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Abstract

Powdery mildew is one of the most widespread diseases of wheat. The development and

deployment of resistant varieties are one of the most economical and effective methods to

manage this disease. Our previous study showed that the gene(s) at 2Mb in Chinese Spring

(CS)-Aegilops biuncialis 2Mb disomic addition line TA7733 conferred a high level of resis-

tance to powdery mildew of wheat. In this study, resistance spectrum of TA7733 was

assayed by using 15 Blumeria graminis f. sp. tritici (Bgt) isolates prevalent in different

regions of China. The result indicated that TA7733 was highly resistant to all tested Bgt iso-

lates and the gene(s) on chromosome 2Mb conferred broad-spectrum resistance to powdery

mildew. In order to characterize mechanism of powdery mildew resistance by identifying

candidates R-genes derived from Ae. biuncialis chromosome 2Mb and develop 2Mb-specific

molecular markers, we performed RNA-seq analysis on TA7733 and CS. In total we identi-

fied 7,278 unigenes that showed specific expression in TA7733 pre and post Bgt-infection

when compared to CS. Of these 7,278 unigenes, 295 were annotated as putative resistance

(R) genes. Comparatively analysis of R-gene sequences from TA7733 and CS and integra-

tion CS Ref Seq v1.0 were used to develop R-gene specific primers. Of 295 R-genes we

identified 53 R-genes were specific to 2Mb and could be involved in powdery mildew resis-

tance. Functional annotation of majority of the 53 R-genes encoded nucleotide binding leu-

cine rich repeat (NLR) protein. The broad-spectrum resistance to powdery mildew in

TA7733 and availability of 2Mb-derived putative candidate R-gene specific molecular mark-

ers identified in this study will lay foundations for transferring powdery mildew resistance

from 2Mb to common wheat by inducing CS-Ae. biuncialis homoeologous recombination.

Our study also provides useful candidates for further isolation and cloning of powdery mil-

dew resistance gene(s) from Ae. biuncialis chromosome 2Mb.
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Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD), one of the most widely

planted crops in the world provides 20% of the calories and 25% of its protein consumed by

human [1,2]. Wheat production plays an important role in food security and social stabiliza-

tion. However, wheat yields and quality are severely threatened by various diseases, such as

rusts, Fusarium head blight (FHB) and powdery mildew. Wheat powdery mildew, caused by

Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases all over the world,

with severe yield losses ranging from 13% to 50% [3,4]. In recent years, certain agronomic

practices to increase yields, such as popularization of high planting density, high inputs of irri-

gation and fertilization have accelerated the spread and severity of powdery mildew [5,6].

Though spraying fungicides can reduce the damage caused by this disease to some extent, it

can also result in side effects such as drug resistant of powdery mildew fungus, environment

pollution, and high production inputs [7]. Breeding disease-resistant varieties is currently rec-

ognized as one of the most effective and economical ways to control powdery mildew.

Wild relatives of common wheat contain a large number of Bgt resistance genes for wheat

improvement. Up to now, the number of designated genes of powdery mildew resistance (Pm)

was more than 80 at 54 loci [8,9], of which approximately half of Pm genes were derived from

wild relatives of wheat. However, some Pm genes had been defeated by new virulent Bgt races

or by races that were previously present at very low frequencies in the pathogen population

[10,11], and some were difficult to use in wheat breeding because of linkage drags [12,13].

Therefore, ongoing efforts to explore and identify new powdery mildew resistance genes are

needed for wheat breeding programs.

Aegilops biuncialis (2n = 4x = 28, UbUbMbMb) is a tetraploid wild relative of wheat, belong-

ing to the section Polyeides of the genus Aegilops. The Ub genome of it was derived from Ae.

umbellulata (2n = 2x = 14, UU), and Mb genome from the diploid Ae. comosa (2n = 2x = 14,

MM) [14,15]. Aegilops biuncialis owns many desired agronomic traits for wheat improvement,

such as resistance to yellow rust [16], brown rust [17], powdery mildew and barley yellow

dwarf virus [18], tolerance to drought and salt [19–21], high micronutrients contents [22], and

special high molecular weight glutenin subunits [23]. Successful attempts have been made to

cross Ae. biuncialis with wheat, develop a series of wheat-Ae. biuncialis addition lines, and

transfer desired genes from Ae. biuncialis into wheat [20,24,25]. In previous study, we identi-

fied that CS-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to

powdery mildew compared with its recipient parent CS [26].

The isolation and cloning of plant disease resistance genes had great significance for both

plant disease resistance breeding and the study on molecular mechanisms of disease resistance.

Map-based cloning is currently an important method to isolate novel genes. However, it is

very challenging to perform fine mapping and map-based cloning of alien genes derived from

wild relatives of wheat due to the strict control of homoeologous recombination by pairing

homoeologous (Ph) genes in hexaploid wheat backgrounds [27–29]. Furthermore, molecular

markers of alien chromosome-specificity were limited for fine mapping of alien genes. Regard-

less, with the rapid development of high-throughput sequencing, sequencing-based technolo-

gies such as RNA-seq have been frequently used to develop molecular markers [1,30,31],

detect expression pattern and level of genes responded to pathogens [32], exploit new genes

and identify gene function without prior information of the particular reference genome

sequences [33,34]. RNA-seq is very helpful to explore disease-resistant genes derived from

wild relatives. For example, Li et al. (2016) obtained eight powdery mildew resistance-related

genes from Thinopyrum intermedium by RNA-seq analysis [35]. Zou et al. (2018) successfully
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isolated a powdery mildew resistance gene Pm60 from T. urartu by combining genetic map-

ping and RNA-seq analysis [9].

