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Identification of an immune‑related 
signature indicating the dedifferentiation 
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Abstract 

Background:  Immune cells account for a large proportion of the tumour microenvironment in anaplastic thyroid 
carcinomas (ATCs). However, the expression pattern of immune-related genes (IRGs) in ATCs is unclear. Our study 
aimed to identify an immune-related signature indicating the dedifferentiation of thyroid cells.

Methods:  We compared the differences in thyroid differentiation score (TDS), infiltration of immune cells and 
enriched pathways between ATCs and papillary thyroid carcinomas (PTCs) or normal thyroid tissues in the Gene 
Expression Omnibus database. Univariate and multivariable Cox analyses were used to screen prognosis-associated 
IRGs in The Cancer Genome Atlas database. After constructing a risk score, we investigated its predictive value 
for differentiation and survival by applying receiver operating characteristic and Kaplan–Meier curves. We further 
explored its associations with important immune checkpoint molecules, infiltrating immune cells and response to 
immunotherapy.

Results:  Compared with PTCs or normal thyroid tissues, ATCs exhibited lower TDS values and higher enrichment 
of immune cells and activation of the inflammatory response. The quantitative analyses and immunohistochemi-
cal staining validated that most ATC cell lines and ATC tissues had higher expression of MMP9 and lower expression 
of SDC2 than normal thyroid samples and PTC. Higher risk scores indicates dedifferentiation and a worse prognosis. 
Additionally, the risk score was positively correlated with the immune checkpoint molecules PDL1, CTLA4, IDO1, and 
HAVCR2 and infiltration of multiple immune cells. Importantly, we found that the samples with higher risk scores 
tended to have a better response to immunotherapy than those with lower scores.

Conclusion:  Our findings indicate that the risk score may not only contribute to the determination of differentiation 
and prognosis of thyroid carcinomas but also help the prediction of immune cells infiltration and immunotherapy 
response.

Keywords:  Dedifferentiation, Anaplastic thyroid carcinoma, Papillary thyroid carcinoma, Immune-related genes, 
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Background
Thyroid carcinoma is a common endocrine malig-
nancy [1]. Among all subtypes, papillary thyroid carci-
noma (PTC) accounts for approximately 90%, and most 
patients can achieve long-term survival after reasonable 
treatments [2]. In contrast, anaplastic thyroid carcinoma 
(ATC) is an undifferentiated tumour that is extremely 
rare and highly aggressive, with a dismal median survival 
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of only 4 months [3]. Conventional systemic treatments, 
including radioiodine therapy, radiotherapy and chemo-
therapy, have a limited effect on ATC, rendering ATC a 
significant clinical challenge [4]. An important hallmark 
of ATC is the deficient expression of thyroid differentia-
tion markers, which partially leads to radioiodine therapy 
failure [5].

The most accepted hypothesis claims that ATC pro-
gresses from PTC through the accumulation of many 
genomic mutations [5, 6]. However, Seoane et al. [7] per-
formed exome sequencing and found very few shared 
trunk alterations between ATC and PTC, leading these 
authors to believe that ATC and PTC evolve indepen-
dently at an early stage of tumour development. This 
finding implies that the clinical management of the two 
tumours should be appropriate for their molecular char-
acteristics, requiring a deep understanding of the undif-
ferentiated feature of ATC.

Recently, extensive studies have revealed the essen-
tial role of the tumour microenvironment (TME) in 
cancer progression and treatment [8, 9]. ATC has been 
reported to be greatly infiltrated by tumour-associated 
macrophages (TAMs) and possesses high levels of M2 
macrophage phenotype markers, which promote tumour 
metastasis [5, 10–12]. Additionally, some immune check-
point inhibitors have shown effects on ATC [13–16], 
prompting us to investigate the role of immune cells or 
immune-related genes (IRGs) in the occurrence and pro-
gression of ATC.

