory checkpoint PD-L1 on tumor cells100. This dual effect enhances the 

effectiveness of antitumor immunotherapy in gastrointestinal cancer100. Both POLR1C and 

CHST12 are differentially regulated in pancreatic tumors compared to normal samples 

(Supplementary Table S11).  High expression levels of TSTA3 in kidney tumors are associated 

with poor survival in KIC patients101. In summary, presenting results with both standard and full 

adjustment offers a more refined and comprehensive understanding of the findings, ensuring that 

potential confounding factors are adequately controlled. 

Many cancers are inherently sex-specific due to the presence of organs unique to either males or 

females, such as the prostate, ovaries, and corpus uteri, as well as most cancers in the breast, 

while others affect both sexes. In the AGES study, some cancers that are not inherently sex-

specific still showed a skewed sex distribution. For instance, we found that males outnumber 

females in cancers like ESC, BLC, and KIC, while other cancers have a more balanced male-to-

female ratio (Supplementary Text). Analyzing the sexes separately for these cancers is important 

for fully understanding the distinct biological and molecular characteristics of cancer in males 

and females. Thus, the sexes for these cancers were analyzed both together and separately, 

resulting in identification of several protein associations in one sex (Supplementary Tables S9-

S10). In cancers such as COC, STC, REC, BLC, KIC, and CMC, new protein associations were 

identified when the sexes were analyzed separately (Supplementary Tables S9-S10, 

Supplementary Text). These include proteins such as BCL2L14, noted above, which is positively 

associated with incident COC in males only and has been previously linked to colon 
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tumorigenesis74. In females only, CUL1 is positively linked to incident STC, but elevated CUL1 

levels have also been associated with poor prognosis in gastric cancer patients102. Other 

examples include CSF1, which is positively correlated with incident BLC in males only, and 

high CSF1 levels have been linked to poorer overall survival in BLC patients103.  The proteins 

CUL1 and CSF1 may influence tumor–host interactions through distinct mechanisms, CUL1 by 

modulating the DNA damage response and apoptosis102, and CSF1 through immune regulation 

of the TME104. ASMTL is another protein positively associated with incident CMC in females 

only (Supplementary Table S9) and may contribute to melatonin biosynthesis in a sex-specific 

manner105, a pathway linked to circadian regulation and tumorigenesis106.  In the male-only 

analysis of ESC, additional protein associations emerged upon excluding females, suggesting a 

male-dominant effect in protein associations within ESC in the AGES study (Supplementary 

Text). Notably, significant protein associations were only observed for incident PAC when the 

sexes were analyzed separately, with no overlap between the findings in males and females 

(Supplementary Table S9). While analyzing sexes separately may reduce statistical power due to 

smaller sample sizes, sex-specific biological differences such as hormonal, immune, or genetic 

factors, can uncover distinct molecular signatures, as demonstrated in our study. Pooling sexes 

together may in some cases obscure these differences, making separate analyses more 

informative despite the reduced power.  

Proteins associated with both incident and prevalent cancer states 

All prevalent cases were excluded from the analysis of new-onset cancer cases to ensure no 

overlap between the two patient groups. The groups of prevalent and incident cancer cases are 

therefore independent of each other in terms of both analysis and results. A total of 25 protein 

associations overlapped between incident and prevalent cancer types at FDR < 0.05 (Figure 5A). 
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The examples include four proteins, i.e., WFDC2, CLEC3B, CRTAC1, and KLK3, that showed 

overlap for the same cancer type, while others, including trefoil factors TFF1-3, MET (aka c-

MET), GDF15, EGFR, and MSMB, were associated with different cancer types (Supplementary 

Tables S9-S10). Interestingly, both MET and EGFR are considered canonical oncogenes44,45, 

playing pivotal roles in tumorigenesis. Both CRTAC1 and GDF15 are implicated in tumor-host 

interactions through the EMT process107,108, while the roles of the other overlapping proteins 

have been discussed above. 

While the direction of effect was consistent across the disease states (prevalent or incident) for 

most of these proteins, some proteins, including KLK3, MSMB and the trefoil factors TFF1 and 

TFF2, exhibited opposite directions of effect depending on the disease state and/or cancer type 

(Supplementary Tables S9-S10). For instance, KLK3, which was directly associated with an 

incident PRC, is inversely related to prevalent PRC (Figure 5B). The negative correlation 

between KLK3 and prevalent PRC may reflect the impact of prostatectomy or androgen 

deprivation therapy, treatments likely undergone by many individuals diagnosed before 

enrollment in the AGES study, which are known to lower PSA levels109, the product of the KLK3 

gene. Figure 5C displays the associations of the 25 overlapping proteins with various cancer 

types and conditions. 

Analysis of a combined group of patients with a history of any cancer type  

While many findings are cancer-type specific, previous research, especially pan-cancer genetic 

studies, has revealed shared genetic associations across multiple cancer types110,111.  Since some 

serum proteins may serve as pan-cancer markers reflecting fundamental cancer biology, and to 

enhance the power to detect new associations with the 7,523 serum proteins, we pooled cases 

with a diagnosis of any cancer type (ATC), including the 1,235 previously analyzed cases and an 
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additional 684 cases with cancers other than the above 13 types, such as cancers of the larynx, 

brain, testis, liver, small intestine, Hodgkin lymphoma, multiple myeloma, and several other 

cancer types, most represented by fewer than 10 patients. Specifically, the associations between 

the 7,523 serum proteins and a group of 1,916 individuals with ATC were assessed.  Overall, the 

ATC study group included 835 cases of prevalent cancers (499 females) and 1,081 cases of 

incident cancers (535 females).  

A total of 291 proteins were associated with incident ATC at an FDR < 0.05 (Supplementary 

Table S12, Figure 6A), while 55 proteins were linked to prevalent ATC at the same threshold 

(Supplementary Table S13, Figure 6B). These associations were identified through both 

combined and sex-specific analyses. Additionally, considering the diversity of combined cancer 

types, we employed fully adjusted models that accounted for age, sex, eGFR, BMI, alcohol use, 

and smoking status: key independent risk factors across various cancer types, as described above 

and in the Supplementary Text. While numerous new protein associations were identified, i.e. 