In this study, we report the assays of a broad-spectrum resistance gene(s) on chromosome

2Mb derived from Ae. biuncialis, discovery of 2Mb-specific candidate genes of powdery mildew

resistance, and development of molecular markers of 2Mb specificity based on transcriptome

sequencing of CS-Ae. biuncialis 2Mb disomic addition line TA7733. This study will provide

foundations for the transfer and cloning of resistance gene(s) from chromosome 2Mb, as well

as further understanding of the molecular and genetic mechanisms of disease resistance con-

ferred by Ae. biuncialis chromosome 2Mb.

Materials and methods

Plant materials

Common wheat landrace CS (2n = 6x = 42, AABBDD), Ae. comosa TA2102 (2n = 2x = 14,

MM), and CS-Ae. biuncialis 2Mb disomic addition line TA7733 (2n = 44) where a pair of 2Mb

chromosomes derived from Ae. biuncialis were added into CS genetic background were used

in this study. All the materials were kindly provided by the Wheat Genetics Resource Center at

Kansas State University, USA and maintained at the experimental station of Henan Agricul-

tural University, China.

Cytogenetic analysis

Chromosome spreads were prepared from root tip cells as described by Huang et al. (2018)

[36]. The cytological observations were performed using a BX51 Olympus phase contrast

microscope (Olympus Corporation, Tokyo, Japan).

Genomic DNA (gDNA) was extracted from fresh leaves using a modified hexadecyl tri-

methyl ammonium bromide (CTAB) method [37]. The concentration and purity of DNA

were measured with the Nanophotometer P360 (Implen GmbH, München, Germany).

Genomic in situ hybridization (GISH) was applied to analyze the chromosomal composi-

tion of TA7733. Genomic DNA of Ae. comosa accession TA2102 (genome Mb donor of Ae.

biuncialis) and wheat CS were respectively used for probe labeling with fluorescein-12-dUTP

and blocking at a ratio of 1:130 to distinguish Ae. biuncialis 2Mb chromosome. GISH was car-

ried out as described by Liu et al. (2017) [38]. Hybridization signals were observed under an

OLYMPUS AX80 (Olympus Corporation, Tokyo, Japan) fluorescence microscope, captured

with a CCD camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA) and processed

with Photoshop CS 3.0.

After GISH, the hybridization signals were washed off with phosphate-buffered saline

(PBS). Eight single-strand oligonucleotides were then used as probes for dual-color nondena-

turing fluorescence in situ hybridization (ND-FISH) [36,39]. The eight oligonucleotides

includes Oligo-pAs1-1, Oligo-pAs1-3, Oligo-pAs1-4, Oligo-pAs1-6, Oligo-AFA-3, Oligo-

AFA-4, Oligo-pSc119.2–1 and Oligo-(GAA)10. The first six were labeled with 6-carboxytetra-

methylrhodamine (TAMRA) generating red signals, and the last two being labeled with 6-car-

boxyfuorescein (FAM) generating green signals. All the oligonucleotides were synthesized at

Sangon Biological Technology, Shanghai, China.

Evaluation of powdery mildew resistance

A mixture of prevailing Bgt isolates collected in Henan Province were used to evaluate the

resistance of CS and CS-Ae. biuncialis 2Mb disomic addition line TA7733. Fifteen prevalent

Bgt isolates collected from different regions of China were chosen to evaluate the resistance
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spectrum of TA7733 at the seedling stage by using CS as a susceptible control. The 15 Bgt iso-

lates were provided by Prof. Pengtao Ma, Yantai University, China. They were all single-pus-

tule-derived powdery mildew virulent isolates by separate artificial inoculation. The infection

type (IT) were scored 7–10 days post-inoculation using a 0 to 4 rating scale [40], with 0 as

immune, 0; as nearly immune, 1 as highly resistant, 2 as moderately resistant, 3 as moderately

susceptible, and 4 as highly susceptible. IT 0 to 2 were considered as resistance, while IT 3 to 4

were being susceptible.

At 10 days post-Bgt inoculation, the first leaves of TA7733 and CS were cut into 2 cm seg-

ments and stained with coomassie brilliant blue following Li et al. (2016) [35] for further

microscopic observation of Bgt development on the leaves.

Illumina library construction and sequencing

Seeds of CS and TA7733 soaking in water for 24 h at 23˚C were transferred into a mixture of

nutrient soil and vermiculite (1:1). Seedlings with full extended first leaf were dusted using

fresh conidiophores of Bgt isolates. Leaves at 0, 12, 24, 48 and 72 hours post-inoculation (hpi)

were respectively collected, rapidly frozen in liquid nitrogen and stored at -80˚C for RNA

extraction.

Total RNA of ten samples (0, 12, 24, 48 and 72 hpi for CS and TA7733, each) were extracted

for transcriptome sequencing. Then equal amounts of RNA samples 12–72 hpi from TA7733

and CS were mixed to generate RNA-seq sample RI and SI, respectively. RNA at 0 hpi from

TA7733 and CS were accordingly represented as RNA-seq sample RC and SC. Two biological

replicates were performed in this study, forming a total of eight RNA samples (RI1, RI2, RC1,

RC2, SI1, SI2, SC1 and SC2). The designations 1 and 2 are used to represent replicates 1 and 2,

respectively. Libraries with an average insert size of 200 bp constructed from these eight sam-

ples were then sequenced using the Illumina HiSeqTM 2500 by the Beijing Genomics

Institute.