In our study, by exploring the expression patterns 
of IRGs in ATCs, PTCs and normal thyroid tissues in 
the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases, a two-gene risk score 
signature comprising MMP9 and SDC2 with predictive 
power for dedifferentiation and survival was constructed. 
Additionally, significant correlations were found between 
the risk score and important immune checkpoints or 
infiltrating immune cells. Moreover, the risk score was 
found to have a certain predictive value for the immuno-
therapy response.

Materials and methods
Public cohort datasets and preprocessing
We systematically searched for publicly available ATC 
transcriptome datasets. In total, the following four 
cohorts using the same array platform (Affymetrix 
Human Genome U133 Plus 2.0 Array) were gathered 
for this study: GSE33630, GSE29265, GSE65144 and 
GSE76039 [5, 17, 18]. The raw expression data were 
downloaded from the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). The boxplot function in R package 
was used to determine whether the distribution of the 
samples’ expression abundance value is uniform. If not, 

the normalizeBetweenArrays function in the R package 
limma was applied to correct the expression data, which 
were then log2 transformed. When a gene symbol corre-
sponded to multiple probes, we selected the highest value 
as its expression level, and a probe was deleted when it 
was recorded with multiple genes. To enhance the reli-
ability of the validation of the screened genes, we merged 
the GEO datasets mentioned above, and batch effects 
were removed using the R package sva.

We also used transcriptome data and clinical informa-
tion of PTCs from the TCGA database downloaded from 
the UCSC Xena browser (https://​xenab​rowser.​net/​datap​
ages/), and 505 patients with PTC were enrolled in our 
study. Considering the excellent survival outcome in 
most PTC patients, the progression-free interval (PFI) 
was regarded as the preferable indicator of prognosis 
[19].

To investigate the treatment response to immunother-
apy, a dataset of urothelial cancer patients who received 
anti-PD-L1 therapy (IMvigor210 cohort) was acquired 
from the R package IMvigor210CoreBiologies, and a 
dataset of AB1-HA mesothelioma mice treated with anti-
CTLA4 agents (GSE63557) was obtained [20, 21].

To compare the differentiation level among the differ-
ent samples, a list of 16 TDS genes was obtained from 
a published study investigating PTC and served as a 
parameter of thyroid differentiation [22]. We summed 
the 16 genes in each sample to obtain the TDS and then 
separated the PTCs from the TCGA dataset into a low-
differentiated group and a high-differentiated group 
according to the median value.

Collection of immune related data
The stromal score and immune score of each sam-
ple were calculated by the ESTIMATE package in the 
R program [23]. Single sample gene set enrichment 
analysis(ssGSEA), as implemented in the R package 
GSVA, was used to assess the enrichment levels of 29 
immune cells, and a principal component analysis (PCA) 
was applied.

The lists of IRGs were collected from the ImmPort 
web portal (https://​immpo​rt.​org/​shared/​home), which 
contains vast immunology data and resources. Overall, 
1240 IRGs were present in our array and were further 
analysed.

Function and pathway enrichment analysis
A gene annotation enrichment analysis was carried out 
by using the R package clusterProfiler. A gene set enrich-
ment analysis (GSEA) was performed three times in our 
study as follows: one GSEA was performed to compare 
the differences in IRGs between ATCs and normal tissues 
or PTCs in the GSE33630 cohort; the second GSEA was 

https://www.ncbi.nlm.nih.gov/geo/
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https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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performed to identify differentiation-associated immune 
signalling pathways in the TCGA cohort; and the third 
was to analyse the differences between the low-risk-score 
and high-risk-score subtypes in the expression of broad 
hallmark gene sets in the combined GEO cohort [24]. We 
also identified the signalling pathways of the deregulated 
IRGs in ATCs in the GSE33630 cohort by performing 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses.

