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As one of the most common malignant tumors, hepatocellular carcinoma (HCC) is the
fifth major cause of cancer-associated mortality worldwide. In 90% of cases, HCC
develops in the context of liver cirrhosis and chronic hepatitis B virus (HBV) infection
is an important etiology for cirrhosis and HCC, accounting for 53% of all HCC cases.
To understand the underlying mechanisms of the dynamic chain reactions from normal
to HBV infection, from HBV infection to liver cirrhosis, from liver cirrhosis to HCC, we
analyzed the blood lncRNA expression profiles from 38 healthy control samples, 45
chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC patients. Advanced
machine-learning methods including Monte Carlo feature selection, incremental feature
selection (IFS), and support vector machine (SVM) were applied to discover the signature
associated with HCC progression and construct the prediction model. One hundred
seventy-one key HCC progression-associated lncRNAs were identified and their overall
accuracy was 0.823 as evaluated with leave-one-out cross validation (LOOCV). The
accuracies of the lncRNA signature for healthy control, chronic hepatitis B, liver cirrhosis,
and HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The 171-lncRNA signature
is not only useful for early detection and intervention of HCC, but also helpful for
understanding the multistage tumorigenic processes of HCC.

Keywords: hepatocellular carcinoma, hepatitis B virus, lncRNA, liver cirrhosis, support vector machine

INTRODUCTION

As one of the most common malignant tumors and the fifth major cause of cancer deaths worldwide
(Jemal et al., 2011), hepatocellular carcinoma (HCC) is typical of highly invasive and metastatic
potential. Although much progress has been made in clinical and experimental studies in HCC, the
5-year survival rate of HCC sufferers is still very low due to its poor prognosis, frequent clinical
recurrence, and metastasis (Madkhali et al., 2015). The most important risk factors for liver cancer
are hepatitis B virus (HBV), hepatitis C virus (HCV), excessive drinking, and exposure to aflatoxin
B1. The geographical variability and heterogeneity of the incidence of HCC is different from the
distribution of HBV and HCV infections on a global scale (Liu and Kao, 2007; Petruzziello et al.,
2016). Globally, HBV accounts for about 80% of virus-related HCC cases, especially in Africa and
East Asia, where the incidence of HCC is the highest. In low-incidence HCC areas such as Western
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Europe and North America, HCV infection accounts for about
20% of the total number of HCCs. HBV seems to be mainly
related to the development of HCC (Blachier et al., 2013; Mittal
and El-Serag, 2013; Kew, 2014; Ozakyol, 2017). About 15–40%
of chronically infected people develop severe sequelae, such as
cirrhosis, liver failure, and liver cancer, and nearly 1 million
people die each year due to complications related to HBV1.

Hepatitis B virus infection facilitates virus-induced immune
response through releasing cytokines and genotoxic reactive
oxygen species, which triggers hepatocyte necrosis and may
eventually contribute to the development of carcinogenesis
with the speed-up of the hepatocyte cell cycles and raised
risk of genetic variation (Budhu and Wang, 2006). Therefore,
suppression of viral replication via antiviral therapy appears
to decrease the risk of cirrhosis and HCC (Liaw et al., 2004;
Hosaka et al., 2013). HCC in the early phase can be effectively
treated through liver transplantation, resection, or ablation,
whereas the treatment strategies are very limited for advanced
patients (Llovet, 2014). Accordingly, comprehensive approaches
to identify and validate novel markers are needed so as to
provide a new idea for the early diagnosis and exploration of
therapeutic targets of HCC.