Reads processing, assembly, and sequence annotation

Prior to assembly, sequencing raw reads were pre-processed using a Perl script dynamic-Trim.

pl to remove the adaptor sequences, low-quality sequences, low complexity sequences, short

reads and empty reads. Reads data with a quality score (Qphred)� 50 (Q50: ratio of an error

rate of 0.01%) were then merged and input into the data assembly software Trinity for assem-

bling into transcripts. The generated unigenes were annotated by a Blastx alignment search (E-

value<10−5) against the NCBI non-redundant (NR) protein, SWISSPROT, gene ontology

(GO), eukaryotic orthologous groups (KOG), kyoto encyclopedia of genes and genomes

(KEGG) and plant resistance gene (PRG) databases.

Amplification and analyses of candidate disease resistance genes

R gene-specific primer sets were designed based on their transcriptome sequences to perform

PCR amplification using gDNA from TA7733 and CS as templates to verify 2Mb specific

genes. PCR amplification were conducted in 15 μl reaction volumes containing 2 μl template

gDNA (100 ng/μl), 0.25 μl forward primer (10 μmol/l), 0.25 μl reverse primer (10 μmol/l),

7.5 μl Taq MasterMix (CW Bio Inc., China) and 5 μl ddH2O. PCR cycling conditions were as

follows: 94˚C for 5 min followed by 35 cycles of 94˚C for 30 s, 50–66˚C for 30 s, and 72˚C for 1

min, followed by a final 10-min extension at 72˚C. The PCR products were digested with four

base-restriction enzymes. Five microliters of a restriction enzyme mixture containing 2.8 μl of

ddH2O, 2.0 μl of CutSmart buffer, and 0.2 μl of an enzyme stock solution was added to 15 μl of

PCR products and incubated for 3.5 h at 65˚C. The PCR or restricted PCR products were
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separated on a 2.0% agarose gel-electrophoresis stained with ethidium bromide and visualized

by UV light.

Mapping candidate disease resistance genes onto chromosome 2Mb

Genome sequences of wheat landrace CS (CS Ref Seq v1.0) were used as references in Blastn

searches to obtain position information for R genes from Ae. biuncialis chromosome 2Mb.

Comparative maps of 2Mb-specific R genes were made using MapDraw software referring

homoeologous chromosome locations of CS Ref Seq v1.0.

Results

Cytogenetic analysis of CS-Ae. biuncialis 2Mb disomic addition line

TA7733

GISH and ND-FISH were respectively performed to confirm the chromosome composition of

CS-Ae. biuncialis 2Mb disomic addition line TA7733 by using fluorescein-labeled gDNA from

M genome donor Ae. comosa as a probe and wheat CS DNA as blocker. As shown in Fig 1,

there were 44 chromosomes including 42 wheat chromosomes and plus a pair of Ae. biuncialis
2Mb chromosomes in TA7733, confirming the disomic addition of chromosome 2Mb.

Assay of powdery mildew resistance of CS-Ae. biuncialis 2Mb disomic

addition line TA7733

A mixture of prevalent Bgt isolates collected in Henan Province was used to inoculate seedlings

with fully-extended first leaves of TA7733 and its recipient parent CS in the greenhouse. Ten

days post-inoculation, the leaves of CS were covered with a large number of Bgt hyphae, with

Fig 1. GISH and ND-FISH identification of CS-Ae. biuncialis 2Mb disomic addition line TA7733. (A) GISH patterns of CS-Ae. biuncialis 2Mb disomic addition line

TA7733. Total gDNA of Ae. comosa was labelled with fluorescein-12-dUTP and visualized with green fluorescence. (B) ND-FISH patterns of CS-Ae. biuncialis 2Mb

disomic addition line TA7733. Blue color indicated chromosomes counterstained with DAPI. Red color showed signals from oligos pAs1-1, pAs1-3, pAs1-4, pAs1-6, AFA-

3 and AFA-4. Green color showed signals from oligos pSc119.2–1 and (GAA)10. The arrows indicated Ae. biuncialis chromosome 2Mb.

https://doi.org/10.1371/journal.pone.0220089.g001
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ITs of 3–4, whereas TA7733 showed only stunted spores, with ITs 0 to 1 (Fig 2A). Microscopic

observation of first leaf segments stained with coomassie brilliant blue displayed that leaves of

susceptible CS were covered with hyphae and spores had formed, while TA7733 only had a

few blue spores on leaves (Fig 2B), further confirming that TA7733 was high resistance to pow-

dery mildew. Since CS forms the genetic background TA7733 and is susceptible, the gene(s)

conferring resistance to powdery mildew was therefore mapped to chromosome 2Mb derived

from Ae. biuncialis.
The resistance spectrum of TA7733 was further assayed at the seedling stage by inoculation

of 15 prevalent Bgt isolates collected from different regions of China. As shown in Table 1, CS-

Ae. biuncialis 2Mb disomic addition line TA7733 showed high level of resistance (IT = 0 or 1)

to all the 15 Bgt isolates tested, whereas its recipient parent CS was highly susceptible (IT = 4

or 3) to all tested Bgt isolates. These results indicated that the chromosome 2Mb in TA7733

conferred broad-spectrum resistance to powdery mildew of wheat.

Transcriptome sequencing, de novo assembly and functional annotation

RNA-seq of CS-Ae. biuncialis 2Mb disomic addition line TA7733 and its recipient parent CS

were respectively conducted pre and post Bgt-infection. A total of 158,953 unigenes were

assembled with a total length of 198,364,757 bp. The average unigene size was 1247.95 bp rang-

ing from 301 to 19,496 bp (Fig 3). Gene function annotation with Blastx to the six public data-

bases (NCBI NR protein, SWISSPROT, GO, KOG, KEGG and PRG databases) using a cutoff

E-value of 10−5 resulted in 86,196 (54.23%), 48,724 (30.65%), 40,543 (25.51%), 37,008

(23.28%), 13,414 (8.44%) and 10,969 (6.92%) annotated unigenes, respectively (Table 2). Of

which, 86,862 (54.65%) unigenes matched to at least one of the databases.

