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Quantifying kinematic gait for elderly people is a key factor for consideration in

evaluating their overall health. However, gait analysis is often performed in the

laboratory using optical sensors combined with reflective markers, which may

delay the detection of health problems. This study aims to develop a 3D

markerless pose estimation system using OpenPose and

3DPoseNet algorithms. Moreover, 30 participants performed a walking task.

Sample entropy was adopted to study dynamic signal irregularity degree for gait

parameters. Paired-sample t-test and intra-class correlation coefficients were

used to assess validity and reliability. Furthermore, the agreement between the

data obtained by markerless andmarker-basedmeasurements was assessed by

Bland–Altman analysis. ICC (C, 1) indicated the test–retest reliability within

systems was in almost complete agreement. There were no significant

differences between the sample entropy of knee angle and joint angles of

the sagittal plane by the comparisons of joint angle results extracted from

different systems (p > 0.05). ICC (A, 1) indicated the validity was substantial. This

is supported by the Bland–Altman plot of the joint angles at maximum flexion.

Optical motion capture and single-camera sensors were collected

simultaneously, making it feasible to capture stride-to-stride variability. In

addition, the sample entropy of angles was close to the ground_truth in the

sagittal plane, indicating that our video analysis could be used as a quantitative

assessment of gait, making outdoor applications feasible.
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Introduction

Gait parameters have been proposed as an index of overall

gait pathology for elderly people. It uses kinematic and kinetic

variables to be taken as a cleaner reflection of gait quality (Brach

et al., 2001). Kinematic analysis is often performed in laboratory

research using three-dimensional motion capture or wearable

sensors, which are expensive, immobile, data-limited, and

require expertise (Cronin, 2021). Recently, video-based pose

estimation suggests the potential for analyzing gait kinematic

parameters (Andriluka et al., 2014).

Video-based 2D body pose estimation is a well-studied

problem in computer vision, with state-of-the-art methods

being based on deep networks (Toshev and Szegedy, 2014;

Fang et al., 2017; Güler et al., 2018). With the advent of deep

neural networks, it is now possible to estimate joint angles

without the need for reflective markers. One of the more

popular approaches, CMU’s OpenPose enables key body

landmarks to be tracked from multiple humans in a video in

real-time (Cao et al., 2017). Yagi et al. (2020) used OpenPose to

detect multiple individuals and their joints in images to estimate

step positions, stride length, step width, walking speed, and

cadence, in comparison with multiple infrared camera motion

capture system OptiTrack (Lénárt et al., 2018). Kidziński et al.

(2020) designed machine learning models (e.g., convolutional

neural networks, random forest, and ridge regression models) to

predict clinical gait metrics based on trajectories of 2D body

poses extracted from videos using OpenPose. Similarly, Stenum

et al. (2021) used OpenPose to compare spatiotemporal and

sagittal kinematic gait parameters of healthy adults against

recorded optical marker–based motion captured from walking

simultaneously. These previous studies have been performed in

comparison between markerless and marker-based methods;

however, they only learned to infer joint angles or joint

locations in the sagittal plane.

Some researchers have detected 3D skeletons by existing 2D

human pose detectors from images/video (Martinez et al., 2017;

Moreno-Noguer, 2017; Nie et al., 2017) by directly using image

features (Zhou et al., 2016; Zhou et al., 2018).Martinez et al. (2017)

used a relatively simple deep feed-forward network to lift 2D pose

to 3D pose efficiently based on given high-quality 2D joint

information. Nakano et al. (2020) compared joint positions

estimated from the 3D markerless motion capture technique

based on OpenPose with multiple synchronized cameras against

recorded three-dimensional motion capture. Multicamera systems

are not easy to deploy in real-life environments. Instead, we try to

adopt the OpenPose to computer the 2D pose input to our

3DPoseNet based on a single-camera system and then estimate

gait parameters in sagittal, coronal, and transverse planes.