189 for new-onset ATC and 28 for prevalent ATC, many proteins were also found in the 

analyses of individual prevalent or incident cancer types (Figure 7A).  Of the 291 proteins linked 

to incident ATC, 104 (36%) overlapped with those identified through analyses of individual 

cancer types (Figure 7A). Notable serum proteins, such as WFDC2 and GDF15, which are 

components of the Cancer Seek blood test panel for early detection of various cancers25, were 

associated with incident ATC in our study as well as with incident LUC (Supplementary Tables 

S9 and S12). Similarly, 25 (44%) of the proteins associated with prevalent ATC were also 

identified in individual cancer analyses (Figure 7A). Two proteins, KLK3 and TFF3, were 

identified across all four study groups (Figure 7A). The prostate-specific protein KLK3, as 

expected, was exclusively linked to males due to its specific association with PRC. Notably, 
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KLK3 was no longer significantly associated with incident or prevalent ATC when PRC cases 

were excluded from the ATC group (data not shown). This also demonstrates that the aptamer-

based method effectively differentiates tissue-specific expression. In line with the differing 

effects seen in incident versus prevalent PRC (Figure 5B), KLK3 serum quintiles showed 

opposing associations with incident and prevalent ATC (Supplementary Figure S7A), although 

the effect sizes were attenuated in the combined ATC group relative to the individual cancer 

types (Supplementary Figure S7B). In contrast, TFF3 was positively associated with several 

individual cancer types, including incident LUC and prevalent BRC, STC, and PRC 

(Supplementary Tables S9-S10, Figure 5C). These findings align with previous research that 

associated TFF3 with these and other cancer types112. Finally, a recent study examined the 

plasma proteome in mice with transplanted human lung, breast, colon, or ovarian tumors to 

determine the timing of protein detection in plasma113. Notably, we observed a significant 

enrichment of serum proteins associated with ATC across various human tumor xenograft 

models (Supplementary Figure S8A-D, Supplementary Text). Proteins such as CXCL8, the top 

hit for incident COC (Supplementary Table S9), and the proto-oncogene MET were consistently 

identified across all cancer xenograft models. In conclusion, pooling cancer cases is valuable as 

it produces results that somewhat mirror those of individual cancer analyses, albeit with smaller 

effect sizes, while also uncovering numerous new protein associations, likely due to increased 

statistical power from a larger sample size and new cases included.  

Interestingly, among the genes encoding serum proteins associated with incident or prevalent 

cancers, 24 were classified as oncogenes and 11 as tumor suppressor genes44,45. These included 

for instance well-known oncogenes such as EGFR, MET, RET, FGFR1, and CTNNB1, as well as 

tumor suppressors like CREBBP, ARID1A, TP53, and CDH1 (Supplementary Tables S9–S10, 
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Supplementary Tables S12–S13). Pathway and tissue enrichment analyses (GSEA or ORA; see 

Supplementary Text) of proteins associated with individual or any cancer types often revealed 

enrichment in relevant tissues and oncology-related pathways (Supplementary Tables S14A–B 

and S15A–B), though results varied with the number of cancer-associated proteins. 

Associations between serum proteins and germline genetic cancer risk 

The variability in levels of most circulating proteins can be partly attributed to inherited 

(germline) genetic variation, offering additional support for the observational associations of 

proteins to cancer and enabling the identification of proteins causally linked to specific cancer 

types. We explored the relationships between the 7,523 serum proteins that represent over 30% 

of all annotated human protein-coding genes, and the latest meta-analyzed GWAS for different 

cancer types (Supplementary Text). Additionally, we investigated pan-cancer GWAS that 

encompassed a wide range of cancers111,114, including those analyzed here and others not covered 

in this study.   

A total of 300 independent GWAS lead SNPs for 13 different cancer types examined in this 

study were associated (P < 0.00001) with 737 proteins, represented by 800 aptamers 

(Supplementary Table S16). In contrast to the distinct cancer types identified in the observational 

analysis (see above), relationships between serum proteins and genetic risk factors of cancer 

were more widely shared across multiple cancers, with 210 proteins (28.5%) associated with 

more than one cancer type (Supplementary Table S16). For instance, 23 proteins regulated by 

cancer GWAS risk loci, either in cis or trans, were linked to four or more distinct cancer types 

(Supplementary Table S16). Additionally, protein hotspots such as those at chr. 3p21.1 (ITIH1 

and ITIH3 loci), chr. 6p21.3 (MHC locus), chr. 9q34.2 (ABO locus), chr. 12q24.1 (SH2B3 locus), 

chr. 14q32.1 (SERPINA1 locus), chr. 14q32.3 (AKT1 locus), and chr. 19q13.3 (FUT2 locus) 
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explained many of the associations between genetic variants and serum protein levels linked to 

both individual cancer types and across different types of cancer (Supplementary Table S16). 

This suggests a notable pleiotropic effect in the molecular etiology of different cancer types. 

Moreover, these hotspots suggest phenotyping pleiotropy, as they have been implicated in 

numerous diseases beyond cancer29,30. Notably, AKT1 at the hotspot locus 14q32.3 is a canonical 

oncogene with gain-of-function mutations implicated in various cancer types44,45, while SH2B3, 

located at the 12q24.1 hotspot locus, functions as a tumor suppressor gene with loss-of-function 

mutations linked to lymphoblastic leukemia44,45,115. However, the expression levels of AKT1 and 

SH2B3 were not linked to the corresponding lead cancer-associated SNPs. Some proteins 

regulated in cis by these established cancer risk loci include for example chymotrypsinogen B2 

(CTRB2) for PAC and alpha-2-glycoprotein 1, zinc-binding (AZGP1) for colorectal cancer 

(Supplementary Table S16). Interestingly, CTRB2 is specifically expressed in the pancreas116, is 

downregulated in pancreatic tumors117, and low CTRB2 levels are linked to higher PAC risk 

(Supplementary Table S16), suggesting that reduced CTRB2 may play a causal role in PAC. As 

another highlighted protein associated with genetic cancer susceptibility, AZGP1 negatively 

regulates angiogenesis and may play roles in both TME and EMT118,119.  