Cell culture
All cell lines were cultured in DMEM supplemented 
with 10% fetal bovine serum (FBS) (Gibco). The normal 
thyroid follicular epithelial cell line Nthy-ori 3-1 and 
PTC cell line TPC-1 were obtained from the Institute of 
Medical Biology Chinese Academy of Medical Sciences 
(Kunming). The ATC cell lines CAL-62, DRO and 8305C 
were provided by Sun Yat-sen University Cancer Center 
(Guangzhou). All cell lines were authenticated by short 
tandem repeat (STR) sequencing and confirmed to be 
negative of mycoplasma.

qRT‑PCR
The total RNA was isolated from the cells using a Fast-
Pure® Cell/Tissue Total RNA Isolation Kit (Vazyme). 
cDNA synthesis was carried out using HiScript® II Q 
RT SuperMix (Vazyme). qPCR was performed using 
ChamQ™ SYBR® qPCR Master Mix (Vazyme) on an 
Applied Biosystems 7500 system. The reaction procedure 
was performed according to the manufacturer’s instruc-
tions. The sequences of the primers were as follows:

human GAPDH forward: CTC​CTG​CAC​CAC​CAA​
CTG​CT,
human GAPDH reverse: GGG​CCA​TCC​ACA​GTC​
TTC​TG;
human MMP9 forward: CAG​TCC​ACC​CTT​GTG​
CTC​TTC,
human MMP9 reverse: TGC​CAC​CCG​AGT​GTA​
ACC​AT;
human SDC2 forward: TGG​AAA​CCA​CGA​CGC​
TGA​ATA,
human SDC2 reverse: ATA​ACT​CCA​CCA​GCA​ATG​
ACAG.

GAPDH was used as a control, and the fold changes of 
the target genes were calculated by the ΔΔCt method; the 
normalized gene expression was calculated using 2−ΔΔCt.

Immunohistochemical staining
Paraffin-embedded specimens of 11 ATCs, 20 PTCs 
and 20 normal thyroid tissues were sectioned at 4  µm 
and incubated at 70  °C for 2  h. Xylene was used to 

deparaffinize the samples, and then, the sections were 
hydrated in gradient ethanol. Antigen retrieval was car-
ried out using sodium citrate and a pressure cooker for 
boiling for 2 min. After washing with phosphate-buffered 
saline (PBS), the slides were incubated with the following 
primary antibodies overnight: anti-SDC2 (Proteintech, 
1:300), anti-MMP9 (Cell Signaling Technology, 1:100), 
anti-TG (Proteintech, 1:200), anti-PLAUR (Protein-
tech, 1:100) and anti-FGFR2 (Cell Signaling Technology, 
1:100). After incubating with the appropriate second-
ary antibodies, the samples were reacted with DAB rea-
gents. Immunohistochemistry (IHC) score included the 
staining intensity and the percentage of positive stain-
ing. The expression intensity was scored as follows: 0 
(no), 1 (weak), 2 (moderate), 3 (strong). The percentage 
was scored as follows: 0 (0–5%), 1 (6–25%), 2 (26–50%), 
3 (51–75%), 4 (75–100%). The final IHC score was calcu-
lated by multiplying the intensity score by the proportion 
score. The details of the IHC score for each protein are 
provided in Additional file 5: Table S2.

Statistical analysis
The analysis of the count data of differentially expressed 
IRGs was performed by the R package limma in the 
GEO cohorts and IMvigor210 cohort and the R pack-
age DESeq2 in TCGA cohort. The Benjamini–Hochberg 
method was applied to adjust the p-value based on the 
false discovery rate (FDR). The eBayes method in the R 
package was used to identify the differentially expressed 
genes (DEGs), with an FDR < 0.05 and fold change ≥ 2 as 
screening conditions. The R packages VennDiagram and 
Heatmap were used to draw Venn diagrams and heat-
maps. ggplot2 was used to generate volcano plots and 
other plots.

The Wilcoxon test (also called the Mann–Whitney U 
test) was applied to compare the continuous variables 
between the two groups. For comparisons among three 
groups, the Kruskal–Wallis test was used. To evaluate the 
association between the clinicopathological character-
istics or IRGs and PFI in the TCGA cohort, a univariate 
Cox proportional hazard model was used. A multivari-
able Cox regression model was further conducted to 
identify the independent prognostic factors. Both the 
hazard ratio (HR) and 95% confidence interval (CI) were 
calculated.