The main contributions of this work include 1) novelty:

unlike previous studies, we did not directly extract the

trajectories of 2D body poses to predict gait metrics using

machine learning models. Instead, we try to estimate the 3D

human pose from video to measure gait parameters. Then, we

clarify associations and agreements of motion analysis using

markerless and marker-based systems and confirm the reliability

and validity of 3D human pose from video. 2) Dataset: we have

collected the synchronized motion capture cameras and a single-

camera video dataset of movement sequences for elderly and

young people. 3) Application: our video-based gait analysis

workflow is freely available, involves minimal user input, and

does not require prior gait analysis expertise.

Methods

In the laboratory workflow, participants were marked with a

total of 39 markers placed on bony landmarks. The Body39 joints

were labeled by the Plug-In Gait full body model in Nexus

software. Then, participants were required to perform the

clear step on the treadmill, keeping 3 s and repeating three

times. The positions of these markers were tracked by several

optical cameras, which were later reconstructed into 3D position

time series. Measures derived from the Vicon data served as

ground_truth labels. In our proposed workflow, we used a

camera to record the participant’s movement. The open-

source OpenPose algorithm was adopted to extract trajectories

of 2D key points from continuous images. The 2D joint positions

from OpenPose were used as input, and we adopted a 3D

keypoint detection algorithm (3DPoseNet) to estimate body

joint locations in 3-dimensional space. It was important to

note that these two workflows were synchronized by

hardware. Finally, these signals from two workflows were

converted to joint angles as a function of time.

Experimental setting

Figure1showedthelaboratoryenvironmentandsetup,allowing

us tocapturedata fromsevensensors (sixViconMXmotioncapture

camerasandoneVuevideocamera).Thedesignated laboratoryarea

wasabout5 m×8 m×3 m,whereparticipantswere fullyvisible inall

cameras. Themotion capture cameraswere rigged on thewall shelf,

four on each left and right edge and two roughly mid-way on the

horizontal edges, for recoding three-dimensional marker

trajectories at 60 Hz (Liang et al., 2021). The video camera was

also rigged on the wall shelf, for recording images of the walking

sequences at 60 Hz.Thecamera imageswereRGBfileswitha1920×

1080 pixel resolution. Multiple infrared cameras and digital video

camera recording were used for hardware synchronization so that

eachtimepointof themotioncapturedatapointcorrespondedtothe

time of every video frame.

Moreover, 15 healthy elders [mean (SD) age: 56.6 (2.53)

years] and 15 healthy young people [mean (SD) age: 27.27 (4.31)

years] wore minimal, close-fitting clothes and participated in

walking on the treadmill. The speed was set at 1.5 km/h for the
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younger and 0.8 km/h for the elderly. Motion capture was

recorded by tracking 39 markers, Figure 2A showed the

Body39 joints labeled by the Plug-In Gait full body model in

Nexus software (Vicon®, 2002). The standard protocols of setting
markers were designed to match the skeletal configuration of the

Human3.6M dataset (Ionescu et al., 2014).

Extracting 2D keypoints with OpenPose

The OpenPose algorithm first estimates features from each

image using a 10-layer VGG19 network (Cao et al., 2017). In

addition, the obtained feature map is put into two convolutional

neural networks for calculating the confidence and affinity vectors

FIGURE 1
Overview of the experimental environment and setup.

FIGURE 2
Body39 joints are based on the Plug-In Gait full body model (A) and OpenPose Body25 keypoint model (B).
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for each key point. The heat maps with confidence and with

affinity fields are obtained. Then, the 2D body joint locations are

clustered, according to dichotomy matching in graph theory. The

nonparametric representations called part affinity fields are used to

regress joint position and body segment connections between the

joints. Finally, the output has the confidence of prediction and X

and Y pixel coordinates. Figure 2B shows the Body25 joints labeled

by the OpenPose body model.