Of the 737 genetically affected proteins, 109 were also identified in the association analysis of 

various incident and/or prevalent cancer types (Supplementary Tables S9-S10, Supplementary 

Table S16, Figure 7B) representing a significant enrichment (FET P-value = 4.6 × 10-15). Among 

the overlapping proteins, 14 were associated with the same cancer type in both the observational 

and genetic analyses. Eight proteins, i.e., CD163, CDH5, GOLM1, MET, MSMB, OMD, 

SERPIND1, and TFF1, were shared across all three study groups (Figure 7B). The roles of MET, 

MSMB, OMD, and TFF1 in cancer, including tumor specificity, genetic associations, tissue-
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specific expression, and tumor-host interactions, have been discussed above. The serum proteins 

CD163, CDH5, GOLM1, OMD, and SERPIND1 have been linked to various aspects of tumor-

host interactions, including immune checkpoint regulation, EMT, TME, and metastasis83,120-123. 

Several of these overlapping proteins are strongly regulated by cis-acting genetic variants 

(Supplementary Figure S9). 

Integrating multiple cancer types into a single pan-cancer study not only reinforces associations 

identified in individual cancer cohort studies but also highlights shared molecular etiology across 

multiple cancer types. Unlike the ATC, which combines cases from different cancer types, the 

pan-cancer genomics analysis simultaneously tests genotype associations with different 

individual cancer types. Pan-cancer GWAS have identified numerous risk loci shared across 

multiple malignancies111,124. One study examining 18 cancer types in 408,786 individuals of 

European ancestry from two large independent cohorts, revealed a significant number of 

common genetic risk factors among different types of cancer, with 25 genomic regions 

containing 136 independent SNPs that were associated with at least two cancer types111. We 

identified 34 of these SNPs as controlling one or more serum proteins, encompassing 158 

proteins in total (Supplementary Table S17). These findings introduce 39 additional serum 

protein associations with genetic risk factors for individual cancers, increasing the total to 776 

proteins influenced by known genetic risk factors for cancer, 114 of which were also identified in 

the observational analysis. Notably, several independent variants on chromosome 6 within the 

MHC region influenced the same proteins, sometimes in opposite directions, as detailed in 

Supplementary Table S17. According to Rashkin et al.111, these variants are associated with both 

distinct and overlapping sets of cancers. Several proteins linked to genetic variants in the pan-

cancer study were also found among serum proteins affected by genetic variants associated with 
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specific cancer types mentioned earlier (Supplementary Tables S16-S17). The collective 

evidence presented here points to a substantial shared molecular basis across diverse cancer 

types. 

It is noteworthy that 38 genes encoding serum proteins linked to germline genetic susceptibility 

loci for cancer are classified as either oncogenes and/or tumor suppressors44,45, including the 

well-known oncogene MET and the prototypical tumor suppressor gene TP53 (Supplementary 

Tables S16-S17). What these tumor-specific proteins have in common is that they are all 

regulated by distal trans-acting genetic variants, which exert weak or modest effects on protein 

levels (Supplementary Tables S16-S17).  

Integrating the cancer-associated proteins with internal and external data sources 

Given the limited number of studies that match the depth of the proteome analyzed in this study, 

we instead focused on the representation of genes encoding the cancer-associated proteins within 

the broader set of publicly known cancer-related genes. For this, we utilized the Geneshot search 

engine125 with the term "cancer gene" which produced 9,952 entries (∼50% of all human protein 

encoding genes) ranked by the number of associated publications, with each entry having at least 

one publication. We performed a hypergeometric test to assess the enrichment of genes encoding 

proteins linked to incident and/or prevalent cancers, within the top 20% of the ranked cancer 

genes. Our findings show a significant enrichment of cancer-associated protein-coding genes 

among the most frequently cited cancer genes: for proteins associated with incident cancer types 

(P = 3×10��), prevalent cancer (P = 4×10�¹¹), incident ATC (P = 3×10�¹¹), and prevalent 

ATC (P = 0.00008) (Figure 8A). This analysis included well-established cancer genes such as the 

oncogenes FGFR1, MET, EGFR, and CTNNB1, as well as CXCL8 and KLK3 highlighted above, 

and NCAM1 and CCK which have been linked to tumor–host interactions within the TME126,127. 
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The proteins encoded by these genes were associated with future cancer risk in the present study. 

Additionally, several highly cited genes including the oncogenes RET and HSP90AA144,45, the 

tumor suppressor TP5344,45, and others such as CDH17128, HSP90AB1129, and PIK3C3130, which 

play diverse roles in tumor-host interactions, encode proteins that were associated with prevalent 

cancer in the AGES study. In contrast to the enrichment observed among the most highly cited 

cancer genes, a similar analysis of the bottom 20% of least-cited cancer-related papers revealed 

no evidence of enrichment, with only 0 to 4 overlapping genes (P = 0.967). 

A similar hypergeometric test revealed a highly significant enrichment of genes encoding 

proteins controlled by genetic cancer risk loci in the AGES study among highly cited cancer 

genes (P = 9×10�26) (Figure 8B), surpassing the enrichment found for proteins identified in the 

observational analysis. These included, for example, the oncogene MET and the tumor 

suppressor genes TP53 and CDH144,45, along with cancer-related genes CDH17, EGF, and 

TGFB1, all of which are known to play roles in tumor–host interactions128,131,132. EGF and TGFB1 

exhibit cis-acting associations with their respective cancer types, whereas the others are trans-

acting (Supplementary Table S16). No significant enrichment was found when compared with 

the bottom 20% of the least-cited cancer genes (P = 0.693). In summary, these findings suggest 

that many of the serum proteins identified in our study have well-established mechanistic roles in 

cancer biology.   

