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Integrated omics in Drosophila uncover
a circadian kinome
Chenwei Wang1,4, Ke Shui 1,4, Shanshan Ma1, Shaofeng Lin1, Ying Zhang 1, Bo Wen 2, Wankun Deng1,

Haodong Xu1, Hui Hu1, Anyuan Guo 1, Yu Xue 1,3✉ & Luoying Zhang1,3✉

Most organisms on the earth exhibit circadian rhythms in behavior and physiology, which are

driven by endogenous clocks. Phosphorylation plays a central role in timing the clock, but

how this contributes to overt rhythms is unclear. Here we conduct phosphoproteomics in

conjunction with transcriptomic and proteomic profiling using fly heads. By developing a

pipeline for integrating multi-omics data, we identify 789 (~17%) phosphorylation sites with

circadian oscillations. We predict 27 potential circadian kinases to participate in phosphor-

ylating these sites, including 7 previously known to function in the clock. We screen the

remaining 20 kinases for effects on circadian rhythms and find an additional 3 to be involved

in regulating locomotor rhythm. We re-construct a signal web that includes the 10 circadian

kinases and identify GASKET as a potentially important regulator. Taken together, we

uncover a circadian kinome that potentially shapes the temporal pattern of the entire cir-

cadian molecular landscapes.
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C ircadian clocks drive daily, or circadian rhythms in a
myriad of biological processes. Disruptions of these
rhythms are associated with various diseases and disorders,

such as cancers, metabolic disorders, and mood disorders1.
Underlying the overt rhythms are molecular oscillations at multiple
levels, including cyclic regulations of the transcriptome, proteome,
and post-translational modifications (PTMs)2–5. However, it
remains largely unclear how circadian clocks drive these integrated
rhythms.

The molecular clock consists of a series of transcriptional and
translational feedback loops that are relatively conserved2. In
Drosophila, two transcription factors, CLOCK (CLK) and CYCLE
(CYC) are at the center of the loops. CLK and CYC dimerize and
activate the transcription of period (per) and timeless (tim) via E-
box elements in the genome6. PER and TIM proteins accumulate
in the cytoplasm, form a complex, and enter the nucleus, where
they suppress the transcriptional activities of CLK/CYC and thus
their own transcription. During this process, PTMs influence the
stability and nuclear translocation of PER and TIM, leading
ultimately to their degradation that enables CLK/CYC to start a
new round of transcription, thus completing a cycle2. There are
also a few accessory loops that result in rhythmic transcription of
clk. The time it takes for these feedback loops to operate once is
~24 h, and PTMs, especially phosphorylation, play a central role
in timing the molecular clock6–8. Moreover, rhythmic phos-
phorylation has been suggested to be a fundamental part of the
clock and at the heart of molecular oscillations, as it has been
demonstrated in cyanobacteria and Neurospora that a purely
phosphorylation-based clock is sufficient to drive circadian
cycling9,10.

With the advances in high-throughput mass spectrometry,
time series analysis of proteomics and phosphoproteomics have
been conducted in mouse livers, demonstrating that rhythmic
phosphorylation is not limited to the core clock3–5. About 25% of
all phosphorylation sites (p-sites) in mouse liver exhibit robust
circadian oscillations3. How these oscillations in phosphorylation
are regulated is unknown.

Here, we conduct a multi-omics profiling to measure circadian
oscillations in transcriptomes, proteomes and phosphoproteomes
in fly heads. We develop an efficient pipeline for computationally
integrating circadian multi-omics data (iCMod) to acquire nor-
malized circadian p-sites (NCPs) that are oscillating in a circadian
manner truly owing to rhythmic phosphorylation/depho-
sphorylation events. In total, we quantify 4686 p-sites with high
confidence from wild-type (WT) fly heads, among which 789
(~17%) NCPs characterized from 431 proteins display circadian
oscillation. Most of these rhythms are dampened in mutants
lacking core clock gene per (per0), implicating these rhythms are
driven by the molecular clock. We predict that 27 protein kinases
might be involved in regulating circadian rhythms by pre-
ferentially phosphorylating these NCPs, including seven kinases
already known to play essential roles in the core clock. To validate
our predictions, we test the remaining 20 kinases and discover
gasket (gskt), Downstream of raf1 (Dsor1) and casein kinase I alpha
(CKIalpha) to be participating in determining the period and/or
power of locomotor rhythm. Computational analysis reveals that
these 10 kinases involved in locomotor rhythm may contribute to
global oscillations not only at phosphorylation level, but also at
mRNA and protein levels with GSKT as a potentially critical
regulator of the signaling cascades. We further examine the
function of GSKT within the clockwork and find it acts to reduce
TIM protein but not mRNA level. Taken together, our results
unveil a kinome that is potentially involved in shaping the entire
circadian molecular landscapes, as well as intricate interactions
among the kinases and their substrates that ultimately impinge on
locomotor rhythm.

Results
Quantifying multi-omics data under circadian cycles. To
investigate global phosphorylation in flies, we conducted quanti-
tative proteomics and phosphoproteomics using the Tandem Mass
Tag (TMT) labeling and liquid chromatography-tandem mass
spectrometry (LC-MS/MS) on WT and per0 fly heads collected at
3 h intervals on 2 days under constant darkness (DD) condition
(Fig. 1a). Altogether we identified 61,460 non-phosphorylated
peptides and 12,465 phosphopeptides from 32 samples. The
majority of the peptides (35,280; 57.40%) and phosphopeptides
(8193; 65.73%) could be matched with ≥2 spectral counts, whereas
the average spectral counts were 2.5 and 4.4 for all peptides and
phosphopeptides, respectively (Fig. 1b). We next mapped non-
phosphorylated peptides to their corresponding protein sequences,
and obtained 5998 and 6034 proteins in WT and per0 flies,
respectively (Supplementary Data 1). Only 14.87% (912) of 6134
quantified proteins were assigned with one matched peptide, with
an average number of 8.6 quantified peptides per protein (Fig. 1c).
We also mapped phosphopeptides to full-length protein sequences
and in total obtained 3295 phosphoproteins with 14,946 non-
redundant p-sites from all 32 samples with an average p-site
localization probability of 0.91, including 12,399 p-Ser (82.96%),
2458 p-Thr (16.45%), and 89 p-Tyr (0.60%) sites (Fig. 1d, e and
Supplementary Data 1). We compared the p-sites identified here
with eight public databases, including dbPAF11, dbPTM12, Phos-
pho.ELM13, PHOSIDA14, PhosphoPep15, PhosphoSitePlus16,
SysPTM17, and UniProt18. Only 37.56% p-sites quantified in this
study were annotated and included in at least one phosphorylation
database, whereas up to 9333 p-sites have never been reported
(Fig. 1f). By using two-sided hypergeometric test, the enrichment
analysis of Gene Ontology (GO) terms revealed that proteins
expressed in the head are mainly involved in neurotransmitter
secretion, translation, transport, and splicing, whereas phosphor-
ylation is enriched in pathways that regulate GTPase activity,
olfactory learning, chemical synaptic transmission, and intracel-
lular signaling, as well as protein phosphorylation (Supplementary
Fig. 1a).