Extracting 3D keypoints with 3DPoseNet

After obtaining 2D detections using OpenPose, our goal is to

estimate 3D body joint locations. Formally, our input is a series of

2D points xϵR2n, and our output is a series of points in 3D space

yϵR3n. We aim to learn a function fp: R2n → R3n that

minimizes the prediction error over a dataset of N poses:

fp � min
f

1
N

∑
N

i�1ℓ(f(xi) − yi), (1)

where xi is 2D joint obtained from the output of OpenPose. fp is

a deep and multilayer neural network with batch normalization

(Ioffe and Christian, 2015), dropout (Srivastava et al., 2014),

rectified linear units (RELUs) (Nair and Hinton, 2010), and

residual connections (He et al., 2016).

Figure 3 shows a diagram with the basic building blocks of

3DPoseNet. The network is a multilayer convolutional neural

network which inputs an array of 2D joint positions and outputs

a series of joint positions in 3D. First, the linear layer applies

directly to the input, which increases its dimensionality to 1024.

Then, there are two same residual blocks. Each block includes

two linear layers, Batch Norm, RELUs, and Dropout, with

residual connections. Before the final prediction, the linear

layer can be applied to produce outputs of size 3n. Initially,

the weights of our linear layers are set using Kaiming

initialization (He et al., 2015). The 3DPoseNet is trained for

200 epochs using Adam (Kingma and Ba, 2014), a starting

learning rate of 0.001 and exponential decay, using mini-

batches of size 64. In addition, we first train the network

using the Human3.6M dataset (Ionescu et al., 2014).

Gait parameter extraction

First of all, we filled gaps in keypoint trajectories using linear

interpolation and smoothed trajectories using a one-dimensional

FIGURE 3
Diagram with the basic building blocks of 3DPoseNet.
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unit-variance Gaussian filter. It should be noted that the

markerless-based system returns 3D coordinates resolved in a

local system around the middle of the hip joint. The 3D

coordinates provided by the marker-based system came from

a 3D global coordinate reference system fixed on the ground.

These two different coordinate systems were moved to a new,

coincident human-based local coordinate system {O}, as shown

in Figure 4A. We centered each univariate time series by

subtracting the coordinates of the pelvis and scaling all values

by dividing them by the Euclidean distance between the right hip

and the right shoulder.

The definition of the coordinate system was as follows: X was

anterior/posterior, Y was lateral/medial, and Z was inferior/

superior. The alignment procedure was taken from the study by

Kabsch, (1976) and involved the initial rotation of the

measurement systems, followed by the translation toward the

desired origin. The origin of the coordinate system {O} at the

time t was denoted as o(t) � 1/2(PR(t) + PL(t)), where PR(t)
andPL(t)were the 3Dposition of the RASI and LASI joints at time

t, respectively. Two unit vectors can be determined by V1 �
(PR(t) − PL(t))/PR(t) − PL(t) and V2 � (o(t) − o(t − 1))/
o(t) − o(t − 2). Accordingly, {O} � [xh, yh, zh] can be denoted by

xh � V1, (2)
yh � V1 × V2

‖V1 × V2‖, (3)

zh � xh × yh����xh × yh

����
. (4)

Commonly, the 3D limb skeleton can be represented by three

link segments: Upper Trunk, Thigh, and Shank. The 3D position

vector between the right and left shoulder was denoted with u.

The 3D position of the right hip, knee, and ankle as joints was

presented as δ, α, and β, respectively. The upper trunk, right

thigh, and shank as three links were represented as �U � u − o,
�T � α − δ, and �S � α − β, respectively, as shown in Figure 4B. The

knee angle was illustrated in the equation as follows:

RTS � arccos
�T · �S������ �T
������ ×

������ �S
������
. (5)

Furthermore, we calculated the joint angles between each link

segment { �U, �T, �S} with respect to the normal vectors of the

sagittal, coronal, and transverse planes {xh, yh, zh} and

indicated as RUX, RTX, RSX, RUY, RTY, RSY, RUZ,

RTZ, and RSZ.