Given the intricate and systemic nature of cancer, utilizing biological networks provides insights 

into the mechanistic relationships involved in cancer onset and progression. We previously 

reconstructed the first circulating serum protein networks in humans, encompassing both the 

undirected co-regulatory network29 and, more recently, the circulating causal protein network 

(CPN)133, which was mapped using causal inference analysis. Although individual proteins 
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associated with incident or prevalent cancer show minimal overlap (see above), proteins from 

these two groups share co-regulatory network modules (Supplementary Table S18, 

Supplementary Text, and Supplementary Figure S10), suggesting they may be interconnected 

and involved in related biological processes. The co-regulatory modules they share have 

demonstrated strong associations with cardiometabolic and cardiovascular diseases, as well as 

overall and disease-specific survival29.  

The CPNs offer further insights into causal relationships between proteins that are not apparent 

in co-regulatory networks, as they distinguish between cause and correlation. We examined the 

enrichment of cancer-associated proteins within specific CPN subnetworks, which include both 

genetic regulators and target proteins133. To provide a more comprehensive analysis, we 

incorporated protein findings from both observational and genetic studies. Notably, many 

cancer-associated proteins were highly enriched in the CPN networks, with a particularly strong 

enrichment observed for proteins linked to cancer risk loci (Supplementary Table S19). Overall, 

18 CPN subnetworks were enriched for proteins associated with new-onset cancer, four for 

prevalent cancers, and 42 for proteins linked to cancer risk loci (Supplementary Table S19). 

Considering the predictive power of biological networks29, we highlight the CPN networks 

enriched for various types of incident cancers along with their interconnectedness 

(Supplementary Figure S11A-B). Moreover, within solid tissues, a subset of these networks 

adopts a cascade-like configuration and is strongly enriched for physical protein–protein 

interactions (PPIs) (6 expected edges vs. 29 observed edges; P = 8 × 10�¹¹) (Figure 9A-B). For 

example, several network regulators converge on PTPN11 (aka SHP2) (Figure 9A), a protein 

encoded by a well-established canonical oncogene44,45, which regulates 83 serum proteins 

including the oncogenic protein AKT1133, and is associated with prevalent BRC in this study 
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(Supplementary Table S10). Although these network regulators linked to PTPN11 have not been 

directly implicated in this study, they represent potential candidates in cancer biology. The PPI 

network revealed seven distinct functional clusters encompassing proteins involved in 

complement activation, protein folding, proteasome core complex, platelet development, NK-cell 

lectin-like receptor binding, allograft rejection, and vault protein inter-alpha-trypsin domain 

(Figure 9B). Interestingly, the platelet-related PPI network includes PTPN11, while many other 

proteins across the various PPIs are associated with genetic susceptibility to different cancers. 

Several of these risk loci, for example, ITIH1, ITIH3, CFB, and MICA, also exhibit strong cis-

acting regulation in the context of their respective cancers (Figure 9B, Supplementary Table 

S16). The accumulated data are in line with our previous observation that these networks are 

strongly represented in functional and physical PPIs within solid tissues as well as serum protein 

networks that also span tissue boundaries28,29.  

In the main text, we have highlighted selected cancer-associated proteins by categorizing their 

roles into four key areas: tumor-specific functions, tissue specificity, genetic susceptibility, and a 

broad category related to tumor–host interactions. The latter includes external factors such as 

lifestyle and systemic influences (e.g., metabolism, inflammation), as well as tumor-intrinsic 

processes like the TME, EMT and metastatic processes. This evidence-based and hypothesis-

driven protein classification is illustrated in Figure 10 with representative examples that 

underscore key cancer-related biological mechanisms reflected in our findings. Supplementary 

Table S20 also summarizes all discussed proteins along with relevant information about their 

classification. In summary, this framework promotes a more holistic view of cancer etiology and 

may aid in prioritizing proteins with potential actionable or novel roles for further study. 
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Discussion 

Cancer is a complex and heterogeneous disease marked by uncontrolled cell growth, invasion to 

surrounding tissues, and metastasis. It evolves over an extended period through the accumulation 

of advantageous genetic and epigenetic alterations that impair normal cellular functions and 

promote malignant transformation. Despite significant advances in treatment, cancer remains the 

second leading cause of death globally, highlighting the urgent need for better strategies in early 

detection and prevention. The research presented here has focused on identifying serum proteins 

associated with both current and future cancers across 13 distinct types. Among the many 

cancers examined, this study includes some of the most aggressive and treatment-resistant types, 

such as esophageal, gastric, pancreatic, and ovarian cancers, which often lack effective early 

diagnostic tools and are diagnosed at advanced stages, contributing to high mortality rates. The 

purpose of this work was to facilitate early detection of different cancers and to provide insight 

into the molecular mechanisms driving tumorigenesis. 

Serum proteins linked to past diagnoses and future cancer risk  

In the prospective, population-based AGES study, serum levels of 7,523 proteins were measured 

in 5,376 individuals. More than half (53%) of all cancers is diagnosed in individuals aged 65 or 

older, the entry age for the AGES study, and this burden is projected to grow significantly as the 

global population ages9,134. More to the point, the contributing factors to cancer in older adults 

may differ from those in younger individuals, due to multiple age-related changes, including, for 

instance, impaired DNA repair, chronic inflammation, cellular senescence, and cumulative 

exposure to carcinogens135. We examined associations between serum proteins and 13 different 

cancer types (each with ≥10 cases), including both cancers diagnosed prior to blood collection 

(prevalent) and those diagnosed within 13.6 years after sampling (incident). The analysis 
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revealed 526 protein-cancer associations at FDR < 0.05.  In general, the associated proteins were 

specific to individual cancer types, and those linked to prevalent versus incident cancers showed 

minimal overlap. Nevertheless, several proteins were associated with two or more cancer types 

or timing, suggesting shared molecular pathways across different cancers. 