To further validate the proteomic and phosphoproteomic data
sets, we conducted transcriptome profiling of WT and per0 fly
heads collected in DD by RNA sequencing (RNA-seq) (Fig. 1a).
Over 9.4 × 108 reads were sequenced in all 32 samples, with an
average of 3.1 × 107 and 2.9 × 107 reads in WT and per0,
respectively (Supplementary Fig. 1b). After reads mapping and
transcript assembly, there are 15,280 and 14,760 mappable
protein-coding genes identified in WT and per0 flies, respectively,
which occupy 70.84% of the fly protein-coding transcriptome
(Supplementary Fig. 1c and Supplementary Data 1). Fragments
Per Kilobase of exon per Million fragments mapped (FPKM)
values were calculated for the quantification of individual mRNAs,
and the average FPKM values are 114 and 118 for WT and per0

flies, respectively (Supplementary Fig. 1d and Supplementary
Data 2). Similar to proteomic data, mRNAs expressed in the head
are also enriched in the splicing process, as well as axon guidance,
development and transcription (Supplementary Fig. 1a).

To ensure data quality, only proteins and p-sites quantified in
all 16 samples of WT or per0 flies were retained (Supplementary
Fig. 1e–g). In total, there are 4537 proteins and 5724 p-sites
quantified in all WT flies, whereas 4561 proteins and 5739 p-sites
were quantified in all per0 samples. The multi-omics measure-
ments show high reproducibility, with Spearman’s rank correla-
tion coefficients of 0.99, 0.95, and 0.85 at mRNA expression,
protein expression, and phosphorylation levels for the two cycles
monitored, respectively (Fig. 1g). After normalization of the
proteomic and phosphoproteomic data (Supplementary Fig. 1h),
we analyzed the correlation among the multi-omics data, and
found the correlation of temporal variation between proteome
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and phosphoproteome is much higher than that between
transcriptome and proteome (Supplementary Figs. 2, 3, 4a and
Supplementary Note 1). These results suggest that phosphoryla-
tion has a major role in regulating the temporal alterations of
protein level.

Employing iCMod for integrating circadian multi-omics data.
In this work, we implemented a pipeline termed iCMod to
integrate circadian multi-omics data, and to accurately predict
mRNAs, proteins and p-sites with circadian oscillation (Fig. 2).
For a protein detected by proteomics/phosphoproteomics analy-
sis, we believe its corresponding mRNA should be readily
detectable in the transcriptomic data. For 16.70% and 16.80% of
quantified proteins from WT and per0 flies, respectively, we
observed that their corresponding mRNAs are expressed at a low
level with FPKM < 1 (Supplementary Fig. 4b). Previous study has
demonstrated that mRNAs with FPKM < 1 cannot be reliably
determined to be expressed19, and excluding weakly expressed
transcripts enhances the reliability of protein identification20.
Therefore, we constructed customized protein sequence databases
using only mRNAs with relatively high expression level (FPKM ≥
1 in at least one sample per batch). Peptides and phosphopeptides

were then identified from proteomic and phosphoproteomic
spectra by searching the reference databases, respectively (Fig. 2
and Supplementary Data 3–5).

We employed ARSER21 to identify genes with circadian
expression from mRNAs with FPKM ≥ 1 detected in at least
one of the 16 samples of WT and per0 flies, respectively. For
proteomic data, the average intensity value of all proteins
was normalized to 1 for each sample. ARSER was subsequently
used to identify proteins that oscillate in abundance. As the
phosphoproteome shows strong positive correlation of temporal
expression with the proteome (Supplementary Fig. 2a), it is
possible that for many p-sites, oscillation of phosphorylation level
is a result of oscillation in protein level. Therefore, we normalized
the phosphoproteomic data by calculating the ratio of raw
phosphorylation abundance vs. raw protein abundance for each
p-site to acquire normalized phosphorylation level. We then
used ARSER to identify NCPs, which reflect true oscillations at
the phosphorylation level (Fig. 2). We adopted a previously
developed tool, Group-based Prediction System 2.1 (GPS 2.1), to
predict site-specific kinase–substrate relations (ssKSRs) for the
p-sites22. This is followed by a two-sided hypergeometric test to
determine protein kinases with substrates enriched for NCPs,
which we referred to as potential circadian kinases.
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Fig. 1 Circadian multi-omics profiling of fly heads. a WT and per0 fly heads were collected at 3 h intervals on 2 days in DD. LC-MS/MS-based proteomics
and phosphoproteomics as well as RNA-seq-based transcriptomics were conducted. An integrative pipeline iCMod was implemented for analyzing the
multi-omics data. NCPs were detected and their corresponding protein kinases were predicted. Locomotor rhythm analysis was employed for validation of
the predicted kinases. b The distributions of raw MS/MS spectral counts of peptides and phosphopeptides quantified from proteomics and
phosphoproteomics data, respectively. c The distribution of peptide numbers quantified from proteomics data. d The number of phosphoproteins, as well
as p-Ser, p-Thr, and p-Tyr residues identified in each sample. e The distribution of the amino-acid residues (left) and the assigned localization probability
(right) for all detected p-sites. f Comparison of p-sites detected in this study with known p-sites curated in public databases. g The Spearman’s rank
correlations of transcriptomes, proteomes, and phosphoproteomes detected on Day 1 and Day 2, respectively.
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Molecular oscillation landscapes regulated by PER. After pro-
cessing the omics data sets with iCMod, we identified 661 (6.67%)
mRNAs, 620 (16.42%) proteins, and 789 (16.84%) p-sites to be
significantly oscillating in WT fly heads (Fig. 3a and Supple-
mentary Data 6). In contrast with the commonly used approach,
which does not remove mRNAs with FPKM < 1 or normalize
phosphorylation abundance to protein abundance, iCMod
enabled more accurate identification of cycling molecules (Fig. 3a,
Supplementary Figs. 5, 6, and Supplementary Note 2). We
compared our circadian multi-omics data with circadian gene
database (CGDB, http://cgdb.biocuckoo.org/)23 which includes
2768 Drosophila melanogaster genes with mRNAs reported to be
cycling and found these genes to be enriched only in our cyclic
mRNA data set but not in the cyclic protein or phosphoprotein
data sets (Fig. 3b). Moreover, we compared our circadian omics
data with an oscillatory translatome data set acquired by ribo-
somal profiling of fly heads24, and found that genes rhythmically
translated are statistically enriched both in our cyclic mRNA and
protein data sets, but not in cyclic phosphoprotein data set
(Fig. 3b). Taken together, iCMod integrates multiple types of
omics data, and determines circadian oscillations at multiple
levels with higher confidence and accuracy.