It should be noted that we estimated aforementioned features

within each gait cycle, and the gait cycle was defined as the time

interval between two consecutive heel-strike events. A heel-strike

was the contact points between the heel and surface. We

calculated gait events of right heel-strikes in marker motion

capture and camera data by independently applying the different

FIGURE 4
Illustration of the human body coordinate system (A) and extracted joint angle features for the subject (B).
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methods to each set of data. For marker data, we found one

derived time series helpful for improving the detection of the gait

cycle. The time series was the x-coordinates of the right ankles.

Heel-strikes were defined by the time points of positive peaks in

the anterior–posterior ankle trajectories. For the markerless-

based system, heel-strike events were detected by visual

inspection. The process was greatly aided by the identification

of ankle key points obtained from the deep neural network

model. In this letter, the RUX, RTX, RSX, RUY, RTY, RSY,

RUZ, RTZ, and RSZ were extracted at 2% increments

throughout the entire cycle Φ(t) ∈ RK(k � 30), for

representing the gait pattern at each time stamp.

Moreover, we used sample entropy to measure the time series

of joint angles in a gait cycle. Sample entropy is a nonlinear

measurement way to analyze time series signals and is proposed

by Richman and Moorman (2000). A higher sample entropy

value indicates more randomness in time series, and lower value

shows more self-similarity. The computational procedures of

sample entropy (SampEn) are as follows (Pham, 2010):

Given a standardized (with zero mean and unit variance)

time series {x(j); 1≤ j≤N}, N is the total number of data points.

Step 1. Construct subsequences of length m:

Xm(1), Xm(2),/, Xm(N −m), where Xm(i) � {x(i + k);
0≤ k≤m − 1} and m is called as embedding dimension.

Step 2. Compute the distance between Xm(i) and Xm(j),
represented by d(Xm(i), Xm(j)), as:
d(Xm(i), Xm(j)) � max{

∣∣∣∣x(i + k) − x(j + k)
∣∣∣∣; 0≤ k≤m

− 1, 1≤ i, j≤N −m, i ≠ j} (6)

Step 3. Calculate the probability that any vector Xm(j) which is

similar to Xm(i) within T as follows:

Ci(m,T) � ni(m,T)
N −m + 1

, i � 1,/, N −m + 1, (7)

where ni(m,T) is the number of vectorsXm(j) that are similar to

Xm(i) subject to the criterion of similarity: d(Xm(i), Xm(j))≤T.

Step 4. Calculate

∅(m,T) � 1
N −m + 1

∑
N−m+1
i�1 Ci(m,T). (8)

Step 5. Set m � m + 1 and repeat steps 1–4.

Step 6. Calculate the sample entropy as

SampEn(N,m, T) � −ln∅(m + 1, T)
∅(m,T) . (9)

Hence, sample entropy is the negative natural logarithm of

condition probability, without allowing self-matches. To

calculate sample entropies of those time series, it is important

to determine the appropriate values of the parameters m and T.

Usually, the constant value of m is 1 or 2, T value ranging from

0.1 SD to 0.25 SD (SD is the standard deviation of time series)

(Lake et al., 2002). In this experiment, we selected m � 2 and

T � 0.2SD for each gait cycle data.

Statistical analysis

Reliability and validity are central characteristics that define

the quality of measurement methods and the test result potential

for application in research and clinical practice (Michelini et al.,

2020). First, we needed to assess the test–retest reliability within

markerless and marker-based motion analysis systems, using

intra-class correlation coefficients [ICC (C, 1)]. ICCs were

determined as follows: almost perfect, 0.81–1.0; substantial,

0.61–0.80; moderate, 0.41–0.60; fair, 0.21–0.40; slight,

0.00–0.20 (Koo and Li, 2016).

Next, to assess the potential difference in joint angles among

different measurement systems, an independent-sample t-test

was used, when the variable conformed to the normality and

homogeneity of variance simultaneously. If the variable did not

conform to the normality or homogeneity assumption, the

Wilcoxon nonparametric test was used for the difference

analysis (Liang et al., 2021). In the event of a statistically

significant main effect, we performed post-hoc pairwise

comparisons with Bonferroni corrections.