It is important to note that the prevalent cancer cases in our study reflect individuals with a prior 

diagnosis of cancer. As such, this group likely includes a heterogeneous mix of clinical states, 

ranging from patients who may have undergone successful treatment with no current tumor 

burden, to those with metastatic disease or experiencing relapse. This diversity in disease stage, 

treatment history, and tumor activity at the time of sampling introduces biological variability that 

should be considered when interpreting the associations between protein levels and prevalent 

cancer. 

Proteins associated with genetic susceptibility loci 

Large-scale GWAS meta-analyses have identified numerous genetic loci associated with 

elevated cancer risk. In our dataset, 776 serum proteins were regulated in cis or trans by these 

susceptibility loci, including 114 that overlapped with proteins associated with prevalent or 

incident cancers (OR = 2.64, enrichment P-value = 1×10-15). These genomic loci are considered 

causal drivers of cancer onset, though their individual effect sizes are typically weak or modest. 

The finding that susceptibility loci regulate serum protein levels suggests that some of these 

proteins could play a causal role in tumorigenesis. Particular attention should be given to 

proteins associated with future cancers and those already implicated as oncogenes or tumor 

suppressors in literature. Notably, several proteins influenced by susceptibility loci include well-

known oncogenes such as MET and tumor suppressors like TP53. The finding that subtle impact 

of expression changes in oncogenes or tumor suppressors is associated with cancer risk supports 
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their functional relevance. This contrasts with the more familiar model of tumorigenesis driven 

by somatic mutations with large functional impacts. In earlier work, we proposed that an 

individual’s non-cancer state can be represented as a point in high-dimensional gene expression 

space, with tumorigenesis conceptualized as movement through this space toward a tumor 

state136. In this framework, the Euclidean distance between normal and tumor states reflects the 

likelihood of tumor development, with shorter distances being more probable. The present 

findings, linking susceptibility loci to expression shifts in key proteins, support this model, 

suggesting these changes may collectively modulate the probability of cancer progression.  

Presentation of mechanistically involved cancer genes   

The cancer-associated serum proteins identified in this study were significantly enriched in those 

previously implicated in tumorigenesis, as evidenced by numerous studies linking them to 

cancer. This list included, for example, well-known tumor suppressor genes such as TP53, 

CREBBP, and CDH1, as well as oncogenes like MET, EGFR, RET, and CTNNB1, which have 

extensive experimental support from cell and mouse models, as well as human samples, 

highlighting their key roles as drivers of cancer. This suggests that proteins predicting incident 

tumors could serve as candidate biomarkers and may also provide insights into the molecular 

drivers of disease before clinical symptoms appear. This implies that certain proteins and 

pathways may form the foundation for pre-clinical interventions, especially in individuals at high 

risk of developing cancer. To better understand the proteins associated with cancer, it is useful to 

categorize them into distinct groups for individual consideration. These categories included: 

genetic susceptibility proteins, which are linked to cancer risk loci and may directly influence the 

likelihood of tumorigenesis; tumor-host interaction proteins, which are associated with 

behavioral risk factors (e.g., smoking) or other conditions affecting cancer risk (e.g., obesity, 
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age); tissue-specific proteins, whose serum levels are altered by cancer development in specific 

tissues; and tumor-specific proteins, which include both oncogenes and tumor suppressors and 

likely result from the growing tumor itself. 

The identification of serum proteins associated with cancer that correspond to known oncogenes 

or tumor suppressor genes offers a biologically meaningful link between systemic factors and 

intracellular tumor biology. While these genes are well-characterized within tumor tissues, their 

detection at the protein level in circulation is understudied and may reflect tumor cell shedding, 

secretion, or broader tumor-host interactions. Such proteins may serve as mechanistically 

informed biomarkers that are reflective of underlying oncogenic processes.  Importantly, their 

presence in preclinical cancer suggests that proteomic changes can precede clinical manifestation 

of cancer, supporting the utility of serum proteomics for early detection. This convergence of 

genetic, tissue-level, and circulating evidence strengthens the translational potential of these 

proteins, offering opportunities for more specific and biologically interpretable cancer 

surveillance strategies. We note in passing that circulating proteins are regulated in a coordinated 

manner across tissue boundaries29,137, reflecting both tissue-intrinsic processes and inter-tissue 

communication, and thus provide a unique window into the systemic complexity of diseases such 

as cancer. 

Early detection and targeting of mechanisms driving pre-clinical tumorigenesis 

The identification of dysregulated proteins years before the cancer diagnosis suggests that early 

detection is achievable. While current methods like circulating tumor DNA (ctDNA) analysis 

show promise, they are limited by low abundance in early-stage disease138. In contrast, proteomic 

biomarkers detected through the aptamer-based affinity method offering superior precision and 

sensitivity139, potentially surpassing existing techniques by providing deeper insights into early 
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tumor biology. The presentation of cancer-associated proteins within key oncogenic pathways 

further indicates the potential for developing early intervention strategies. 

Proteins associated with both current and future cancers not only inform us about the nature of 

these tumors but also suggest potential drivers of tumorigenesis, raising the possibility of 

intervention before clinical presentation. An intriguing question is whether these same proteins, 

linked to prevalent or incident cancers, could provide valuable information for patient’s post-

surgery or treatment. For instance, could early indicators of relapses be detected? Although our 

current data does not address this, it presents an interesting avenue for future investigation. 

Many cancer-associated proteins are linked to germline risk variants and integrating genetic and 

proteomic profiling could enable long-term risk stratification. Combining polygenic risk scores 

with proteomic monitoring could help identify individuals who would benefit from more 

intensive surveillance or preventive therapies. A multi-omics approach that includes 

susceptibility markers, ctDNA, and serum proteins should be explored to enhance the 

identification of at-risk individuals before clinical presentation. This approach could open the 

door to more intensive monitoring and early interventions, such as surgery or therapy. 