To test whether these molecular oscillations are driven by the
core molecular clock, we used iCMod to process multi-omics data
from per0 heads (Fig. 3c). We observed that per0mutation abolishes
the cycling of 93.95% of mRNAs, 84.52% of proteins and 87.96% of
p-sites, indicating that the majority of the molecular oscillations are
controlled by PER, which means they are likely driven by the
molecular clock. Moreover, we calculated the peak times for the
molecular oscillations and found that cycling transcripts tend to
peak at CT12 (Fig. 3d). The peak times for cycling proteins appear
to be rather evenly distributed throughout the day, whereas NCPs
tend to peak more during the subjective night from CT12 to CT0
(Fig. 3d, e). The amplitude of these oscillations is relatively low,
with the amplitude of cycling at phosphorylation level slightly
higher than that at protein level (Fig. 3f). To understand the
potential function of these molecular oscillations, GO-based
enrichment analysis was performed (Fig. 3g). Cycling mRNAs are
enriched in light and visual signaling pathways, while cycling
proteins are enriched in processes involved in Wnt regulation and
endocytosis/exocytosis. NCPs are enriched in pathways that
regulate sarcomere organization and neural development. We did
not identify any published cycling p-sites among the NCPs, which
is probably because the published sites are located on core clock
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proteins such as PER, TIM and CLK6. These core clock proteins are
expressed at low levels in whole-head extracts and thus we were not
able to detect the reported phosphorylation rhythms on these
proteins. We tried to validate some of our NCPs with antibodies
available and was able to observe significant temporal variation
at tyrosine 214 of SHAGGY10 (SGG10) isoform of the SGG
protein which is eliminated by per0 mutation (Fig. 3h, i and
Supplementary Fig. 7)25. Taken together, our analyses identified
substantial molecular oscillations occurring at the mRNA, protein,
and phosphorylation levels that are largely controlled by PER and
enriched in distinct biological pathways, which implies different
biological processes favor different levels of circadian regulation.

Prediction and validation of a circadian kinome. We used GPS
to analyze the 789 NCPs identified in WT flies, and acquired
36,522 potential ssKSRs between 153 protein kinases and 778
phosphorylated substrates. We found that 98.10% of all identified
NCPs were predicted with ≥2 kinases, indicating a complex
kinase–substrate phosphorylation network involved in circadian

regulation. The top five groups of kinases are responsible for the
modification of ~87% of total phosphorylation events, whereas
the top 10 kinase families identified carry out ~54% of total
phosphorylation events (Fig. 4a, b). Next, we performed a two-
sided hypergeometric test to analyze the enrichment of NCPs
among all predicted substrates for each kinase. Altogether, we
predicted 27 potential circadian kinases that display significant
enrichment in NCPs, which include seven kinases already known
to be involved in circadian regulation in flies (Fig. 4c, d)6,26,27.
Eight of these kinases exhibit cycling at mRNA, protein and/or
phosphorylation level, implicating a potential role as an instruc-
tive signal in the circadian system.

Among the predicted circadian kinases, there are 20 that have
not been reported to participate in Drosophila circadian regulation
(Fig. 4d). Therefore, we validated these kinases by testing whether
they play a role in modulating fly locomotor rhythms. We found
six kinases to be involved or potentially involved in rhythm
regulation (i.e., when genetically manipulated, the target kinase
can alter the period by at least 1 h or reduce the power of rhythm
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by 50% or more), including gskt, Dsor1, bsk, gish, hep, and
CKIalpha (Fig. 4e). gskt is generated by retroposition of sgg, the fly
homolog of mammalian glycogen synthase kinase-3β (GSK3β)28.
Dsor1 encodes the DrosophilaMEK, which is activated by receptor
tyrosine kinases and phosphorylates extracellular-signal-regulated
kinase29. bsk encodes the fly homolog of mammalian c-Jun amino
terminal kinase (DJNK) and is known to be phosphorylated and
activated by JNK kinase HEP30. gish encodes CKIγ and together
with CKIalpha belong to casein kinase I (CKI) family31.

We first examined the effects of these kinases on circadian
regulation by knocking down each kinase in all clock cells using a
timGAL4 driver or in circadian neurons along with a few other
brain regions with a cryptochrome (cry)GAL4-1632. We tested 89
RNA interference (RNAi) lines, which produce double-stranded
RNA hairpin structures that trigger sequence-specific post-
transcriptional silencing and RNAi responses33,34. We found
that knocking down gskt, Dsor1, and CG7094 with at least two
independent RNAi lines lead to 1–3 h lengthening of circadian
period, whereas knocking down Dsor1 also substantially reduces
power and rhythmicity (Fig. 5a, b and Supplementary Data 7).
Knocking down CKIalpha with one RNAi line almost completely
abolishes the rhythm, whereas with another RNAi line leads to
2–3 h longer period. We then verified that the mRNA levels of the
target genes were indeed reduced by RNAi (Supplementary
Fig. 8a). Although two independent CG7094 RNAi lines exhibit
lengthened period, only one of them shows significant mRNA

reduction (Fig. 5a, b and Supplementary Fig. 8a). We reasoned
that the period lengthening effect of the other RNAi line may be
owing to off-target effects, and thus did not consider CG7094 as a
positive hit. There are several genes with only one RNAi line that
exhibits substantial changes in period or power of the rhythm,
which may also be owing to off-target effects of this particular
RNAi, so we did not consider these genes as positive hits either
(Supplementary Data 7). We tested nine overexpression lines and
found that expressing a WT or dominant negative form of BSK in
circadian neurons results in 1–3 h longer period, whereas
overexpressing two constitutively active forms of HEP almost
completely abolishes the rhythm (Fig. 5c)35. Overexpressing a
WT GISH shortens the period by ~1.5 h whereas expressing a
kinase dead form of GISH results in ~1.5 h lengthening of the
period36. Overexpressing a WT CK1alpha substantially reduces
the power of the rhythm. At last, we tested 33 mutant or potential
mutant lines and found three mutants displayed reduced power
or lengthened period (Supplementary Figs. 8b, 9, and Supple-
mentary Data 7). However, after backcrossing these lines onto an
isogenic background and/or testing additional alleles, we observed
either no phenotype or weaker phenotype, which means the
phenotypes previously observed are likely due to genetic back-
ground differences rather than defects caused by the mutations
(Supplementary Fig. 8c and Supplementary Data 7).

Based on the strength of circadian phenotypes observed, we
classified the remaining 20 predicted circadian kinases into three
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groups. Group 1 includes GSKT, DSOR1, and CKIalpha, the
phenotypes of which were confirmed by multiple independent
RNAi lines and thus are highly likely to regulate the clock. Group
2 includes GISH, BSK, and HEP, which only demonstrated
phenotypes when overexpressed and thus are potential regulators
of the clock. The rest of the predicted circadian kinases belong to
Group 3, as they showed no clear evidence of involvement in
locomotor rhythm modulation. All in all, nearly half (48%) of the
predicted circadian kinases appear to play (or potentially play) a
role in regulating locomotor rhythms, demonstrating the power
of iCMod in identifying kinases that function in the circadian
system and revealing insights regarding circadian control of
phosphorylation (Fig. 5d).