Furthermore, we calculated standard errors of measurements

(SEM) and intra-class correlation coefficients [ICC (A, 1)] with

95% confidence intervals (CI) of each joint angle to assess

correlations and consistency. The smallest detectable change

(SDC) was calculated as 1.96p
	
2

√
pSEM. SDC can be regarded

as the smallest change between any two steps that cannot be

attributed to measurement errors (Furlan and Sterr, 2018). In

addition, agreements between the joint angles at maximum

flexion obtained from the markerless and marker-based

systems were assessed by Bland–Altman analysis, which

permits the delineation of systematic analysis (Bland and

Altman, 1986). p-values less than 0.05 were deemed

statistically significant. Data preprocessing, algorithms, and

statistical analyses were implemented using Python (version 3.5).

Results

Participant characteristics

The data for gender and age did not conform to the normality

(p < 0.05); therefore, the Wilcoxon nonparametric tests were

used for difference analysis. The data of mass, height, and BMI

were consistent with the normality and homogeneity

assumptions (p > 0.05); therefore, an independent-sample

t-test was used for the difference analysis. As shown in
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Table 1, the elderly group demonstrated a larger BMI than the

young group (elderly: 24.17 ± 2.81, young: 21.53 ± 2.11, and p =

0.009). Moreover, age showed significant differences (elderly:

56.60 ± 2.53, young: 27.27 ± 4.31, and p = 0.000). It was indicated

that strategies used for the control of gait deviation related to age

between healthy young and elderly adult play an important role

(Mehdizadeh, 2018).

The reliability of motion analysis system

Mean values ±standard deviation and intra-class correlation

coefficients for sample entropy of each joint angle test-retested

using camera and Vicon are described in Table 2. There were

moderate ICCs of the data obtained by marker motion capture

(ICCs = 0.466–0.741 and p < 0.05). Similarly, ICCs of the data

obtained by markerless motion capture were moderate (ICCs =

0.506–0.734 and p < 0.05). The reliability was confirmed on the

joint angles measured using a single camera.

The validity of motion analysis system

All gait parameters were normally distributed and showed

homogeneity of variance. Criterion validity, analyzed by the

comparisons of joint angles results extracted from video

recordings and results generated by the marker motion

capture system, is shown in Table 3 and illustrated by the

Bland–Altman plot (Figure 5).

We calculated the sample entropy of joint angles across the

stride cycle that was averaged for the walking bout of each

individual participant, shown in Table 3. The SDC showed

small values, with ranges between 0.040 and 0.071. It was

indicated that small real differences between measurements

could be detected by our method. Bias for sample entropy of

joint angles between measurements was also shown to be over

small, 0.034 for RTS, 0.018 for RUX, 0.081 for RTX, and 0.047 for

RSX, and they were not statistically different (p > 0.05). This is

supported by intra-class correlation coefficients that were

substantial and the ICC estimates exceeded 0.61, indicating

excellent reliability. Only reliability for RSY [95% CI = (0.291,

0.699)] and RTZ [95% CI = (0.378, 0.7360)] was lower, but still

on a level of good-to-excellent reliability (p < 0.05). The

Bland–Altman plots for each joint angle at maximum flexion

obtained from the markerless and marker-based systems are

provided in Figure 5. The x-axis and y-axis represent the average

and difference between the outputs of the two methods,

respectively. Thick and dotted lines denote the mean and zero

of difference, respectively. The green and red lines represent the

upper and lower limits of 95%, respectively, indicating most data

TABLE 1 Comparison of characteristics between elderly and young groups.

Elderly Young Normality Homogeneity Difference

Gender (men, %) 40% 67% 0.000* 0.478 0.217

Age (years) 56.60 ± 2.53 27.27 ± 4.31 0.000* 0.108 0.000*

Mass (kg) 61.28 ± 8.41 61.50 ± 8.59 0.163 0.662 0.947

Height (cm) 159.2 ± 8.41 168.73 ± 6.63 0.200 0.485 0.002*

BMI (kg/m2) 24.17 ± 2.81 21.53 ± 2.11 0.067 0.198 0.009*

Significant results are indicated with *.