GO is an international classification system for standardized gene functions, which have

three categories: biological process, molecular function and cellular component. A total of

Fig 2. Powdery mildew resistance assay of CS-Ae. biuncialis 2Mb disomic addition line TA7733 and CS. (A) Disease symptoms of the first leaf of TA7733

and CS at 10 days post Bgt inoculation. (B) Microscopic observation of Bgt development on leaves of TA7733 and CS after staining with coomassie brilliant

blue-R-250.

https://doi.org/10.1371/journal.pone.0220089.g002
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40,543 (25.51% of 158,953) unigenes were assigned to one or more GO term annotations (Fig

4 and S1 Table), of which, “cellular process” (27,404; 67.59% of 40,543), “metabolic process”

(24,470; 60.35% of 40,543), and “single-organism process” (20,606; 50.82% of 40,543) were the

cardinal terms in the biological process category. In the cellular component category, “cell”

(30,742; 75.82% of 40,543), “cell part” (30,695; 75.71% of 40,543), and “organelle” (24,100;

59.44% of 40,543) were the most abundant terms. “Binding” (24,379; 60.13% of 40,543) and

“catalytic activity” (21,879; 53.96% of 40,543) were the most representative terms in the molec-

ular function category. Instead, only a few unigenes assigned into the terms of “extracellular

matrix part” (9; 0.02% of 40,543), “protein tag” (8; 0.02% of 40,543) and “receptor regulator

activity” (1; 0.0024% of 40,543).

The KEGG database was used to systematically describe the pathway where the unigenes

involved. Out of a total 158,953 annotated unigenes, 26,589 unigenes were assigned to 23

KEGG pathways (Fig 5 and S2 Table). The most representative pathways in which unigenes

Table 1. Infection types of CS-Ae. biuncialis 2Mb disomic addition line TA7733 and CS for different Bgt isolates at the seedling stage.

Isolates Y01 Y02 Y03 Y04 Y05 Y06 Y07 Y08 Y09 Y10 Y11 Y14 Y15 Y17 Y18

TA7733 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

CS 4 4 3 4 4 4 4 4 4 4 4 4 4 4 3

0 as immune, 0; as nearly immune, 1 as highly resistant, 2 as moderately resistant, 3 as moderately susceptible, 4 as highly susceptible.

https://doi.org/10.1371/journal.pone.0220089.t001

Fig 3. Length distribution of the assembled transcripts of CS-Ae. biuncialis 2Mb disomic addition line TA7733.

https://doi.org/10.1371/journal.pone.0220089.g003
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involved were the metabolic pathways (11,920, 44.83%), genetic information processing

(5,456, 20.52%), environmental information processing (5,095, 19.16%) and cellular processes

(4,118, 15.49%).

Analyses of genes involved in responses to Bgt infection from TA7733

One of the objectives of this study was to explore putative R genes specific to Ae. biuncialis
chromosome 2Mb, which should be only expressed in TA7733 other than in CS. Based on pair-

wise comparison of unigenes of TA7733 vs CS, a total of 7,278 genes were uniquely expressed

in TA7733, of which 4,382 unigenes were significantly differentially expressed post vs before

Bgt-inoculation, and the remaining 2,896 unigenes had insignificantly different expression lev-

els. In consideration of the fact that expression levels of some cloned resistance genes did show

no significant difference before and after pathogen infection [9,41], these 2,896 unigenes of

TA7733 specificity were also taken for a further selection of chromosome 2Mb-derived R-

genes involved in powdery mildew resistance.

To analyze the biological pathways of these 4,382 unigenes, the statistical enrichment of dif-

ferentially expressed genes (DEGs) in KEGG pathways were tested using the KOBAS software.

In consequence, 399 out of 4,382 DEGs were allocated to 162 KEGG pathways (S3 Table). The

most representative pathways included the phenylpropanoid biosynthesis (28, 7.02%), plant

Table 2. Functional annotation of the unigenes by transcriptome sequencing of TA7733.

database NR SWISSPROT KOG KEGG GO PRG anno-union

annotation numbers 86,196 48,724 37,008 13,414 40,543 10,969 86,862

annotation ratio (%) 54.23 30.65 23.28 8.44 25.51 6.90 54.65

https://doi.org/10.1371/journal.pone.0220089.t002

Fig 4. Histogram of GO categories of unigenes of CS-Ae. biuncialis 2Mb disomic addition line TA7733.

https://doi.org/10.1371/journal.pone.0220089.g004
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hormone signal transduction (23, 5.76%), flavonoid biosynthesis (15, 3.76%), stilbenoid, dia-

rylheptanoid and gingerol biosynthesis (14, 3.51%) and MAPK signaling pathway-plant (14,

3.51%), then followed by glutathione metabolism (13, 3.26%), protein processing in endoplas-

mic reticulum (13, 3.26%), and metabolism of xenobiotics by cytochrome P450 (12, 3.00%).

These annotations provided valuable clues in the investigation of the specific processes and

identification of the genes involved in powdery mildew resistance conferred by Ae. biuncialis
2Mb chromosome.

Screening and verification of disease resistance gene of chromosome 2Mb

specificity

Based on transcriptome data analysis, 7,278 unigenes were uniquely expressed in TA7733.

Only 295 of 7,278 unigenes were annotated as putative R-genes by Blastx alignment against the

PRG and NCBI databases. However, of 295 R-genes sequences when blastn searched against

CS Ref Seq v1.0, only 61 (20.68%) R-genes mapped to wheat homoeologous group 2, and the

remaining 234 (79.32%) R-genes to none of the homoeologous group 2 chromosome of wheat.