A signal web that controls molecular and locomotor rhythm.
According to our predicted ssKSRs and published literature, the
seven known circadian kinases and 3 Group 1 kinases that reg-
ulate locomotor rhythm can form a giant web that integrates our
circadian omics data from multiple levels. First of all, the activities
of these 10 kinases can account for 81.6% of the NCPs identified
(Supplementary Fig. 10 and Supplementary Data 8). For proteins
that show circadian cycling in abundance, 76 contain NCPs
predicted to be phosphorylated by one of the 10 kinases, whereas
429 interact with at least one other protein that contains NCPs
phosphorylated by one of the 10 kinases. Therefore, the activities
of these kinases could potentially explain 81.5% of the circadian
proteome. Moreover, computational analysis predicted that the
transcription of all genes oscillating at mRNA level is potentially
activated by 33 transcription factors, 30 of which are predicted to
be phosphorylated by at least one of these 10 kinases. These

transcription factors include core clock proteins CLK, CYC,
VRILLE (VRI), and Par Domain Protein 1 (PDP1) as well as
KAYAK (KAY) and MEF2, which have been shown to regulate
the clock37,38. Notably, we also observe SERPENT (SRP) among
the transcription factors, which is believed to act in synergy with
CLK/CYC to orchestrate tissue-specific outputs39. Taken toge-
ther, these results suggest that these kinases not only control
rhythms at phosphorylation level, but also contribute to oscilla-
tion at mRNA level by modifying transcription factors and
oscillation at protein level by directly phosphorylating the target
proteins or indirect modulation via protein–protein interactions
(PPIs).

Based on our predictions and published data, we further
extracted a network of signaling cascades that ultimately impinge
on locomotor rhythm from the web (Fig. 6a and Supplementary
Fig. 10). Within this network, there appears to be a major hub
consisting of GSKT, which possess the greatest number of
connections with other kinases and clock proteins (Fig. 6b).
GSKT sends out regulatory outputs targeting DSOR1 and 4
components of the clockwork (Fig. 6a, b). This implicates that
GSKT is a potentially essential regulator of the kinase network.

GSKT acts to decrease TIM protein levels. Given the central role
of GSKT within the circadian kinase network, we further inves-
tigated how it affects locomotor rhythm by examining its pre-
dicted substrates (Fig. 7a). Among the potential substrates, SLMB,
CUL-3, SGG, S6KII, and NEJIRE (NEJ) are already known to
regulate the molecular clock and locomotor rhythm6,40,41. Under
DD conditions, SLMB and CUL-3 exert effects on the clock by
impinging on PER and TIM protein stability, whereas SGG times
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the clock by regulating PER/TIM nuclear translocation25,41,42.
S6KII is believed to regulate the clock by targeting SGG and
possibly PER, whereas NEJ binds with CLK/CYC to modulate
transcription of clock genes40,43. Therefore, we first tested whe-
ther knocking down gskt affects PER and TIM protein level in fly
heads. Indeed, we observed significantly elevated TIM protein
level and a trend of increase in PER protein level when gskt is
knocked down (Fig. 7b, c). Meanwhile, tim, vri, and Pdp1ɛ
mRNA levels are not significantly altered, whereas per mRNA
level is moderately increased (Fig. 7d). As the period of locomotor
rhythm in DD is determined by the small ventral lateral neurons
(s-LNvs)44, we assessed TIM levels in these cells and consistent
with the changes observed at whole-head level, TIM is sig-
nificantly increased at CT0 (Fig. 7e, f). Moreover, we co-expressed
GSKT and TIM in Drosophila S2 cells and found significant
reduction of TIM level compared to the control (Fig. 7g). Taken
together, these results indicate that GSKT acts to reduce TIM
protein level via post-transcriptional mechanism. Because among
the five potential substrates that may mediate the effects of GSKT
on the clock, only SLMB and CUL-3 are known to affect TIM
protein level, this provides some potential candidate mechanisms
regarding how GSKT may regulate TIM41. It is noteworthy that
among the predicted substrates of GSKT are DSOR1, BSK, and
GISH, implicating these kinases may function together with
GSKT to regulate locomotor rhythms.

In short, this demonstrates an example of how our predictions
can aid the process of characterizing the molecular actions of a
candidate kinase in the circadian system.

Discussion
Here in our phosphoproteomic study, we detected 14,946 non-
redundant p-sites, including 9333 sites that have not been pre-
viously reported, which demonstrates the sensitivity of our system
and provides a rich resource for future research. To further
ensure the reliability of our data set, we removed all mRNAs with
FPKM < 1 and their corresponding peptides/phosphopeptides,
which has not been conducted in previous circadian phospho-
proteomic studies3–5. In an attempt to optimize our iCMod
pipeline, we removed this filter and re-performed the analysis
only using the proteomic and phosphoproteomic data (Supple-
mentary Fig. 11). We found this considerably lowered the accu-
racy of circadian kinase prediction. Moreover, we only analyzed
mRNAs, peptides, and p-sites that can be detected at all time
points rather than just some of the time points. Most importantly,
we normalized the raw phosphorylation abundance of each p-site
to its raw protein abundance to acquire NCPs, whereas previous
studies directly analyzed phosphoproteomic data to identify
oscillating p-sites3,5. These additional processing (especially the
normalization step) makes a tremendous difference in the cycling
p-sites identified (only 36% overlap), indicating the necessity of
conducting at least the normalization procedure as this may
completely change the oscillatory phosphorylation landscape
identified. Wang et al.4 focused on cycling p-sites of non-
rhythmic proteins, but this will miss out on the cycling p-sites of
rhythmic proteins. It is possible that both phosphorylation and
protein levels are rhythmically regulated but their phases are
different. Indeed, we observed that ~29% of the proteome show a
negative correlation of its temporal expression profile with cor-
responding phosphorylation level.

We took one-step further and tested whether these global
molecular oscillations are regulated by the molecular clock.
Indeed, we found that the majority of the oscillations are damped
in per01 flies, suggesting that they are driven by the clock. Robles
et al.3 found that the amplitude of oscillation at phosphorylation
level is much higher than at transcript or protein level.