To investigate the role of selected IRGs, a risk score 
model was constructed by integrating the regression 
coefficient derived from the multivariable Cox regres-
sion analysis and the expression data of screened IRGs 
as follows: risk score = ∑(Coefi * Expi) [25]. Based on the 
median value, the samples from different cohorts were 
dichotomized into a low-risk score group and a high-
risk score group. Correlation analyses were conducting 
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by using Pearson’s test in the R program. Receiver oper-
ating characteristic (ROC) analyses were carried out to 
calculate the area under the curve (AUC) to assess the 
accuracy of the risk score in predicting dedifferentia-
tion. Kaplan–Meier curves of the PFI were built, and the 
log-rank test was applied to determine the differences 
using SPSS software. The distributions of the response to 
immunotherapy in the low-risk score group and high-risk 
score group were evaluated with a chi-square test or two-
sided Fisher’s exact test.

All graphic representations and statistical analyses 
were performed by using R software (version 3.6.1), 
GraphPad Prism (version 7.0) and SPSS software (version 
21.0). p < 0.05 was considered statistically significant in all 
analyses.

Results
ATCs exhibit lower TDS values and higher infiltration levels 
of most immune cells than PTCs and normal thyroid tissues
An overview of our study is shown in Fig.  1. We ini-
tially compared the TDS levels among ATCs, PTCs 
and normal thyroid tissues in the GSE33630 cohort. 
As expected, ATCs had obviously lower TDS values 
than the control samples of all genes (Fig. 2a, b). It has 
been reported that the immune landscape is correlated 
with TDS in PTCs [26]. The ESTIMATE algorithm and 
GSVA package in R program were applied to evaluate 

the differences in immune-related signatures and 
showed that ATCs had higher stromal scores, immune 
scores and enrichment of most immune cells than the 
control groups (Fig.  2c, d). Moreover, ATCs were well 
discriminated from PTCs or normal tissues with the 
PCA algorithm (Fig. 2e).

The inflammatory response is obviously activated in ATCs
To further explore the differences in IRGs between 
ATCs and PTCs or normal thyroid tissues in the 
GSE33630 cohort, the powerful web tool ImmPort was 
used, and in total, 1240 IRGs were present in our array. 
The volcano plots of GSEA displayed the top five path-
ways significantly activated in ATCs compared with 
normal tissues or PTCs; among these pathways, the 
inflammatory response was the most obvious (Fig.  3a, 
b, Additional file 1: Figure S1). In total, 207 IRGs were 
found to be commonly deregulated in ATCs compared 
with both normal tissues and PTCs (Fig. 3c, d). The GO 
and KEGG enrichment analyses indicated significant 
activation of immune-associated signalling pathways 
in ATCs (Fig.  3e, f ). To further screen the deregu-
lated IRGs, another GEO cohort, i.e., GSE29265, was 
included, and in total, 68 genes were screened and vali-
dated in the two cohorts (Fig. 4a–c).

Fig. 1  Flow chart of the analysis strategy of our study
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Fig. 2  Comparison of TDS and immune cell infiltration among ATCs, PTCs and normal tissues. a, b Based on a 16-gene TDS signature, ATCs had 
obviously lower TDS values than PTCs or normal thyroid tissues in all genes as shown in the heatmap (a) and boxplot (b) (Kruskal–Wallis test). c 
Comparison of immune scores and stromal scores between ATCs and PTCs or normal tissues (Wilcoxon test). d The infiltration level of most immune 
cells in ATCs was higher than that in PTCs and normal tissues. e PCA discriminated ATCs from PTCs and normal tissues (Kruskal–Wallis test). ns not 
significant; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001
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Identification of differentiation‑associated and prognostic 
IRGs
To further analyse the differentiation-associated IRGs, 
we enrolled 505 PTC samples with complete clinical 
annotations and transcriptome data from TCGA data-
base, which were then divided into the low-differenti-
ated (low TDS) group and the high-differentiated (high 