Serum protein biomarkers present a powerful tool for early cancer detection, risk prediction, and 

understanding the mechanisms underlying tumorigenesis. By leveraging susceptibility loci, 

environmental factors, and tissue-specific signatures, these biomarkers have the potential to 

revolutionize cancer screening and prevention. Future research should focus on validating these 

proteins in prospective cohorts, integrating intensive imaging and monitoring, and developing 

targeted interventions to intercept cancer at its earliest stages. In conclusion, our findings 

highlight the potential of circulating proteins as biomarkers of tumor dynamics, which may 

reflect changes in tumor growth, the microenvironment, and systemic mediators, although this 
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has yet to be directly proven. These insights may lay the foundation for formulating hypotheses 

and directing future research, with significant implications for early cancer detection and future 

risk assessment. 

Material and Methods 

Study population 

Cohort participants aged 66 through 96 years at the time of blood collection were from the 

AGES study39, a single-center, prospective, population-based study of older adults (N = 5,764, 

mean age 76.6±6 years). The AGES study was formed between 2002 and 2006, and its 

participants were randomly selected from the surviving members of the established 40-year-long 

population-based prospective Reykjavik study140,141, with a 72% recruiting rate. The Reykjavik 

Study, a prospective cardiovascular survey, recruited a random sample of 30,795 adults born 

between 1907 and 1935 who lived in the greater Reykjavik area in 1967, that were examined in 

six phases from 1967 to 1996140,141. Measurements in the AGES study, including, for example, 

brain and vascular imaging, are designed to assess four biologic systems: vascular, 

neurocognitive (including sensory), musculoskeletal, and body composition/metabolism.39 All 

participants are of European ancestry. A decade-long collaboration with large genetic and 

epidemiology consortia of multiple disease-related phenotypes revealed no discernible difference 

between the Icelandic population and other European ancestry cohorts142-144. This study was 

approved (approval number VSN-00-063) by the National Bioethics Committee in Iceland, 

which serves as the Icelandic Heart Association's institutional review board in accordance with 

the Helsinki Declaration, and by the US National Institutes of Health, National Institute on 

Aging Intramural Institutional Review Board, with all participants providing informed consent. 
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Prevalent cancer cases were those with a history of cancer at the baseline visit, while the incident 

malignancies were diagnosed after the first visit with a 12-year follow-up based on hospital 

records and cancer registries. The diagnosis of different cancers was based on cancer in the 10th 

revision of the WHO International Statistical Classification of Diseases (ICD-10): esophagus 

(C15), stomach (C16), colon (C18), rectum (C20), pancreas (C25), prostate (C61), kidney (C64), 

bladder (C67), breast (C50), corpus uteri (C54), ovaries (C56), lung and bronchus (C34), and 

malignant melanoma (C43). Systolic and diastolic blood pressure were measured twice with 

subjects in a supine position using a Mercury sphygmomanometer. We categorized smoking 

status as never smoked, former smoker, or current smoker, while alcohol consumption was 

determined as units per week. Height was measured in meters, while body mass index (BMI) 

was expressed in kg/m². The estimated glomerular filtration rate (eGFR) was estimated 

according to the Chronic Kidney Disease Epidemiology Collaboration equation145. Finally, the 

present study included only individuals who had their serum proteome measured (see below), 

which amounted to 5,376 AGES participants.  

Proteomics profiling assay 

Blood samples were collected at the AGES baseline visit after an overnight fast, and serum 

samples prepared using a standardized protocol and stored in 0.5mL aliquots at -80°C. Serum 

samples collected from the inception period, i.e., from 2002 to 2006, were used to generate 

proteomics data. Before the protein measurements, all serum samples from this period went 

through their first freeze-thaw cycle. Serum protein levels from 5,376 AGES study participants 

were quantified using the multiplex SomaScan v4.1 proteomic platform146, which uses modified 

DNA aptamers designed to bind target proteins with high affinity and specificity. Here, 7,523 

aptamers mapping to 6,586 UniProt IDs were measured in total of 8,592 samples (two time 
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points). Thus, some proteins were targeted by more than one aptamer. In such cases, individual 

aptamers had distinct binding sites (epitopes) or binding affinity29. Examples include duplicate 

aptamers targeting single-pass transmembrane proteins (one binding the extracellular domain and 

another the intracellular loop), aptamers targeting multimers (e.g., interleukins), and duplicate 

aptamers produced in distinct expression systems. Of the 7,523 aptamers, 233 aptamers were 

derived from mouse-human chimeras, intended to target proteins from both species. The 

SOMAmer-based platform measures proteins with femtomole (fM) detection limits and a broad 

detection range (>8-log dynamic range) of concentration147. To avoid batch or time of processing 

biases, the order of sample collection and separate sample processing for protein measurements 

were randomized, and all samples run as a single set at SomaLogic Inc. (Boulder, CO, US). All 

aptamers that passed quality control exhibited median intra-assay and inter-assay coefficients of 

variation (CV) below 4% at both time points, measured five years apart. Hybridization controls 

were used to correct systematic variability in detection and calibrator samples of three dilution 

sets (20% (1:5), 0.5% (1:200), and 0.005% (1:20,000)) were included so that the degree of 

fluorescence was a quantitative reflection of protein concentration. The adaptive normalization 

by maximum likelihood (ANML) method was employed to normalize QC replicates and samples 

using point and variance estimations from a normal U.S. population. Consistent target specificity 

of aptamers was indicated by direct (through mass spectrometry) and/or indirect validation29. 

Genotype data and the identification of pQTLs 

The genotype data includes assayed and imputed genotype data for 5,636 AGES participants30. 

The genotyping arrays used were Illumina Hu370CNV and Illumina GSA BeadChip, which were 

quality controlled by eliminating variants with call rates <95% and HWE P-value < 1�×�10−6. 

The arrays were imputed against the Haplotype Reference Consortium imputation panel r1.1 and 
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post-imputation quality control was performed separately for each platform. Variants with 

imputation quality R2�<�0.7, MAF�<�0.01, as well as monomorphic and multiallelic 

variants, were removed before merging to generate a dataset with 7,506,463 variants for 5,656 

AGES individuals as previously described30. These variants were associated to each of the 

aptamers on the v4.1-7k serum protein panel to identify cis (proximal) and trans (distal) acting 

protein quantitative trait loci (pQTLs), in the same way as previously described30.  