Consistently, we have also observed this trend in our data with
the amplitude of the phosphoproteome slightly higher than that
of the proteome. However, we observed much lower cycling
amplitude of global phosphorylation compared to what has been
reported by Robles et al.3 This is in part owing to differences in
assessment method. Robles et al. adopted label-free quantifica-
tion, whereas we used TMT labeling, which is known to compress
differences in intensity levels45. Another possibility is that cells
of the fly head are more heterogeneous than that of the mouse
liver, thus the rhythms are less synchronized and robust. In
addition, the molecular clock is not present in all cells in the
head46. Therefore, oscillatory expression patterns in the clock
cells could be masked by constant expression patterns in non-
clock cells. Moreover, the amplitude that we calculated has been
normalized to the protein level. This could be another reason for
not observing highly robust cycling of the phosphoproteome.
Interestingly, NCPs are enriched in proteins that function at the
synapse and/or in the axon, which indicates that these sites favor
rhythmic phosphorylation as a major contributor to rhythmicity
in synaptic and axonal processes. This makes sense because
neurites and in particular synapses are where most of the neural
activities occur and thus are in high demand for energy. Cycling
of phosphorylation is a much more economical way to bring
about rhythmicity in protein function compared with cycling of
protein level47. It is noteworthy that we observe substantial
oscillations at mRNA, protein and phosphorylation levels even in
per0 animals. This is not unprecedented as Hughes et al.48 have
also reported 59 cycling mRNA in per0 flies under DD (JTK cycle,
p value < 0.01), which is ~1/4 of the number of cycling transcripts
in WT. We observe a comparable ratio here. Interestingly, we
observe even more oscillations at protein and phosphorylation
levels. It is possible that some of these rhythms are residual light-
driven oscillations from LD cycle. They may also reflect the
activities of some unknown PER-independent oscillator(s) that is
masked in the presence of PER. Further studies are required to
characterize the nature of these oscillations.

Among the 27 predicted circadian kinases, 13 (48%) are
involved (or potentially involved) in rhythm regulation. It should
be noted that one of our identified circadian kinases, CkIalpha,
has very recently been reported to interact with DOUBLETIME
(DBT) for synergistically regulating PER in fly brain49. This
finding further supports the accuracy of our predictions. As for
the remaining 14 kinases that we have not been able to demon-
strate a clear role in locomotor rhythm regulation, they may
participate in modulating rhythms of other biological processes
such as metabolism or sensory functions. 12% of cyclic proteins
contain NCPs that are predicted to be phosphorylated by the 10
circadian kinases (including the seven known circadian kinases
and three Group 1 kinases), which suggests these sites to be
potential targets of these kinases. The cyclic phosphorylation on
these proteins could result in cycling of protein stability and thus
circadian oscillation in their abundance. In all, 69% of the cyclic
proteins do not contain NCPs but are predicted to interact with at
least one protein that contains NCP(s) potentially modified by
one or more of the 10 kinases. These interactions may confer
rhythmic modulation, rendering oscillatory protein levels. A
previous study reported that CLK binds to ~800 genomic sites in
a temporal-dependent manner and 267 of these CLK direct target
sites show oscillating occupancy of RNA polymerase II, suggestive
of rhythmic transcription from these sites50. However, there are
still many cyclic mRNAs that do not appear to be direct targets of
CLK. Here besides CLK, we predicted additional 32 transcription
factors to participate in activating the transcription of the cyclic
mRNAs that we detected here, which means these transcriptional
activators could function together with CLK to generate rhythms
in the transcriptome. Moreover, 30 of the transcription factors
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are predicted to be phosphorylated by the 10 kinases, which
could result in circadian cycling of their activities in transcrip-
tional regulation. Taken together, our findings imply a role for
these circadian kinases not only in generating rhythmic phos-
phoproteome, but may also contribute to global oscillations of
the proteome and transcriptome. Clearly much more needs to be
done to validate the actions of these kinases, which is beyond
the scope of this study. Nonetheless, we propose a complex web
of interactions based on our predictions in conjunction with lit-
erature that integrates these kinases into multi-omics circadian
regulation.

We extracted and refined a small subset of the signaling web
that reveals how the 10 kinases form a network to influence
locomotor rhythm. It is surprising to find GSKT as a potential key
regulator of the kinase network. gskt has been reported to be
expressed in male germline cells in flies and required for male
germline survival28. Interestingly, recent RNA-seq analysis
revealed expression of gskt in circadian neurons51 and moreover
gskt was identified to be rhythmically translated based on ribo-
somal profiling of fly heads24, implicating a potential role of
GSKT in circadian regulation. Consistently, here we demonstrate
expression of gskt in the head and a role for timing locomotor
rhythm. Although GSKT is a paralog of SGG and deficiency in
either one of these two kinases leads to lengthened period, they
appear to have taken on different functions within the circadian
kinome based on our predictions. Indeed, our experimental
results demonstrate a role for GSKT in reducing TIM protein
level, whereas SGG is known to phosphorylate PER/TIM and
promotes their nuclear entry but does not appear to affect their
protein levels25,42,52. Further studies are required to verify the
kinase–substrate relationships in the circadian kinase network,
but nevertheless, we believe this network provides a basic fra-
mework regarding phosphorylation regulation of the molecular
clock that control locomotor rhythm.

In conclusion, our data reveal a circadian kinome that is
potentially responsible for global molecular oscillations. We
propose an intricate web formed by these kinases and their
substrates, which in our opinion, is a significant step forward in
understanding phosphorylation regulation of the clockwork from
a system’s level.

Methods
Fly stocks. For RNA-seq, proteomics, and phosphoproteomics studies, male w1118

(Bloomington Stock Center, BL3605) flies were crossed with y1w* and per0153,
respectively. Male flies of F1 generation were used for omics study. For behavioral
experiments, only male flies were used. Fly lines used are listed in Supplementary
Table 1. We backcrossed gishEY06451, hepG0107, AsatorKG05051 lines onto the iso-
genic w1118 background for two generations. For Western blotting, quantitative
real-time PCR (qRT-PCR) and immunofluorescence analysis, both male and
female progenies were used. UAS-gskt-RNAi (line1, V25640) was used for mole-
cular analysis and GD background control was used for control.

Fly head collection. Flies were collected within 7 days of eclosion and entrained in
12 h/12 h light–dark (LD) schedule for 3 days. After that, flies were transferred into
DD. On the first day of DD, flies were collected and frozen at 3 h intervals for WT
flies (WT_0, WT_3, WT_6, WT_9, WT_12, WT_15, WT_18, and WT_21) and
per0 flies (per0_0, per0_3, per0_6, per0_9, per0_12, per0_15, per0_18, and per0_21).
Frozen flies were vortexed for 10 s to separate the head from the body. Fly heads
were collected and stored at −80 °C.

RNA extraction and RNA-seq. In all, 200 fly heads were homogenized in Total
RNA Isolation (TRIzol) Reagent (Invitrogen), by using a handheld motor with
plastic pestle. After mixing with trichloromethane, homogenates were centrifuged
at 12,000 × g and suspension was precipitated with 75% ethanol. After air dry, total
RNA was treated with RQ1 DNase (Promega) to remove genomic DNA and stored
at −80 °C.