Recently, loads of dysregulated long non-coding RNAs
(lncRNAs) have been confirmed in HCC tumor tissue via high-
throughput sequencing techniques, some of which may serve
as early diagnostic biomarkers or therapeutic targets for HCC
(Huo et al., 2017). LncRNAs are a subclass of non-coding
RNAs that are able to modulate gene expression and cancer-
related signaling pathways. Sufficient evidence suggested that
lncRNAs are correlated with HCC cell biological functions, such
as cell proliferation, cell apoptosis, the epithelial–mesenchymal
transition (EMT) process, cell invasion, and tumor metastasis,
and eventually result in the occurrence and progression of
HCC (Qiu et al., 2017). For example, upregulation of several
lncRNAs, including LncTCF-7, DANCR, ZEB1-AS1, and EGFR-
AS1, have proven to play crucial roles in HCC progression via
the activation of EMT and Wnt/β-catenin signaling (Yuen et al.,
2009; Wang et al., 2015; Qi et al., 2016; Yuan et al., 2016).
Downregulated lncRNA H19 has been shown to be associated
with HCC metastasis (Zhang et al., 2013). Despite the fact that
increasing studies have reported dysregulated lncRNAs in HCC,
most of corresponding mechanisms and potential functions
remain unclear. Further explorations on the regulation of these
dysregulated lncRNAs, their mechanisms, and their association
with the etiology of HCC may facilitate us to find more specific
and sensitive markers to control HCC.

To identify the lncRNA signature associated with HCC
progression, we analyzed the blood lncRNA expression profiles
of 38 healthy control samples, 45 chronic hepatitis B patients, 46
liver cirrhosis patients, and 46 HCC patients. Advanced machine-
learning methods like support vector machine (SVM), Monte
Carlo feature selection, and incremental feature selection (IFS)
were implemented for identification of the HCC progression-
associated signature and construction of the prediction model.

1https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/

MATERIALS AND METHODS

The lncRNA Expression Profiles of
Patients From Different Tumorigenesis
Stages
We downloaded the blood lncRNA expression profiles of
38 healthy control samples, 45 chronic hepatitis B patients,
46 liver cirrhosis patients, and 46 HCC sufferers from
GSE78160 included in the Gene Expression Omnibus
(GEO). Expression levels of 2,520 lncRNA probes were
assessed by State Key Laboratory Human lncRNA array 2412
(GPL214942) developed by State Key Laboratory of Oncology
in South China, Sun Yat-sen University. We would like to
compare the differences among different tumorigenesis stages
of HCC.

The Importance of lncRNAs Is
Calculated Using the Monte Carlo
Feature Selection Method
The Monte-Carlo feature selection (Draminski et al., 2008) was
employed to identify the key HCC lncRNAs. It is a widely used
method with excellent performance in finding key features (Chen
et al., 2018b,c; Pan et al., 2019). Monte Carlo feature selection
can evaluate the importance of a feature by considering the
contribution of the feature to accurate classification through a
series of decision trees. Three steps are included: First, it will
randomly choose many feature subsets; then, on each feature
subset, a tree classifier will be built; and last, based on these trees,
a compressive feature importance score will be calculated (Chen
et al., 2018a; Pan et al., 2018; Wang et al., 2018). The final feature-
importance score will consider both the frequency of this feature
being selected by a tree and how well the node of this feature on
the tree can classify the samples.

To introduce the details of this algorithm, the total number
of lncRNAs was represented by d, which was 2,520 in this
study. Each time, m lncRNAs (m � d) are chosen at random
and a tree classifier t is trained and tested on the basis of the
randomly divided patients in the training and the test groups.
This procedure will repeat s times. At last, there will be a series
of trees. On the basis of the times a lncRNA g selected through
these trees and the contribution of this lncRNA g to the tree
classification, the relative importance (RI) of the lncRNA g can
be calculated as follows:

RIg =

st∑
τ=1

(wAcc)u
∑
ng(τ)

IG(ng (τ))

(
no. in ng (τ)

no. in τ

)v
(1)

where wAcc refers to the weighted classification accuracy of the
decision tree τ; IG

(
ng (τ)

)
represents the information gained

by node ng (τ) , a decision rule based on lncRNA g expression;(
no. in ng (τ)

)
stands for the total number of patients in node

ng (τ); (no. in τ) refers to the total number of the patients under
the decision tree τ; and u and v represent the adjusted parameters.