Statistical analysis 

Before the analyses, protein data were transformed using a log2 scale, and extreme outlier values 

excluded, defined as values above the 99.5th percentile of the distribution of 99th percentile 

cutoffs across all proteins. The relationship between serum protein levels and prevalent cancer 

was examined cross-sectionally using logistic regression analysis, while the associations of 

serum proteins with incident cancer were assessed longitudinally via the Cox proportional-

hazards model. Functional enrichment analysis has been described elsewhere. Briefly though: it 

was performed using Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis 

(GSEA) with the R packages ClusterProfiler148 and fgsea149, the background set comprised all 

proteins tested. To account for multiple hypothesis testing, we applied the Benjamini-Hochberg 

correction with a threshold of FDR < 0.05 to determine the statistical significance of the 

associations between serum proteins and cancers, as well as for ORA inclusion. Analyses were 

conducted using R version 4.2.1. 
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Figure Legends 

Figure 1. The figure depicts the study procedures, as well as the materials and study cohort. 

Figure 2. (A) The numbers represent the number of individuals diagnosed with any of 13 distinct 

cancer types or those with a history of any type of cancer (ATC). The total does not distinguish 

between incident and prevalent diagnoses, as we separate these groups in the study. Different 

cancer types are grouped based on the location of malignancy within the corresponding organ 

system. Red numbers indicate prevalent cases, while blue numbers represent incident cases. (B) 

The number of serum proteins associated with prevalent (black columns) or incident (red 

columns) cancers across various types, including ATC, adjusted for standard covariates (age, 

sex, and eGFR). 

Figure 3. (A) A curated set of serum proteins associated with future risk of cancer and (B) a 

similar set of proteins linked to prevalent cancer. 

Figure 4. (A) Digestive system cancers examined in the current study. (B) A volcano plot of 

proteins associated with prevalent stomach cancer (STC), and (C) their tissue distribution. (D) 

Association plot of selected serum proteins linked to STC. 

Figure 5. (A) The figure shows the number of proteins shared between incident and prevalent 

cancers, highlighting examples of proteins in the overlap. (B) The plot illustrates the contrasting 

effect of KLK3 (aka PSA) in incident versus prevalent prostate cancer (PRC), with the effect 

represented as a hazard ratio for incident PRC and an odds ratio for prevalent PRC. (C) A 

heatmap displaying 25 serum proteins associated with both incident and prevalent cancer types. 

Figure 6. The figure presents a volcano plot of proteins associated with (A) new-onset cancers of 

any type (ATC) and (B) prevalent ATC. Proteins directly associated with ATC are shown in red, 
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while those downregulated are shown in blue. The plot highlights a selected set of proteins. The 

regression analysis incorporated the standard covariate adjustment. 

Figure 7. (A) The figure illustrates the overlap between proteins associated with different patient 

groups, including incident cancers (combined from proteins linked to any of the 13 different 

incident cancer types), incident ATC, prevalent cancers (combined from proteins linked to any of 

the 13 distinct prevalent cancer types), and prevalent ATC. We note that in some cases, where 

multiple aptamers target the same protein, proteins with the same annotation may appear in 

different overlap groups. (B) The figure illustrates the overlap between proteins identified in the 

observational study of incident and prevalent cancers and those detected through proteogenomic 

analysis of genetic cancer risk. 

Figure 8. (A) The plot illustrates the enrichment of cancer-associated proteins in the current 

study among highly cited cancer genes from the literature, as detailed in the main text. (B) The 

plot shows the enrichment of proteins from the observational analysis and those linked to genetic 

cancer risk among highly cited cancer genes from the literature, as described in the main text. 

Figure 9. (A) Hierarchical representation of interacting network regulators for CPNs enriched 

with cancer-associated proteins. (B) Physical protein-protein interactions among network 

regulators of CPN subnetworks enriched for cancer-associated proteins across multiple cancer 

types, as identified by the STRING database. These edges represent physical interactions, and 

unconnected network regulators are excluded from visualization. 

Figure 10. The figure illustrates the categorization of cancer-associated proteins highlighted in 

this study. The main groups include tumor-specific proteins (encoded by oncogenes or tumor 

suppressor genes), tissue-specific proteins (reflecting changes related to the tumor’s tissue of 
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origin), genetic susceptibility proteins (linked to common low-penetrance germline variants), and 

tumor-host interaction proteins. The latter is a broad category encompassing proteins that do not 

fit neatly into the other groups and instead reflect the complex interactions between the tumor 

and its host environment. This includes proteins influenced by lifestyle factors (e.g., smoking) 

and systemic conditions (such as inflammation or metabolic dysfunction), as well as those 

involved in tumor-intrinsic processes like the tumor microenvironment (TME) originating from 

stromal cells, immune cells, or the extracellular matrix, and epithelial-mesenchymal transition 

(EMT), which connects tumor cell behavior with microenvironmental remodeling. Additionally, 

this category covers proteins associated with metastatic progression. Examples of cancer-

associated proteins are highlighted within each category.  
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Table 1. Baseline characteristics of AGES participants by sex, cancer group (body system), and disease status, with 7,523 
serum proteins measured. 
Characteristic Variable* 

 
 

Females 
 
 

Males 
 
 

P-value Total 
 
 Demographics  

Numbers 3077 (57.2)        2299 (42.8) 
 
N/A 

 
5,376               

AGE (years) 76.7 (5.4)          76.5 (5.7) 0.232 76.6 (5.6) 
Anthropometry  

BMI (kg/m2) 27.2 (4.8) 26.8 (3.8)          
 
0.004 

 
27.0 (4.4) 

BMI category   <0.001  
     BMI<25 kg/m2 1050 (34.2) 747 (32.5)           1797 (33.5)        
     BMI =20-30 kg/m2 1264 (41.1) 1115 (48.5)          2379 (44.3)        
     BMI ≥ 30 kg/m2 758 (24.7)             435 (18.9)            1193 (22.2)        