In order to verify whether these 61 R genes which had an orthologous copy on wheat homo-

eologous group 2 were derived from Ae. biuncialis chromosome 2Mb, a total of 61 sets of PCR

primer pairs were designed based on transcriptome sequences of these R genes. PCR amplifi-

cation of gDNA of CS and TA7733 confirmed 40 R genes to be specific to chromosome 2Mb,

which producing unique amplification in CS-Ae. biuncialis 2Mb disomic addition line TA7733

Fig 5. Clusters of KEGG functional classifications of unigenes of CS-Ae. biuncialis 2Mb disomic addition line TA7733.

https://doi.org/10.1371/journal.pone.0220089.g005
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(S1 Fig and S4 Table). So these 40 R genes were considered as putative candidate genes

involved in powdery mildew resistance conferred by Ae. biuncialis 2Mb chromosome.

Chromosome structure variation such as translocation occurs during biological evolution

process, whether it occurred in wheat or its wild relatives, will lead to the changes of homoeo-

logous groups. Among the remaining 234 putative R genes of TA7733 specificity which were

mapped to none of the homoeologous group 2 chromosome, additional 13 R genes were veri-

fied to be also chromosome 2Mb specific by PCR analysis using primer pairs designed based

on their transcriptome sequences (S1 Fig and S4 Table). These 13 R genes were also considered

as candidate genes involved in powdery mildew resistance conferred by Ae. biuncialis 2Mb

chromosome, which adding the number of candidate R genes of 2Mb specificity to a total of 53

(Tables 3 and S5 and S6).

Alignment of these 53 R genes to PRG database assigned 33 putative genes, of which 14 R

genes were in CNL class which contains a predicted coiled-coil (CC) structures, a central

nucleotide-binding (NB) subdomain and a leucine-rich repeat (LRR) domain, 12 in NL class

containing NBS and LRR domains, but lack of CC domain, five in class RLP which contains

leucine-rich receptor-like repeat, a transmembrane region of 25AA, and a short cytoplasmic

region, each one for TNL class which contains a central NB subdomain, a LRR domain, a

interleukin-1 receptor (1L-1R) domain, and N class only containing NBS domain (Table 4).

The remaining 20 putative R genes aligned to NCBI database, were predicted encoding protein

kinase, disease resistance protein RGA, disease resistance protein RP and cytochrome P450,

respectively.

Comparative mapping was carried out by using MapDraw software based on alignment of

sequences of these 53 R genes of Ae. biuncialis chromosome 2Mb specificity with those in CS

Ref Seq v1.0 (Fig 6). The maps showed that 21, 16 and three R genes were located to the termi-

nal of the long arms and the short arms, and close to the centromeres of wheat homoeologous

group 2 chromosomes, respectively. Whereas the remaining 13 R genes were mapped to none-

homoeologous group 2, which included wheat chromosomes 3B, 4A, 5B, 6A, 6B, 7B and 7D

(Fig 6).

Discussion

Development of resistant wheat varieties is the most important and environment-friendly way

to control Bgt-caused damages. The genes with broad spectrum and durability resistance make

them highly valuable in wheat breeding programs [29]. Wild relatives of common wheat har-

bored considerable genetic diversity for powdery mildew resistance. For example, the wild rel-

atives of common wheat, Secale cereale, Dasypyrum villosum and Ae. searsii conferred

powdery mildew resistance gene Pm7, PmJZHM2RL, Pm62 and Pm57 from homoeologous

group 2 [38, 42–44]. In this study, resistance assay by using 15 Bgt isolates collecting from dif-

ferent regions in China, verified that Ae. biuncialis 2Mb chromosome in TA7733 conferred

broad-spectrum resistance to powdery mildew of wheat. Currently no any other catalogued

Pm genes were reported to be derived from Ae. biuncialis homoeologous group 2. Therefore

the resistance gene(s) on Ae. biuncialis 2Mb chromosome should be a new Pm gene(s).

Previous studies have generally focused on the significantly differentially expressed genes in

interactions between plant and pathogens to explore disease resistance-related genes by tran-

scriptome sequencing [45–47]. However, it was reported that expressions of some cloned

genes of disease resistance in plants were not significantly up-regulated after pathogens infec-

tion. For example, Zou et al. (2017) reported that the transcription levels of Pm60, a map-

based cloned powdery mildew gene, showed no significant differences at various time points

after Bgt E09 infection based on qRT-PCR analysis [9]. Li et al. (2017) also discovered that the
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Table 3. The functions of 53 disease resistance gene candidates from Ae. biuncialis chromosome 2Mb.

Unigene IDs Gene annotation Expression

regulation

Similarity to wheat

homoeologous group

CL84424Contig1a Cysteine-rich receptor-like protein kinase 26 [Ae. tauschii] unregulated 83% (2B)

CL93721Contig1a G-type lectin S-receptor-like serine/threonine-protein kinase At1g11300 [Hordeum
vulgare]

unregulated 90% (2B)

CL89447Contig1b LRR and NB-ARC domains-containing disease resistance protein (best arabidopsis hit);

NBS-LRR disease resistance protein, putative, expressed (best rice hit) (CNL)

unregulated 82% (2A)

CL90029Contig1b NBS-LRR disease resistance protein-like protein (NBS-LRR1) [H. vulgare] (CNL) unregulated 88% (2B)

CL88613Contig1a Predicted: disease resistance protein RGA2-like [Brachypodium distachyon] unregulated 86% (2D)

CL96221Contig1a Cysteine-rich receptor-like protein kinase 10 [T. urartu] unregulated 79% (2B)

CL106750Contig1b Putative disease resistance protein RGA1 [Ae. tauschii] (CNL) unregulated 82% (2A)

CL113949Contig1a Putative disease resistance protein RGA1 [Ae. tauschii] unregulated 78% (2B)