TDS) group by the median TDS value. The volcano plot 
based on a GSEA of 1240 IRGs indicated that com-
pared with the high-differentiated group, the interferon 
gamma response (NES = 2.15, p = 0.003) and inflamma-
tory response (NES = 2.10, p = 0.003) were significantly 
enriched in the low-differentiated group (Additional 
file 2: Figure S2). Considering that patients with ATC lack 

Fig. 3  Exploration of the function of IRGs in ATCs, PTCs and normal tissues. a, b GSEA of IRGs showed the top 5 activated pathways (left panels) 
in ATCs compared with normal tissues (a) and PTCs (b); the inflammatory response (right panels) was the most enriched. c Volcano plots of 
differentially expressed IRGs between ATCs and normal tissues (left panel) or PTCs (right panel). d Venn diagram showing the consistently 
deregulated genes between ATCs and PTCs or normal tissues in the GSE33630 cohort. e, f GO (e) and KEGG (f) enrichment analyses of 207 
commonly deregulated IRGs
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clinical information in the GEO database, we focused on 
the low-differentiated PTCs in TCGA cohort to identify 
the prognostic IRGs. First, the clinical characteristics 
and 68 IRGs were included in a univariate Cox analysis. 
Stage III/IV, T3/T4, distant metastasis and five genes, 
including matrix metalloproteinase-9 (MMP9), fibroblast 
growth factor receptor 2 (FGFR2), plasminogen activa-
tor, urokinase receptor (PLAUR), syndecan-2 (SDC2) 
and thyroglobulin (TG), were identified as risk factors 
(Additional file 3: Table S1). Then, these risk factors were 
included in a multivariable Cox analysis. Considering 

Fig. 4  Identification of deregulated IRGs in ATCs compared with PTCs and normal tissues. a Overlapping analyses screened 68 deregulated IRGs. b, 
c Heatmaps of the expression data of 68 IRGs in the GSE33630 (b) and GSE29265 (c) cohorts

Table 1  Multivariable analysis showed independent prognosis-
associated IRGs for low-differentiated PTCs in TCGA database

IRGs were evaluated as continuous variables in multivariable Cox regression 
analysis

Variable Multivariable analysis

Coefficient HR 95% CI p

SDC2 − 0.488 0.614 0.391–0.962 0.033

MMP9 0.292 1.339 1.076–1.666 0.009
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the mutual effect among IRGs and clinical character-
istics, only SDC2 (HR = 0.614; p = 0.033) and MMP9 
(HR = 1.339; p = 0.009) were identified as independent 
prognostic IRGs of low-differentiated PTCs (Table 1).

Then, we assessed the expression levels of MMP9 and 
SDC2 in a combined GEO cohort comprising 52 ATCs, 
78 normal tissues and 69 PTCs from the same chip plat-
form and TCGA cohort grouped by TDS level. As shown 

in Fig. 5a, b, the expression of MMP9 in ATCs and low-
differentiated PTCs was significantly higher than that in 
normal tissues and high-differentiated PTCs, whereas 
SDC2 displayed the opposite expression profile. In addi-
tion, an immune-related risk score was constructed and 
was obviously higher in ATCs and low-differentiated 
PTCs (Fig. 5c). qPCR analyses further indicated that the 
ATC cell lines CAL-62, DRO and 8305C possessed lower 

Fig. 5  Verification the expression of MMP9 and SDC2. a, b Expression of MMP9 and SDC2 in the combined GEO cohort (a) and TCGA cohort (b) 
(Wilcoxon test). c Comparison of risk scores in the combined GEO cohort (left) and TCGA cohort (right) (Wilcoxon test). d Relative expression of 
MMP9 and SDC2 in the Nthy-ori 3-1, TPC-1, CAL-62, DRO, and 8305C cell lines. e Representative sections of normal thyroid, PTC and ATC tissues. The 
expression of SDC2 and MMP9 was detected by using immunohistochemistry (IHC)
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SDC2 levels; DRO and 8305C had higher MMP9 levels 
than the PTC cell line TPC-1 and normal thyroid cell line 
Nthy-ori 3-1 (Fig. 5d). Moreover, the immunohistochem-
ical staining in normal thyroid, PTC and ATC tissues 
showed higher expression of MMP9 and lower expres-
sion of SDC2 in ATC patients (Fig. 5e; Additional file 4: 
Figure S3; Additional file 5: Table S2).