Lifestyle  
Smoking status   

 
<0.001  

     Never 1577 (52.7)           645 (28.8)  2222 (42.4)        
     Former 1031 (34.5)           1337 (59.6)          2368 (45.2)        
     Current 384 (12.8)             261 (11.6)            645 (12.3) 
Alcohol use 9.3 (21.1)        22.0 (41.3)         <0.001 14.7 (32.0)       

Physiological  
eGFR (ml/min/1.73m2) 
SBP (mmHg) 
DBP (mmHg) 

63.4 (15.6)       
142.1 (20.9)         
72.2 (9.5) 

64.9 (15.1)        
143.2 (20.4)       
76.2 (9.6)          

 
<0.001 
0.073 
<0.001 

 
64.0 (15.4) 
142.6 (20.7)      
73.9 (9.7) 

Other  
Follow-up period (any cancer) 10.4 [6.2, 11.6] 8.6 [4.5, 11.1]   

 
<0.001 

 
10.0 [5.3, 11.4] 

All 13 cancers examined in 
current study, combined 

 
All cases 
Prevalent cases 

597 (19.6)        
237 (7.8) 

638 (28.0)           
228 (10.0)           

 
<0.001 
0.006 

 
1235 (23.2) 
465 (8.7)        

Incident cases 360 (11.7) 410 (17.8)           <0.001 770 (14.3) 
Digestive system cancer      

All cases 166 (5.5)  152 (6.7) 0.075 318 (6.0)        
Prevalent cases 45 (1.5)                49 (2.1)               0.084          94 (1.8)        
Incident cases 121 (3.9) 103 (4.5)            0.402         224 (4.2)        

Genitourinary system 
cancer 

 
All cases 65 (2.1)        420 (18.4)           

 
<0.001 

 
485 (9.1)        

Prevalent cases 31 (1.0)        170 (7.5)            <0.001 201 (3.8)        
Incident cases 34 (1.1)        250 (10.9)           <0.001 284 (5.3)        

Respiratory system cancers       
All cases 97 (3.2)         79 (3.5)             0.663 176 (3.3)        
Prevalent cases 11 (0.4)         9 (0.4)             1.000 20 (0.4)        
Incident cases 86 (2.8)         70 (3.1)             0.663 156 (2.9)        

Cancers of the female 
reproductive system 

 
All cases 281 (9.2)        6 (0.3)            

 
<0.001 

 
287 (5.4)        

Prevalent cases 154 (5.1)        2 (0.1)            <0.001 156 (2.9)        
Incident cases 127 (4.1)        4 (0.2)            <0.001 131 (2.4)        

Skin cancer  
All cases 50 (1.6)         43 (1.9)             

 
0.576 

 
93 (1.7)        

Prevalent cases 8 (0.3)         6 (0.3)              1.000 14 (0.3)        
Incident cases 42 (1.4)         37 (1.6)             0.544 79 (1.5)        

*Numbers are mean (SD) for continuous-, N (%) for categorical- and median [IQR] for skewed variables. The reported P-values 
are two-sided. Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; N/A, not applicable. The 13 cancer types encompass those affecting the digestive system 
(esophagus, stomach, colon, rectum, and pancreas); the genitourinary system (kidney, prostate, and bladder); the female 
reproductive system (breast, ovary, and corpus uteri); the respiratory system (lung and bronchus); and skin melanoma. 
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Table 2. Serum protein associations with different cancer types in the AGES study (FDR < 0.05). 
Body system Tumor site (ICD-

10 code) 
Condition 
 

Number of linked 
proteins* 

Number of linked 
proteins** 

Two examples 
 

 
 
 
 
Digestive  
system 

Esophagus (C15) Incident 16 9 CTNNB1, RAET1L 
 Prevalent NA NA NA 
Stomach (C16) Incident 2 4 LECT2, CUL1 
 Prevalent 33 14 GKN2, TFF1 
Colon (C18) Incident 9 6 CXCL8, BCL2L14 
 Prevalent 0 NA NA 
Rectum (C20) Incident 13 7 HNRNPA1, WNT7A 
 Prevalent 17 9 COLEC12, COL6A3 
Pancreas (C25) Incident 6 4 PTPN6, CHST12 
 Prevalent NA NA NA 

 
 
Genitourinary 
system 

Kidney (C64) Incident 4 5 HAVCR1, GIMAP4 
 Prevalent 3 5 EPHB2, GRP 
Prostate (C61) Incident 5 6 KLK3, ACP3 
 Prevalent 7 7 KLK3, MSMB 
Bladder (C67) Incident 25 29 MPP2, PRKCZ 
 Prevalent 5 5 NR3C2, PRPS1 

Respiratory 
system 

Lung (C34) Incident 216 10 WFDC2, CLEC3B 
 Prevalent 6 0 WFDC2, TP53 

 
Female 
reproductive 
system 

Breast (C50) Incident 2 2 TXLNA, WNT10B 
 Prevalent 133 100 MET, RET 
Corpus uteri (C54) Incident 11 11 CRLF2, RAB32 
 Prevalent 3 1 OSCAR, DCN 
Ovary (C56) Incident 2 1 EPOR, EVA1B 
 Prevalent NA NA NA 

Skin Melanocytes (C43) Incident 10 9 PCSK1N, GHRH 
 Prevalent 6 2 FHIT, MICALL1 

Any Any site Incident 278 163 WFDC2, GDF15 
 Prevalent 43 35 FETUB, IGFBP4 

*Standard covariate adjustment includes age, sex, and eGFR. Analyses were performed both jointly and separately by sex for 
cancers that are not inherently sex specific. **Additional covariate adjustments were tailored to known risk factors for specific 
cancers, which may include BMI, smoking status, alcohol consumption, height, or blood pressure (refer to Supplementary Text of 
Supplementary Material for further details). In some cases, additional proteins were identified beyond those detected with the 
standard covariate adjustment. 
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