CL91742Contig1b (CNL) unregulated 78% (2B)

CL116612Contig1b Putative disease resistance RPP13-like protein 1 [T. urartu] (CNL) unregulated 89% (2B)

CL82670Contig1a Cytochrome P450 71D7 [Ae. tauschii] unregulated 72% (2A)

CL93169Contig1b NB-ARC domain-containing disease resistance protein (best arabidopsis hit); RGH1A,

putative, expressed (best rice hit) (NL)

unregulated 79% (2B)

CL108886Contig1b LRR and NB-ARC domains-containing disease resistance protein (best arabidopsis hit);

NBS-LRR disease resistance protein, putative, expressed (best rice hit) (CNL)

unregulated 85% (2B)

comp19533_c0_seq1_6b LRR and NB-ARC domains-containing disease resistance protein (best arabidopsis hit);

NBS-LRR disease resistance protein, putative, expressed (best rice hit) (CNL)

unregulated 88% (2B)

CL90483Contig1b Putative disease resistance RPP13-like protein 1 [T. urartu] (NL) unregulated 83% (2A)

CL85355Contig1a Disease resistance protein RPM1 [T. urartu] unregulated 80% (2D)

CL80063Contig1b Leucine-rich repeat protein kinase family protein (best arabidopsis hit) (RLP) unregulated 80% (2D)

CL66003Contig1b Putative disease resistance protein RGA4 [Ae. tauschii] (NL) unregulated 76% (2B)

CL119404Contig1b Putative disease resistance RPP13-like protein 1 [Ae. tauschii] (CNL) unregulated 88% (2D)

CL113652Contig1b Predicted: putative disease resistance RPP13-like protein 3 (LOC109731753) [Ae.

tauschii] (NL)

unregulated 88% (2D)

CL91022Contig1a Lectin-domain containing receptor kinase A4.3 [Ae. tauschii] unregulated 78% (2B)

CL85258Contig1a Predicted: G-type lectin S-receptor-like serine/threonine-protein kinase B120

[Brachypodium distachyon]

unregulated 77% (2B)

CL105879Contig1b Putative LRR receptor-like serine/threonine-protein kinase [Ae. tauschii] (RLP) unregulated 89% (2D)

CL84846Contig1a Cysteine-rich receptor-like protein kinase 29 [Ae. tauschii] unregulated 90% (2D)

CL67241Contig1b (CNL) unregulated 77% (2A)

CL124Contig7b HOPZ-ACTIVATED RESISTANCE 1 (best arabidopsis hit); Leucine Rich Repeat family

protein, expressed (best rice hit) (NL)

unregulated 85% (2A)

CL89405Contig1a Putative disease resistance protein RGA4 [Ae. tauschii] unregulated 86% (2A)

CL119216Contig1a Putative serine/threonine-protein kinase receptor [Ae. tauschii] unregulated 86% (2B)

CL119539Contig1b (TNL) unregulated 88% (2D)

CL86521Contig1a Putative serine/threonine-protein kinase-like protein CCR3 [Ae. tauschii] unregulated 83% (2D)

CL29910Contig1b Disease resistance protein RGA2 [Ae. tauschii] (NL) unregulated 68% (2A)

CL87530Contig1a Wall-associated receptor kinase 4 [T. urartu] unregulated 78% (2D)

CL114224Contig1b NB-ARC domain-containing disease resistance protein (best arabidopsis hit); NB-ARC

domain containing protein, expressed (best rice hit) (CNL)

unregulated 88% (2B)

CL82700Contig1a Lectin-domain containing receptor kinase A4.3 [Ae. tauschii] unregulated 80% (2B)

comp84147_c0_seq1_6b TSA: Triticum aestivum cultivar Bobwhite isotig02189.flagleaf mRNA sequence (CNL) up-regulated 88% (2D)

CL92547Contig1a Predicted: probable LRR receptor-like serine/threonine-protein kinase At1g05700

(LOC109742478) [Ae. tauschii]
up-regulated 87% (2D)

CL82789Contig1a Putative LRR receptor-like serine/threonine-protein kinase [Ae. tauschii] up-regulated 77% (2A)

CL88277Contig1b Predicted: probable leucine-rich repeat receptor-like protein kinase At1g35710

(LOC109774313) [Ae. tauschii] (RLP)

up-regulated 85% (2B)

(Continued)

Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb

PLOS ONE | https://doi.org/10.1371/journal.pone.0220089 November 11, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0220089


expression levels of broad-spectrum blast resistance gene bsr-d1 in rice were not significantly

up-regulated after blast infection [41]. So, the opportunity to discover disease resistance gene

candidates might be undermined if only significantly regulated genes were chosen. In this

study we explored Bgt-resistance related candidate genes from all specifically expressed R

genes in TA7733 regardless of significance of their expression level changes post vs before Bgt-
infection. After PCR verification by using R gene sequence-based primer sets and integrating

transcriptome sequences blastn against CS Ref Seq v1.0, we finally verified 53 R genes

Table 3. (Continued)

Unigene IDs Gene annotation Expression

regulation

Similarity to wheat

homoeologous group

CL19981Contig2a Putative disease resistance protein RGA3 [Ae. tauschii] down-regulated 80% (2B)

CL75219Contig1a Predicted: putative disease resistance RPP13-like protein 3 (LOC109732887) [Ae.

tauschii]
down-regulated 89% (2D)

CL100654Contig1b NB-ARC domain-containing disease resistance protein (best arabidopsis hit) (NL) unregulated 86% (6B)

CL104996Contig1b (CNL) unregulated 72% (7D)

CL107524Contig1b (NL) unregulated 80% (4A)

CL107607Contig1a Disease resistance protein RGA2 [Ae. tauschii] unregulated 82% (7B)