TABLE 2 Statistic property for marker and markerless motion analysis during test–retest.

Markerless motion analysis Marker motion analysis

Bias ICC (95% CI; p-value) Bias ICC (95% CI; p-value)

RTS 0.032 0.734 [(0.592, 0.826); 0.000] 0.033 0.715 [(0.563, 0.814); 0.000]

RUX 0.015 0.714 [(0.561, 0.813); 0.000] 0.029 0.715 [(0.563, 0.814); 0.000]

RTX 0.075 0.617 ([0.405, 0.752]; 0.000) 0.078 0.611 [(0.391, 0.7500; 0.000]

RSX 0.044 0.649 [(0.380, 0.791); 0.000] 0.051 0.741 [(0.599, 0.833); 0.000]

RUY −0.082 0.603 [(0.244, 0.775); 0.000] −0.086 0.684 [(0.292, 0.837); 0.000]

RTY 0.066 0.610 [(0.394, 0.748); 0.000] 0.076 0.512 [(0.245, 0.684); 0.000]

RSY 0.104 0.519 [(0.253, 0.689); 0.000] 0.101 0.486 [(0.211, 0.665); 0.000]

RUZ −0.040 0.658 [(0.476, 0.777); 0.000] −0.40 0.699 [(0.537, 0.804); 0.000]

RTZ 0.169 0.506 [(0.148, 0.703); 0.000] 0.179 0.466 [(0.082, 0.678); 0.000]

RSZ 0.089 0.652 [(0.428, 0.784); 0.000] 0.095 0.581 [(0.317, 0.738); 0.000]
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are distributed within this range. The blue line shows that the

difference between the two methods increases/decreases as the

angle increases. The thick line was close to the dotted line on RTS,

RUX, RTX, RSX, RTY, and RTZ, indicating higher consensus

among the results of the two methods, otherwise on RUY, RSY,

RUZ, and RSZ. This was consistent with the results given in

Table 3.

Discussion

In this study, the markerless pose estimation algorithm,

OpenPose combined with 3DPoseNet, and signal processing

techniques were used to evaluate a non-invasive method

capable of capturing gait parameters. The main findings show

that the proposed methods for extracting gait angles possess their

own good validity and reliability. Several previous studies have

used markerless-based analysis to study gait patterns of walking

or other human movements (Michelini et al., 2020; Nakano et al.,

2020; Ota et al., 2020). Our findings were consistent with these

reports in that 3D markerless pose estimation in providing

quantitative information about human movement is very

promising.

First, ICC (C, 1) indicates the test–retest reliability within

markerless- and marker-based systems was in almost complete

agreement. At joint angles RTS, RUX, RTX, and RSX, there was

no significant difference between the markerless- and marker-

based motion analysis systems and the ICC (A, 1) was high

enough. However, RUY, RTY, RSY, RUZ, RTZ, and RSZwere fair.

One of the reasons is that there are differences in measurement

methods of sample entropy of angles between markerless- and

marker-based systems.While amarker-based system consisted of

several cameras to form three-dimensional motion data, a

markerless-based motion analysis system combined with deep

algorithms to provide three-dimensional coordinates based on

one camera. Therefore, the rotation motion has not been

accurately measured. Another reason is that RUY, RTY, RSY,

RUZ, RTZ, and RSZ were defined as the coronal and transverse

plane angle of the normal vector relative to the upper trunk, right

thigh, and shank. In the experiment, we acquired a dataset from

stationary video camera recordings of healthy human gait, with

sagittal plane views. It is possible that camera angles would likely

affect results.

Some limitations of this study should be noted. First, some

sources of error may be intrinsic to 3D markerless pose

estimation. First and most obvious, it is difficult to track

human movements frame-by-frame perfectly from the video.