We proceeded to analyse the ability of the risk score 
to predict dedifferentiation. The correlation analyses 
showed that the risk score was negatively associated 
with TDS in both the combined GEO cohort and TCGA 
cohort (Fig.  6a). Consistent with this finding, the ROC 
curves confirmed the robust predictive value in both 
cohorts, and the AUC values were 0.842 (p < 0.001) and 
0.707 (p < 0.001) (Fig.  6b). Moreover, we estimated the 
prognostic value of a single gene and the two-gene risk 
score. The Kaplan–Meier curves (Fig.  6c) indicated that 
the PTC patients with high MMP9 (HR = 2.28; p = 0.005), 
low SDC2 (HR = 2.47; p = 0.002) or a high risk score 
(HR = 3.05; p = 0.0003) had a significantly shorter PFI 
than the other patients in the TCGA cohort, indicating 

the potential of the risk score to serve as a prognostic 
biomarker.

The two‑gene risk score is closely correlated 
with immune‑related signatures
Immunotherapy has revolutionized the treatment of many 
patients with cancer. However, it has been found that some 
negative costimulatory molecules and immunosuppres-
sive cytokines could promote immune escape in tumour 
cells by inhibiting immune responses [27, 28], stimulating 
the appearance of immune checkpoint therapy. We sought 
to explore the role of the two-gene risk score in immune-
related signatures. First, a markedly positive correlation was 
found between the risk score and important immune check-
point molecules, including programmed cell death ligand 
1 (PDL1; also known as CD274), cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), indoleamine 2,3-dioxygenase 
1 (IDO1) and hepatitis A virus cellular receptor 2 (HAVCR2; 
also known as TIM3) in both the combined GEO cohort 
and TCGA cohort (Fig.  7a, b). Moreover, we found that 
most immune cells displayed higher enrichment score in 

Fig. 6  The MMP9 and SDC2 risk score predicts dedifferentiation and a poor prognosis. a Scatter plots showing a significant correlation between 
the risk score and the TDS in the combined GEO cohort and TCGA cohort (Pearson test). b ROC curves indicating the power of the risk score in 
predicting dedifferentiation in the combined GEO cohort and TCGA cohort. c Kaplan–Meier curves of the PFI of 505 PTC patients in TCGA cohort 
grouped by MMP9 expression, SDC2 expression and risk score (log-rank test)
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Fig. 7  Exploring the role of the risk score in immune-related signatures. a, b Plots indicating the correlations between the risk score and the 
immune checkpoint molecules CD274 (PDL1), CTLA4, IDO1, and HAVCR2 (TIM3) in the combined GEO cohort (a) and TCGA cohort (b) (Pearson 
test). c Comparison of the infiltration of immune cells between the low risk score and high risk score samples in the combined GEO cohort 
(Wilcoxon test). d The association between the risk score and the infiltration of immune cells in the combined GEO cohort (Pearson test). e 
Response to anti-PD-L1 immunotherapy in the low- and high-risk-score groups in the IMvigor210 cohort (chi-square test, p = 0.003) (CR complete 
response, PR partial response, SD stable disease, PD progressive disease). f Distribution of the risk score among patients with different anti-PD-L1 
treatment responses in the IMvigor210 cohort (Wilcoxon test). g Response to anti-CTLA4 immunotherapy in the low- and high-risk-score groups 
in the GSE63557 cohort (two-sided Fisher’s exact test, p = 0.18). h Distribution of the risk score among mice with different anti-CTLA4 treatment 
responses in the GSE63557 cohort (Wilcoxon test)
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the high-risk score group than the low-risk score group in 
the combined GEO cohort. The correlation analysis further 
confirmed the close relationship between the risk score and 
the infiltration of most immune cell types (Fig. 7c, d).