CL465Contig5b Hordeum vulgare subsp. vulgare mRNA for predicted protein, complete cds, clone:

NIASHv3099I02 (NL)

unregulated 73% (5B)

CL66266Contig1b transmembrane receptors; ATP binding (best arabidopsis hit) (CNL) unregulated 93% (6A)

CL72629Contig1b (N) unregulated 94% (4A)

CL75868Contig1b TSA: Triticum aestivum cultivar Bobwhite isotig02316.flagleaf mRNA sequence (NL) unregulated 81% (6B)

CL86319Contig1b (NL) unregulated 81% (6B)

CL79458Contig1b Hordeum vulgare subsp. vulgare mRNA for predicted protein, complete cds, clone:

NIASHv2142N02 (NL)

unregulated 86% (7D)

comp121700_c0_seq1_5b (CNL) unregulated 94% (3B)

comp80277_c0_seq1_7b PEP1 receptor 1 (best arabidopsis hit); receptor-like protein kinase precursor, putative,

expressed (best rice hit) (RLP)

unregulated 92% (4A)

comp93868_c0_seq1_7b Leucine-rich repeat transmembrane protein kinase protein (best arabidopsis hit);

senescence-induced receptor-like serine/threonine-protein kinase precursor, putative,

expressed (best rice hit) (RLP)

unregulated 88% (3B)

a indicated these R genes were assigned by alignment to NCBI database.
b indicated these R genes were assigned by alignment to PRG database.

https://doi.org/10.1371/journal.pone.0220089.t003

Table 4. The types of 2Mb-derived R genes annotated by alignment against the PRG database.

Types of R genes Expression unchanged Expression up-regulated Total

number percentage (%) number percentage (%) number percentage (%)

CNL 13 39.39 1 3.03 14 42.42

NL 12 36.36 0 0.00 12 36.36

RLP 4 12.12 1 3.03 5 15.15

TNL 1 3.03 0 0.00 1 3.03

N 1 3.03 0 0.00 1 3.03

total 31 93.94 2 6.06 33 100.00

CNL: contains a central nucleotide-binding (NB) subdomain, a leucine rich repeat (LRR) domain, and a predicted coiled-coil (CC) structures. NL: contains NBS and

LRR domains, and lack of CC domain. RLP: contains leucine-rich receptor-like repeat, a transmembrane region of 25AA, and a short cytoplasmic region. TNL: contains

a central NB subdomain, a LRR domain, and a interleukin-1 receptor (1L-1R) domain. N: contains NBS domain only, lack of LRR.

https://doi.org/10.1371/journal.pone.0220089.t004
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Fig 6. Comparative map of 53 R genes of 2Mb specificity based on alignment with CS Ref Seq v1.0.

https://doi.org/10.1371/journal.pone.0220089.g006
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candidates of chromosome 2Mb specificity, which included 47 unregulated, four up-regulated

and two down-regulated genes.

Isolation of plant resistance (R) gene is greatly helpful to breed resistant varieties and eluci-

dates resistance molecular mechanisms. Conventional map-based cloning proved to be a effec-

tive method to clone R genes [45], however, it is time consuming and difficult to fine map R

genes from wild relatives of common wheat due to lack of exchange and recombination

between the alien chromatin and wheat homoeologous counterpart. Of more than 70 R genes

against diverse pathogens currently isolated from various plants by using map-based cloning

[48], nearly three quarters of R genes encoded NBS-LRR protein, which reportedly recognized

pathogens and initiated defense responses subsequently [48]. To date, five out of 89 Pm genes

including Pm2 [49], Pm3 [50], Pm8 [51], Pm21 [28,52] and Pm60 [9], have been cloned, all

these genes encoded CC-NBS-LRR proteins. In this study, 14 out of 53 2Mb-specific R genes

were predicted to encode CC-NBS-LRR protein. These 14 R genes should be considered as the

most promising candidate genes for further isolating and cloning Pm genes carried by Ae.

biuncialis chromosome 2Mb.

GISH is a popular visual method to identify alien chromosome or chromatin in wheat back-

ground. Whereas GISH is expensive and time-consuming especially used to screen a large

population derived from distant crossing between wheat and its wild relatives [53]. In contrast,

molecular markers are not affected by environmental conditions, tissue or developmental

stage and gene expression, and possess high genetic polymorphism [54,55]. So the develop-

ment and application of molecular markers have been considered as new and low-cost ways to

quickly identify alien chromosomes or chromatin. High-throughput RNA-seq technology can

generate large amounts of transcriptome sequences and has been widely used to develop

molecular markers specific to chromosomes of wild relatives of wheat, especially those with

limited genomic sequence references. For example, Li et al. (2017) developed 25 D. villosum
6V#4S-specifc markers using transcriptome data [56]. Wang et al. (2018) developed 134 Ae.

longissima chromosome-specific markers by RNA-seq [30]. Li et al. (2019) developed 76

molecular markers specific to the chromosome 1V to 7V of D. villosum#4 based on transcrip-

tome data [31]. Furthermore, the transcription sequences were highly conserved and might be

associated with the genes that related to a definite trait [57]. Therefore, the markers developed

by transcriptome sequencing will accelerate the identification of candidate functional genes,

and increase the efficiency of marker-assisted selection [57,58]. In this study, 53 functional

molecular markers of R genes based on transcriptome data analyses were verified to be specific

to Ae. biuncialis chromosome 2Mb. These markers will be useful to assist the transfer resistance

gene(s) from 2Mb into common wheat by inducing CS-Ae. biuncialis 2Mb homoeologous

recombination for wheat disease breeding in the future.