Before sequencing, RNA purity was measured by NanoPhotometer (IMPLEN,
CA, USA), whereas the concentration and integrity of RNA were assessed by Qubit
RNA Assay Kit in Qubit 2.0 Flurometer (Life Technologies, CA, USA) and RNA
Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent

Technologies, CA, USA) (Supplementary Data 9). Agarose gel electrophoresis was
also conducted for all samples (Supplementary Fig. 12a). According to the quality
control, all 32 samples were classified as Class A, which represents the highest
quality and RNA-seq profilings could be conducted more than twice for each
sample. To construct the libraries for mRNA sequencing, NEBNext Ultra RNA
Library Prep Kit for Illumina (NEB, USA) was used following the manufacturer’s
recommendations using 1.5 μg RNA per sample. Poly-T oligo-attached magnetic
beads were employed to purify mRNA from total RNA, and then fragmentation
was carried out with divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5×). First and second strand complementary
DNAs (cDNAs) were then synthesized by using random hexamer primers. For
hybridization, NEBNext Adaptor with hairpin loop structure was ligated onto the
3’ ends of the fragments, which were then purified by AMPure XP system
(Beckman Coulter, Beverly, USA) to control for the length. PCR was performed
after treating the cDNA with USER Enzyme for 15 min at 37 °C followed by 95 °C
for 5 min. The purity of PCR products and assessment of library quality were
performed on the Agilent Bioanalyzer 2100 system. In order to perform cluster
generation of the index-coded samples, HiSeq 4000 PE Cluster Kit (Illumia) was
used on a cBot Cluster Generation System. Sequencing of library preparations was
performed on Illumina Hiseq 4000 platform.

Protein extraction for proteomic analysis. Fly heads were homogenized by
sonification for 5 min in urea lysis buffer (8 M urea, 1× proteinase inhibitor and
phosphatase inhibitor (Roche), 2 mM EDTA). Homogenates were centrifuged at
20,000 × g for 10 min and supernatants were collected. Finally, protein con-
centration was measured by BCA Protein Assay Kit (Thermo Scientific) and
adjusted to be consistent across the time series (Supplementary Data 9). According
to the SDS-PAGE results (Supplementary Fig. 12b), all 33 samples were classified as
Class A, which represents the highest quality and further experiments could be
performed more than twice for each sample.

Isolation of peptides and TMT labeling. In order to digest the proteins, protein
solution was first treated by 5 mM dithiothreitol (DTT) at 56 °C for 30 min, fol-
lowed by alkylation with 11 mM iodoacetamide for 15 min at room temperature in
the dark. After that, 100 mM triethylammonium bicarbonate (TEAB) was used to
dilute the protein samples to reduce the concentration of urea to <2M. Two trypsin
digestions were performed, using the mass ratio of 1:50 trypsin-to-protein for
overnight treatment and 1:100 for 4 h, respectively.

After digestion, Strata X C18 SPE column (Phenomenex) and vacuum-dry were
used to desalt the peptides and then the peptides were reconstituted with 0.5 M
TEAB. The peptides were subsequently processed by TMT kit following the
manufacturer’s recommendations. The peptides were incubated with labeling
reagent at room temperature for 2 h, followed by desalting and vacuum drying.

Phosphopeptide enrichment. High pH reverse-phase HPLC with Thermo Betasil
C18 column was used to fractionate the tryptic peptides into fractions. The pep-
tides were first separated into 60 fractions by a gradient of 8–32% acetonitrile
(pH 9.0) for 60 min and then pooled into eight fractions. These fractions were
subsequently vacuum dried.

To enrich phosphopeptides, Ti4+-immobilized metal affinity chromatography
microsphere suspension with vibration in loading buffer (50% acetonitrile and 6%
trifluoroacetic acid) was used to incubate the peptide mixtures. The IMAC
microspheres with enriched phosphopeptides were then collected by
centrifugation. In order to remove the nonspecifically adsorbed peptides, 50%
acetonitrile with 6% trifluoroacetic acid and 30% acetonitrile with 0.1%
trifluoroacetic acid were used to wash the microsphere successively. After eluting
the enriched phosphopeptides by vibration with elution buffer containing 10%
NH4OH, the supernatant containing phosphopeptides was collected and
lyophilized for further analysis.

LC-MS/MS analysis. Liquid phase A (0.1% formic acid) was used to dissolved the
tryptic peptides, which were then loaded onto a home-made reversed-phase ana-
lytical column (length: 15 cm, i.d.: 75 μm) and separated by EASY-nLC 1000 ultra-
performance liquid chromatography system. Liquid phase B contains 0.1% formic
acid in 98% acetonitrile. Liquid phase gradient setting was as follows: 0~50 min,
5–25% B; 50~62 min, 25–38% B; 62~66 min, 38–80% B; 66~70 min, 80% B. The
flow rate was maintained at 400 nL/min.

Peptides were subjected to NSI ion source for ionization followed by tandem
mass spectrometry (MS/MS) in Q ExactiveTM Plus (Thermo). The electrospray
voltage was set to 2.0 kV and Orbitrap was used for detection and analysis. For
primary MS, the scan range was 350–1800 m/z at a resolution of 70,000.
Subsequently, normalized collision energy was set at 28% for selected peptides
undergoing secondary MS/MS, with scan range starting at 100 m/z and resolution
set at 17,500. A data-dependent procedure that alternated between one MS scan
followed by 20 MS/MS scans was applied with 15.0 s dynamic exclusion. Automatic
gain control (AGC) was set at 5E4.

Standard database search. MaxQuant (v.1.5.3.30)54 was used for standard
database search of MS/MS raw data. MS/MS spectra was searched against
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Drosophila proteome database obtained from UniProt (Version 201706)18, which
contained 13,558 unique fly protein sequences. The digestion mode was set to
Specific and Trypsin/P was chosen as cleavage enzyme allowing up to two missing
cleavages. Carbamidomethyl (C) was the fixed modification, while Oxidation (M)
and Acetyl (Protein N-term) were the variable modifications for searching both
proteomes and phosphoproteomes, and Phospho (STY) for phosphoproteomes
only. Seven was set as the minimum peptide length and 4600 Da as the Maximum
peptide mass. The false discovery rates for peptide-spectrum match, protein and
p-site decoy fraction were all set to <1% and minimum score for modified peptides
was set to >40.

Locomotor activity monitoring. To knock down or overexpress a kinase, tim-
GAL4;UAS-dcr2 and UAS-dcr2;cry-GAL4-1655 were crossed to RNAi lines and
overexpression lines. For controls, UAS and GAL4 lines were crossed to the genetic
background controls for TRIP, GD, and KK RNAi collections, w1118 and yw strains.
Flies were reared on standard cornmeal–yeast–sucrose medium and kept in LD
cycles at 25 °C. Locomotor activity levels of adult male flies were monitored by
Drosophila Activity Monitoring System (DAMS, TriKinetics) for 7 days of LD
followed by 7 days of DD.

PDF and TIM immunofluorescence and microscopy. Adult male flies were
entrained for 3 days at 25 °C and anesthetized with CO2. Brains were dissected in
PBS buffer containing 3.7% formaldehyde. After fixation at room temperature for
30 min, the brains were rinsed two times in PBS and incubated in PBS with 1%
Triton for 10 min at room temperature. The brains were then incubated in 5%
donkey serum diluted in PBT (PBS with 0.5% Triton) for 30 min at room tem-
perature, followed by incubation for two days in a mixture of 1:100 rat anti-TIM
(rat TIM antibody is a generous gift from Dr. Joanna Chiu) and 1:50 mouse anti-
PDF (DHSB) in PBT containing 5% donkey serum at 4 °C. After PBT rinses for six
times, the brains were incubated with 1:500 donkey anti-rat AlexaFluor 488
(Invitrogen) for TIM immunostaining and 1:10–1:20 donkey anti-mouse Alexa-
Fluor 594 (Invitrogen) for PDF immunostaining in PBT overnight at 4 °C. After
final rinses in PBT, brains were mounted in 80% glycerol diluted in PBS. PDF/
TIM-labeled specimens were photographed with ×60 oil lens by Olympus FV1000
laser scanning confocal microscope (Olympus). The microscope, laser, and filter
settings for a given experiment were held constant.