Emerging studies support the crucial role of the TME in 
the response to immunotherapy [9, 29]. Moreover, stud-
ies have increasingly demonstrated that some immune 
checkpoint inhibitors, including the PD-1 inhibitors spar-
talizumab and pembrolizumab and the PD-L1 inhibitor 
nivolumab [4, 13–16], are effective in ATCs as salvage ther-
apy. However, not all ATC patients could benefit from such 
treatment. Considering the positive correlation between 
the risk score and the expression of immune checkpoint 
molecules and the infiltration of immune cells, our study 
aimed to investigate the role of the risk score in the immu-
notherapy response of ATCs. Therefore, we first sought to 
obtain an immunotherapy database of ATC patients. How-
ever, after searching published immunotherapy datasets, no 
such cohort with complete prognosis data and expression 
profiles was obtained. As a complement, the IMvigor210 
cohort and GSE63557 cohort, a dataset of urothelial cancer 
patients who received an anti-PD-L1 agent and a dataset 
of AB1-HA mesothelioma tumour mice treated with anti-
CTLA4 therapy were used to investigate the value of the 
two-gene risk score in predicting the response to immu-
notherapy [20, 21]. We found that patients with a high risk 
score tended to have a better response to immunotherapy 
than those with a low risk score in the IMvigor210 cohort 
(p = 0.003; Fig.  7e). The number of mice responding to 
anti-CTLA4 agents was higher in the GSE63557 cohort, 
but the difference was not statistically significant (p = 0.18; 
Fig. 7g). Additionally, the risk score in patients with com-
plete response (CR) to anti-PD-L1 therapy was higher than 
that in patients with progressive disease (PD) (p < 0.05) 
(Fig. 7f). Similarly, the risk score in mice that responded to 
anti-CTLA4 therapy was slightly higher than that in mice 
that did not respond (p < 0.05) (Fig. 7h).

Molecular basis of the immune‑related risk score signature
We further explored the differences between the high-
risk score and low-risk score samples in the combined 
GEO cohort. Among the distinct signalling pathways 
enriched in the high-risk score group, the epithelial–
mesenchymal transition, TNFα signalling, and some 
common immune-related signalling pathways, including 
the IL-6/JAK/STAT3 pathway, interferon alpha response, 
interferon gamma response and inflammatory response, 
obtained high NES values (Additional file 6: Figure S4).

Discussion
Focusing on the mechanism of dedifferentiation pro-
motes a better understanding of the high invasiveness 
of ATCs. Many previous studies have found that some 

molecules and pathways, such as STRN-ALK, P53, den-
drogenin A, survivin and certain long noncoding RNAs, 
are involved in the dedifferentiation process of thyroid 
cells [30–33]. Indeed, publicly available resources, such 
as TCGA and GEO datasets, provide substantial clini-
cal samples that enable more reliable and comprehen-
sive studies. Thyroid carcinoma is the most common 
endocrine-related malignancy. Ma et  al. [25] identi-
fied a metabolic gene signature indicative of the dedi-
fferentiation of PTCs through transcriptome analyses. 
Similarly, Suh et  al. [34] found that glucose metabolic 
profiles were correlated with differentiation in thyroid 
carcinoma. In addition, several researchers indicated 
that immune cells, especially macrophages, account for 
a large proportion of the tumour microenvironment in 
anaplastic thyroid carcinomas (ATCs) [12]. However, 
current studies investigating immune-related signa-
tures in thyroid carcinoma by analysing public data-
bases mainly focused on PTCs [26, 35, 36]. Therefore, 
we included ATC samples from the GEO database to 
identify an immune-related signature indicating the 
dedifferentiation of thyroid cells.