Conclusions

In summary, powdery mildew resistance gene(s) on Ae. biuncialis chromosome 2Mb was veri-

fied to be board-spectrum in this study. It could be a valuable disease-resistance resource for

wheat breeding programs. Fifty-three disease resistance gene candidates of 2Mb specificity,

which were selected based on transcriptome sequencing analyses, will be greatly helpful to fur-

ther isolate and clone Pm gene(s) derived from chromosome 2Mb and provide the insights

into molecular mechanism of 2Mb-conferred powdery mildew resistance. Furthermore, 53 R

gene sequence-based functional molecular markers of 2Mb specificity in this study will facili-

tate the transfer of resistance gene(s) from 2Mb to common wheat by inducing CS-Ae. biuncia-
lis homoeologous recombination.
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Supporting information

S1 Fig. Amplification patterns of 53 candidate Ae. biuncialis chromosome 2Mb-specific

primers. (M) 100 bp DNA Ladder. (1, 3) CS. (2, 4) TA7733. (A) CL119404Contig1. (B)

CL88277Contig1. (C) CL82670Contig1. (D) 82789Contig1. (E) CL82700Contig1. (F)

CL85355Contig1. (G) CL66003Contig1. (H) CL89405Contig1. (I) CL106750Contig1. (J)

CL119216Contig1. (K) CL19981Contig2. (L) CL93721Contig1. (M) CL84424Contig1. (N)

CL88613Contig1. (O) CL91022Contig1. (P) 96221Contig1. (Q) comp19533_c0_seq1_6. (R)

CL85258Contig1. (S) CL113949Contig1. (T) CL86521Contig1. (U) CL105879Contig1. (V)

CL90029Contig1. (W) CL84846Contig2. (X) CL87530Contig1. (Y) CL29910Contig1. (Z)

CL92547Contig1. (AA) CL75219Contig1. (AB) CL108886Contig1. (AC) CL113652Contig1.

(AD) CL80063Contig1. (AE) CL89447Contig1. (AF) CL93169Contig1. (AG) CL114224Con-

tig1. (AH) CL116612Contig1. (AI) CL67241Contig1. (AJ) CL119539Contig1. (AK)

CL90483Contig1. (AL) CL91742Contig1. (AM) comp84147_c0_seq1_6. (AN) CL124Contig7.

(AO) CL100654Contig1. (AP) CL104996Contig1. (AQ) CL107524Contig1. (AR)

CL107607Contig1. (AS) CL465Contig5. (AT) CL66266Contig1. (AU) CL72629Contig1. (AV)

CL75868Contig1. (AW) CL86319Contig1. (AX) CL79458Contig1. (AY) comp121700_c0_-

seq1_5. (AZ) comp80277_c0_seq1_7. (BA) comp93868_c0_seq1_7.

(TIF)

S1 Raw_image. (original image of S1 Fig): Raw images of amplification patterns of 53 can-

didate Ae. biuncialis chromosome 2Mb-specific primers. Lanes: M, 100 bp Ladder DNA

Marker; 1, common wheat CS; 2, CS-Aegilops biuncialis 2Mb disomic addition line TA77333;

3, common wheat CS; 4, CS-Ae. biuncialis 2Mb disomic addition line TA77333. (A)

CL119404Contig1. (B) CL88277Contig1. (C) CL82670Contig1. (D) 82789Contig1. (E)

CL82700Contig1. (F) CL85355Contig1. (G) CL66003Contig1. (H) CL89405Contig1. (I)

CL106750Contig1. (J) CL119216Contig1. (K) CL19981Contig2. (L) CL93721Contig1. (M)

CL84424Contig1. (N) CL88613Contig1. (O) CL91022Contig1. (P) 96221Contig1. (Q)

comp19533_c0_seq1_6. (R) CL85258Contig1. (S) CL113949Contig1. (T) CL86521Contig1.

(U) CL105879Contig1. (V) CL90029Contig1. (W) CL84846Contig2. (X) CL87530Contig1. (Y)

CL29910Contig1. (Z) CL92547Contig1. (AA) CL75219Contig1. (AB) CL108886Contig1. (AC)

CL113652Contig1. (AD) CL80063Contig1. (AE) CL89447Contig1. (AF) CL93169Contig1.

(AG) CL114224Contig1. (AH) CL116612Contig1. (AI) CL67241Contig1. (AJ) CL119539Con-

tig1. (AK) CL90483Contig1. (AL) CL91742Contig1. (AM) comp84147_c0_seq1_6. (AN)

CL124Contig7. (AO) CL100654Contig1. (AP) CL104996Contig1. (AQ) CL107524Contig1.

(AR) CL107607Contig1. (AS) CL465Contig5. (AT) CL66266Contig1. (AU) CL72629Contig1.

(AV) CL75868Contig1. (AW) CL86319Contig1. (AX) CL79458Contig1. (AY)

comp121700_c0_seq1_5. (AZ) comp80277_c0_seq1_7. (BA) comp93868_c0_seq1_7.

(PDF)

S1 Table. Gene ontology of transcriptome of CS-Ae. biuncialis 2Mb disomic addition line

TA7733.

(XLS)

S2 Table. The KEGG pathway classification of transcriptome of CS-Ae. biuncialis 2Mb

disomic addition line TA7733.

(XLS)

S3 Table. KEGG pathway classification of DEGs of CS-Ae. biuncialis 2Mb disomic addition

line TA7733.

(XLS)
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S4 Table. The 53 Ae. biuncialis chromosome 2Mb-specific markers developed in this study

based on unigenes annotated as R genes.

(XLS)

S5 Table. The expression levels of 53 candidate disease resistance genes from Ae. biuncialis
chromosome 2Mb.

(XLS)

S6 Table. The list sequences of 53 candidate disease resistance genes from Ae. biuncialis
chromosome 2Mb.

(XLS)
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