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL21494
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With Eq. (1), all lncRNAs will have a RI score and they will be
ranked in line with their importance. The Monte Carlo feature
selection method was implemented using the dmLab software
(Draminski et al., 2008) accessed at https://home.ipipan.waw.pl/
m.draminski/mcfs.html.

Optimization of the lncRNA Signature
With IFS Method
To optimize the number of selected lncRNAs, the IFS method
(Jiang et al., 2013; Li et al., 2014; Shu et al., 2014; Zhang
et al., 2014; Huang et al., 2015; Zhang P.W. et al., 2015;
Chen L. et al., 2017) was employed. IFS can help determine how
many features should be chosen. It assesses the performance
of a series of SVM classifiers using various numbers of
lncRNAs from one lncRNA, two lncRNAs, three lncRNAs
to more lncRNAs. The SVM was a widely used classifier
that was wrapped into IFS to evaluate the classification
performance of different lncRNA sets. The lncRNA combination
that had the best performance will be selected. It made the
selection procedure objective and the chosen signatures had
optimal performance.

In this study, the SVM classifier was established using the
R function svm from package e10713 with default parameters
(SVM-Type: C-classification; SVM-Kernel: radial; cost: 1) and
the classification accuracy was assessed with the aid of the leave-
one-out cross-validation (LOOCV) method and then used to
represent the prediction performance.

RESULTS AND DISCUSSION

The HCC Progression lncRNAs Identified
With Machine Learning Methods
The lncRNA importance was evaluated with the Monte Carlo
feature selection method. It reflected how well the expression
level of this lncRNA can correctly classify the healthy control
samples, chronic hepatitis B patients, liver cirrhosis patients, and
HCC patients. The rank of this importance provided basis for
further optimization.

We optimized the top 500 ranked lncRNAs to 171 lncRNAs
using the IFS method. Figure 1 shows the IFS curve in
which the abscissa is the count of lncRNAs responsible for the
establishment of the SVM classifier, and the vertical coordinate
is the prediction accuracy assessed by LOOCV. The IFS curve
peaked at (171, 0.823), which meant when 171 lncRNAs were
used and the accuracy was the highest as 0.823. The accuracies
of healthy control, chronic hepatitis B, liver cirrhosis, and
HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The
171 lncRNA probes are listed in Supplementary Table 1.
The confusion matrix of the prediction performance using
these 171 lncRNAs are listed in Table 1. It depicts that
not only the overall accuracy, but also the accuracy of each
progression stage.

3https://CRAN.R-project.org/package=e1071

The Biological Functions of the Identified
lncRNAs
Since the lncRNA array was customized and did not have too
much annotation, we blasted their sequences onto the lncRNA
sequences in LNCipedia, version 5.04 (Volders et al., 2018). Some
of the identified lncRNAs were seen to be promising and may help
understand the mechanisms underlying HCC tumorigenesis.

LUCAT1:20 ranked sixth in Supplementary Table 1. LUCAT1
(Lung Cancer Associated Transcript 1) was seen to be elevated in
HCC tissue and cells relative to that in adjacent tissue, which was
associated with pathological characteristics, such as tumor size,
metastasis, and stage of HCC (Levine et al., 1988). Functional
studies have unveiled the active role of LUCAT1 both in vitro
and in vivo in potentiating the HCC tumor progression and
metastasis (Levine et al., 1988; Gramantieri et al., 2018). LUCAT1
was also reported to bind to Annexin A2 (ANXA2) specifically,
which is a phospholipids binding protein dependent on calcium
and plays a vital role in the malignant behaviors of HCC cells
with its expression elevated (Shi et al., 1993; Kohli et al., 2018).
Zhang F. et al. (2015) indicated that the knock down of ANXA2
induced by shRNA inhibits hepatoma cell invasive and migratory
capabilities and may hence become a therapeutic target for the
molecular treatment of HCC in the future.