For example, the left and right segments could interchange or

disappear in OpenPose. In this situation, our

3DPoseNet algorithm cannot predict 3D pose from a failed

detector output. Second, the markerless-based identification

system is unlikely to be equivalent to the marker landmarks.

While marker placement depends on manual palpation of bony

landmarks, a markerless-based system relies on visually labeled

generalized key points. The placement of motion capture

markers also owns some degree of error. These errors can

affect the validity of the precision evaluation of a markerless-

based system. Despite these limitations, the marker motion

capture has been recognized as the ground truth (Nakano

et al., 2020). As a result, the proposed method for evaluating

a markerless-based system can be considered to be reasonable.

We did not pre-estimate the sample size. However, it

exceeded what is commonly required for reliability studies

(Koo and Li, 2016), since 30 subjects were instructed to walk

on three times for the sake of collecting enough information to

perform the analysis. Our approach also includes manual

marking of the contact points between the heel and surface by

visual inspection, which we register in order to accumulate a

database to refine gait events. In the next work, it may be possible

to obtain more accurate video-based analyses by training gait-

specific networks from coronal and transverse views. It may be

beneficial to train networks that are specific to each population,

TABLE 3 Comparison of characteristics between marker and markerless motion analysis.

SDC Bias
(95% CI; p-value)

ICC (95% CI; p-value)

RTS 0.053 0.034 [(0.000, 0.068); 0.315] 0.726 [(0.579, 0.821); 0.000]

RUX 0.071 0.018 [(−0.019, 0.056); 0.325] 0.716 [(0.565, 0.815); 0.000]

RTX 0.055 0.081 [(0.036, 0.127); 0.399] 0.644 [(0.454, 0.768); 0.000]

RSX 0.064 0.047 [(0.008, 0.087); 0.174] 0.760 [(0.632, 0.844); 0.000]

RUY 0.054 −0.098 [(−0.123, −0.074); 0.000] 0.765 [(0.639, 0.847); 0.000]

RTY 0.040 0.084 [(0.045, 0.124); 0.000] 0.613 [(0.406, 0.748); 0.000]

RSY 0.044 0.108 [(0.054, 0.162); 0.000] 0.538 [(0.291, 0.699); 0.000]

RUZ 0.060 −0.046 [(−0.080, −0.013); 0.008] 0.694 [(0.530, 0.800); 0.000]

RTZ 0.058 0.185 [(0.130, 0.240); 0.000] 0.595 [(0.378, 0.736); 0.000]

RSZ 0.061 0.102 [(0.056, 0.145); 0.000] 0.665 [(0.485, 0.782); 0.000]
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FIGURE 5
Bland–Altman plot of RTS (A), RUX (B), RTX (C), RSX (D), RUY (E), RTY (F), RSY (G), RUZ (H), RTZ (I), and RSZ (J) at maximum flexion and
comparison between the markerless- and marker-based systems.
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such as elderly people who experience accidental falls or

abnormal gait. The markerless-based analysis described in the

current study is promising for future applications. Such a method

can classify different gait types and automatically extract

quantitative gait information from the video.

Conclusion

This study demonstrated the potential for combining

OpenPose and 3DPoseNet markerless pose estimation

algorithms to identify gait pathology. Given economic and

time constraint problems, we have gained several insights

from this exercise: 1) laboratory-based optical motion capture

is a reasonable baseline predictor, while 3D markerless pose

estimation networks were close to the ground_truth statistically

significantly; 2) quantitative evaluations indicate that our

proposed workflow trained on experimental movements can

be generalized to non-experimental-specific poses; 3)

correlation between the quantified results of network

convergence support our initial hypothesis that learning a

mapping from images to predict kinematics gait parameters is

feasible; 4) the test–retest reliability within the device was in

almost complete agreement. It was indicated that our video

analysis could be used as a quantitative assessment of gait

outside of a clinic. For predicting abnormal gait patterns or

fall risk, future work should also include elderly people who

experienced a fall.
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