In this study, we initially focused on an investigation of 
IRGs in ATCs in comparison with those in normal tissues 
and PTCs. Through a joint analysis with TCGA cohort, 
two genes, namely, MMP9 and SDC2, were identified. 
MMP9 is a well-known oncogenic gene, and the enzyme 
encoded by this gene is involved in multiple processes 
in tumour progression, such as cancer proliferation, 
angiogenesis and metastasis [37–39]. Moreover, MMP9 
has been reported to serve as an important inflamma-
tory mediator in angiocardiopathy, infectious diseases 
and cancer [40–43]. The syndecan-2 protein, which is 
encoded by the SDC2 gene, is a type I transmembrane 
proteoglycan. The role of SDC2 depends on the type of 
tumour. It acts as an oncogene and contributes to disease 
progression in colon cancer, breast cancer and mela-
noma, while it serves as a metastasis suppressor in Lewis 
lung carcinoma [44–46]. Moreover, SDC2 has been 
found to be positively associated with the differentiation 
level and prognosis of neuroendocrine tumours, which is 
consistent with our findings [47].

By constructing a risk model based on univariate and 
multivariable Cox analyses, a significantly elevated risk 
score was observed in ATCs and low-differentiated PTCs. 
Notably, by performing a ROC analysis, we demonstrated 
that the risk score could distinguish the differentia-
tion level in both the combined GEO cohort and TCGA 
cohort. By applying Kaplan–Meier curves, we found that 
the patients with high risk scores displayed a worse PFI 
than those with low risk scores. These findings suggest 
that the risk score could serve as an indicator of dedif-
ferentiation and could contribute to the risk stratification 
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and prediction of response to radioiodine therapy in thy-
roid carcinoma patients and act as a powerful biomarker 
for prognostic prediction.

Currently, immune checkpoint inhibitors, such as 
anti-PD-L1 and anti-CTLA-4 antibodies, elicit dura-
ble responses in some solid tumours, including ATCs 
[13–16]. In this study, we discovered a positive cor-
relation between the risk score and the expression of 
important immune checkpoints or the enrichment of 
multiple immune cell types. Interestingly, by analysing 
two cohorts of patients with metastatic urothelial can-
cer who received anti-PD-L1 treatment (IMvigor210) 
and a mouse model treated with anti-CTLA-4 agent 
(GSE63557) [20, 21], we surprisingly observed that the 
samples with higher risk scores tended to have a better 
response to immune checkpoint therapy than the sam-
ples with low risk scores regardless of the weak statistical 
significance. This finding indicates that the risk score may 
not only contribute to the determination of differentia-
tion and prognosis of thyroid cancer but also could play 
a role in predicting the infiltration of immune cells in the 
TME and the response to immunotherapy.

However, the current study has some limitations and 
drawbacks. First, due to the lack of survival information 
of the ATC patients in the GEO cohorts, the two risk-
related genes were screened only in low-differentiated 
PTCs in TCGA cohort; thus, these results cannot com-
pletely reflect the results of ATCs. However, the risk 
scores and associations with TDS or immune check-
points were verified in both cohorts. Second, the sample 
size in our study, especially of ATCs, was small; thus, the 
results obtained warrant further investigation. Third, the 
mechanism of the immune-related risk score in dediffer-
entiation is still undiscovered. In the future, we intend to 
carry out in  vitro and in  vivo experiments to verify our 
conclusions and further explore the mechanism of dedif-
ferentiation mediated by the identified risk-related genes. 
To date, multiple antineoplastic drugs have been applied 
in ATCs [4], but reports of the efficacy of MMP9 inhibi-
tors are lacking. Based on our findings, we speculate that 
MMP9 inhibitors alone or in combination with immuno-
therapy may be effective in the management of ATCs, but 
this hypothesis requires further verification.

Conclusions
Our findings indicate the potential value of an 
immune-related risk score composed of MMP9 and 
SDC2 for predicting dedifferentiation and survival in 
thyroid carcinoma. The risk score may also help pre-
dict the infiltration of immune cells and the response to 
immunotherapy. Thus, the risk score could be used as 
a powerful biomarker of differentiation and prognosis 

in patients with thyroid carcinoma. Additionally, the 
included risk-related genes could be further explored as 
new therapeutic targets for the treatment of ATCs.
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