Transient transfection. S2 cells were plated in 12-well plates and transfected with
FuGENE 6 (Promega). DNA plasmids used for transfections were as follows:
pActin-HA-tim-V5, pActin-gskt-V5-6×His and pActin-V5-6×His. Cells were
harvested 44 h after transfection.

Protein extraction and western blot. Proteins were extracted from fly brains
or S2 cells using SDS lysis buffer (10 mM Tris-base, 1 mM sodium orthovanadate,
1% SDS, pH 8.0, 1 mM DTT, 1× proteinase inhibitor and phosphatase inhibitor
(Roche)). After homogenization, protein lysates were centrifuged at 12,000 × g for
15 min at 4 °C and incubated at 95 °C in loading buffer for 5 min. Equal amounts of
protein were loaded into each well on 5% or 8% SDS-PAGE gels and then trans-
ferred to nitrocellulose membranes for 2 h at 90 V. Membranes were incubated
with primary antibody at 4 °C overnight followed by secondary antibody at room
temperature for 1 h. The primary antibodies used were as follows: guinea pig PER
(1:1000), rat TIM (1:1000), rabbit ACTB (1:5000, ABclonal), guinea pig SGG
(1:1000), and phospho-SGG Y214 (1:1000, Abcam). Donkey secondary antibodies
(1:10000 dilution) were conjugated either with IRDye 680 or IRDye 800 (LI-COR
Biosciences) and visualized with an Odyssey Infrared Imaging System (LI-COR
Biosciences). Rat TIM antibody, guinea pig SGG antibody, and guinea pig PER
antibody were generous gifts from Dr. Joanna Chiu.

PCR and qRT-PCR. PCR was performed with Taq Plus MasterMix (CWbiotech).
The PCR reaction was performed as following: 94 °C for 2 min followed by 94 °C
for 10 s, 57 °C for 15 s and 72 °C for 1 min 20 s for 35 cycles. Quantitative real-time
PCR was performed with One-Step RT-PCR SuperMix (Transgen). The PCR
reaction was performed as follows: 45 °C for 5 min; 94 °C for 2 min; 94 °C for 5 s,
58 °C for 15 s, 72 °C for 20 s for 40 cycles (Applied Biosystems). The ΔΔCT method
was used for quantification. Beta-Actin was used as internal control. The primers
used are listed in Supplementary Table 2.

RNA-seq analysis. For the analysis of the RNA-seq data, raw reads were first
mapped to the reference genome of D. melanogaster, which was downloaded from
Ensembl (release version 90, http://www.ensembl.rog/)56. The software packages of
Bowtie2 (version 2.2.4) and TopHat (version 2.1.1) were used to generate the BAM
files, whereas Cufflinks (version 2.2.1) was employed to assemble the reads and
calculate the expression levels of individual mRNAs based on FPKM values57.

Sample correction and normalization. Unexpectedly, six samples (WT_0, WT_6,
WT_12, WT_18, per0_6, per0_18) failed to pass the quality tests before RNA-seq in
the first round. Therefore, we re-prepared these samples by adding WT_3 as a
normalization control, and re-performed the transcriptomic, proteomic, and

phosphoproteomic analysis. Owing to the limitation that only 10 samples can be
simultaneously labeled and analyzed by the TMT technology, four batches of LC-
MS/MS analyses were carried out for all 32 samples (Supplementary Table 3).

We observed a considerable fluctuation between Batch 4 and the other three
batches. To improve the consistency of the four batches, we used the WT_3 sample
quantified in both Batch 1 and Batch 4 as the normalization control for proteomic
and phosphoproteomic data. First, all proteins and p-sites quantified in both
batches for the WT_3 sample were picked out, whereas the Batch 1: Batch 4 ratio
was calculated for each protein and p-site, respectively. Then all intensity values of
these proteins and p-sites quantified in other six samples of Batch 4 were
normalized with the ratio.

Customized reference databases. For each batch, only mRNAs with FPKM ≥ 1
in at least one sample were considered, and their corresponding proteins were used
to construct a sample-specific reference database. In total, there were 9461, 9619,
8649, and 8610 non-redundant protein sequences reserved for Batch 1, 2, 3, and 4,
respectively. For these fly proteins, their reverse decoy sequences were separately
generated for each database. Then MaxQuant (v.1.5.3.30)54 was used for searching
each reference database to identify peptides and phosphopeptides from proteomic
and phosphoproteomic MS/MS spectra, respectively, with identical parameters in
standard database search.

Proteomic and phosphoproteomic data normalization. Sample-based normal-
ization was conducted for the raw proteomic and phosphoproteomic data using the
global centering (GC) method58. For each sample, the identified non-phosphorylated
peptides and phosphopeptides were re-mapped to 13,558 non-redundant fly protein
sequences of the Drosophila proteome set, and the average intensity value of all
proteins and p-sites was normalized to 1 (Mean= 1) for proteomic and phospho-
proteomic data sets, respectively. To exclude the bias of GC normalization for the
correlation analysis, we employed four additional methods for normalization of the
proteomic data using metaX (http://metax.genomics.cn/)59.

Computational identification of circadian oscillations. Circadian oscillations at
different levels were identified by MetaCycle, an integrative R package that
incorporated three computational programs including ARSER, JTK_CYCLE, and
Lomb-Scargle60. All three methods were tested, and very few hits were detected by
JTK_CYCLE and Lomb-Scargle. Only ARSER recognized a considerable number of
mRNAs, proteins and p-sites to be potentially rhythmic (p value < 0.01).

Prediction of ssKSRs with GPS. Previously, we developed a software package of
GPS (http://gps.biocuckoo.org/)22, which classifies protein kinases into a hier-
archical structure at four levels, including group, family, subfamily, and single
kinase. In total, GPS contains 144 and 69 individual predictors to predict ssKSRs
from primary sequences of proteins for serine/threonine kinases (STKs) and tyr-
osine kinases (TKs), respectively. From GPS 2.1, we manually selected 48 and 15
predictors for 153 STKs and 16 TKs in D. melanogaster, respectively. To increase
the coverage of p-sites with predicted protein kinases, a low threshold was chosen
with a false positive rate (FPR) of 10% for STKs and 15% for TKs, respectively. GPS
2.1 was then used to predict ssKSRs for all 789 p-sites identified by iCMod in all
16 samples of WT flies.

Two-sided hypergeometric test. In iCMod, two-sided hypergeometric test was
adopted for identification of potential circadian kinases, which significantly prefer
to modify NCPs rather than non-oscillated p-sites based on predicted ssKSRs. For
each protein kinase ki (i= 1, 2, …, 169), we defined the following:

N= number of p-sites identified by iCMod.
n= number of iCMod p-sites predicted to be phosphorylated by ki.
M= number of NCPs.
m= number of NCPs predicted to be phosphorylated by ki.
The enrichment ratio (E-ratio) of ki was computed, and the p value was

calculated with two-sided hypergeometric distribution as below:
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All protein kinases with substrates significantly enriched in NCPs (p value < 0.05
and E-ratio > 1) were referred to as potential circadian kinases.
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Two-sided hypergeometric test was also adopted for the GO-based enrichment
analyses at mRNA, protein and phosphorylation levels. GO annotation files
(released on 22 January 2018)61 were downloaded from the EBI Web site (https://
www.ebi.ac.uk/QuickGO/) and contained 12,452 fly proteins with at least one
GO term.

We mapped 2768 genes with rhythmic mRNA expression collected in CGDB23

and 1255 translationally rhythmic genes identified by translating ribosome affinity
purification24 to our cycling mRNA, protein and phosphoprotein data sets
identified by iCMod. Two-sided hypergeometric test was performed for the
enrichment analysis.

Re-construction of the circadian kinase signal web. At the phosphorylation
level, a kinase–substrate network was first determined from predicted ssKSRs of
NCPs regulated by the seven known circadian kinases and 3 Group 1 kinases. At
the protein level, experimentally validated and pre-calculated PPIs from six public
databases including BioGRID62, DIP63, MINT64, I2D65, IntAct66, and STRING67,
with a total of 2,280,705 PPIs in 18,308 fly proteins, were downloaded and inte-
grated into the kinase–substrate network of the 10 kinases. A cyclic protein
identified by iCMod that interacts with at least one member in the kinase–substrate
network was retained and incorporated into the signal web. At the mRNA level,
annotated transcription factors in D. melanogaster were downloaded from a pre-
viously developed database AnimalTFDB 3.068 to predict transcription factors that
activate the transcription of genes that oscillate at mRNA level (http://bioinfo.life.
hust.edu.cn/AnimalTFDB/). For the prediction of transcription factors based on
the presence of transcription factor binding sites (TFBSs), potential transcription
factor binding regions (2000 bp upstream and 500 bp downstream) of genes with
circadian mRNAs were extracted from the.gtf file downloaded from Ensembl56,
then the TFBS predictor implemented in AnimalTFDB 3.068 was used. Because
AnimalTFDB 3.068 could only predict TFBSs for human transcription factors, their
orthologs in D. melanogaster were computationally determined through a classical
approach of reciprocal best hits (RBHs)69. Then, we searched a comprehensive
phosphorylation database EPSD (http://epsd.biocuckoo.org/) and retained tran-
scription factors with at least one experimentally identified p-site. GPS 2.122 was
adopted to predict potential ssKSRs for these mapped p-sites, and PPIs between
kinases and transcription factors were used to reduce the false positive hits. Only
transcription factors with at least one ssKSR regulated by one or more of the 10
kinases were incorporated into the web. In addition, we incorporated 2092 and
1141 TFBSs of CLK and CYC, respectively, from published data set using a cutoff
of read density ≥ 2, as well as kinase–substrate relations published in literature39,70.

To model the kinase network that regulates locomotor rhythm, predicted
ssKSRs between the 10 kinases and genes known to function in the clockwork were
retained. After filtering by PPIs between kinases and substrates, the core network
contains the 10 kinases, four core clock genes (PER, TIM, CLK, and CYC) and
three genes known to regulate the clock (S6KII, SLMB, and CUL-3).

Circadian analysis of locomotor activity. For DD rhythmicity, chi-squared
periodogram analyses were performed by Clocklab (Actimetrics, Wilmette, IL).
Rhythmic flies were defined as those in which the chi-squared power was ≥ 10
above the significance line. Period calculations considered all flies with rhythmic
power ≥ 10. Dead flies were defined by 0 activity on DD7 and removed from
analysis.

TIM immunofluorescence quantification. For TIM intensity quantification, all
slides were coded for sample identity and remained until the numerical analysis
stage. The contour of each cell was circled and staining intensity was measured
from single slice image using ImageJ (NIH).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Fig. 3h, i, 7b–d, f, and g and Supplementary Figs. 7–9 are
provided as a Source Data file. The RNA-seq data have been deposited into NCBI
Sequence Read Archive (SRA, [https://www.ncbi.nlm.nih.gov/sra]) with the data set
identifier SRP145574. The raw mass spectrometry proteomics data have been deposited
into the integrated proteome resources (iProX, [http://www.iprox.org/]) with the data set
identifier IPX0001218000. The PPI data sets were integrated from six public databases
including BioGRID ([https://thebiogrid.org/], downloaded in 09/2016), DIP ([https://dip.
doe-mbi.ucla.edu/dip/Main.cgi], downloaded in 11/2016), MINT ([https://mint.bio.
uniroma2.it/], downloaded in 10/2016), I2D ([http://ophid.utoronto.ca/ophidv2.204/],
downloaded in 09/2015), IntAct ([https://www.ebi.ac.uk/intact/], downloaded in 10/
2016), and STRING ([https://string-db.org/cgi/], v10, downloaded in 11/2016). Known
p-sites were downloaded from eight public databases, including dbPAF ([http://dbpaf.
biocuckoo.org/], downloaded in 01/2018), dbPTM 3.0 ([http://dbptm.mbc.nctu.edu.tw/],
downloaded in 12/2015), Phospho.ELM ([http://phospho.elm.eu.org/], downloaded in
12/2015), PHOSIDA ([http://141.61.102.18/phosida/index.aspx], downloaded in 10/
2015), PhosphoPep 2.0 ([http://www.phosphopep.org/], downloaded in 10/2015),

PhosphoSitePlus ([http://www.phosphosite.org/], downloaded in 09/2015), SysPTM 2.0
([http://lifecenter.sgst.cn/SysPTM/], downloaded in 10/2015) and UniProt ([http://www.
uniprot.org/], downloaded in 12/2015). GO annotation files (released on 22 January
2018) were downloaded from the EBI Web site (https://www.ebi.ac.uk/QuickGO/).
Drosophila proteome databaseset was obtained from UniProt (Version 201706). Known
circadian genes were downloaded from CGDB ([http://cgdb.biocuckoo.org/],
downloaded 05/2018). Transcription factors in D. melanogaster were downloaded from
AnimalTFDB 3.0 [http://bioinfo.life.hust.edu.cn/AnimalTFDB/], downloaded in 12/
2018). The p-sites inof transcription factors were searched against the database EPSD
([http://epsd.biocuckoo.cn/], downloaded in 12/2018).

Code availability
The source code of iCMod has been uploaded to GitHub [https://github.com/
CuckooWang/iCMod].
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