Lnc-RAP2B-5:1 ranked ninth in Supplementary Table 1.
RAP2B, an Ras oncogene family (small GTP-binding proteins)
member (Ohmstede et al., 1990), is a novel target of p53
regulating the cell pro-survival function (Qu et al., 2016).
Increasing evidence suggests a critical role of RAP2B in
the regulation of cytoskeletal organization, cell growth, cell
proliferation, and other cellular processes (Uechi et al., 2009;
Qu et al., 2016). Zhang et al. (2017) discovered the elevated
expression of RAP2B in HCC tissue and cell lines, and revealed
that the decreased RAP2B significantly downregulates the levels
of p-FAK and MMP-2, and then inhibits HCC cell proliferation,
invasion, and migration. Thus, Rap2B-targeted anticancer drugs
are expected to become a novel therapy against cancer.

Lnc-FOXO1-2:3 ranked 15th in Supplementary Table 1.
Forkhead Box Protein O1 (FOXO1), a member of the forkhead
family, has been discovered to be dysregulated in multiple
cancers including HCC, and it affects many cellular processes,
like carcinogenesis, DNA damage repair, cell apoptosis, and
tumor immunity (Huang and Tindall, 2007; Luo et al., 2016). It’s
reported that higher FOXO1 significantly promotes replication
and expression of HBV (Wang and Tian, 2017) and is
related to a more favorable prognosis of HCC (Calvisi et al.,
2009; Leung et al., 2015). EMT, a crucial process amid the
occurrence of metastasis, is the principal reason for mortality
in HCC (Papageorgis, 2015; Ye and Weinberg, 2015). Dong
et al. (2017) found that FOXO1 is capable of reversing
the EMT process through directly inhibiting transcription
inducers like ZEB2, indicating the negative effect of FOXO1
on HCC cell proliferation and invasion. ZEB2 is reported to
be upregulated in HCC cell-derived lung metastatic nodules,
and its overexpression is responsible for HCC recurrence

4https://lncipedia.org/
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FIGURE 1 | The IFS curve for key lncRNA selection. The x-axis is the number of lncRNAs used to build the SVM classifier. The y-axis is the prediction accuracy
evaluated with LOOCV. When 171 lncRNAs were used, the accuracy was the highest as 0.823.

TABLE 1 | The confusion matrix of the prediction performance using 171 lncRNAs.

Predicted stage 1 Predicted stage 2 Predicted stage 3 Predicted stage 4 Accuracy of each stage

Actual stage 1 34 3 0 1 34/(34 + 3 + 0 + 1) = 0.895

Actual stage 2 3 32 8 2 32/(3 + 32 + 8 + 2) = 0.711

Actual stage 3 0 5 40 1 40/(0 + 5 + 40 + 1) = 0.870

Actual stage 4 1 7 0 38 38/(1 + 7 + 0 + 38) = 0.826

stage 1, healthy control; stage 2, chronic hepatitis B; stage 3, liver cirrhosis; stage 4, hepatocellular carcinoma.

(Xia et al., 2014; Yang et al., 2015). Therefore, the enhancement
of FOXO1 and the inhibition of EMT-related inducers like ZEB2
may have the potential to be applied in the clinical treatment of
HCC with great value.

MALAT1:17 ranked 104th in Supplementary Table 1.
As a long and highly conserved lncRNA widely expressed
in different tissues (Zebisch et al., 2016), metastasis-
associated lung adenocarcinoma transcription 1 (MALAT1)
is regarded to be closely related to diverse cancer types,
especially in the progression of HCC related to HBx
(Jiang et al., 2014; Hou et al., 2017; He et al., 2019). The
lncRNA−MALAT1 has been reported to be increased in
HCC cell lines and it serves as a proto−oncogene amid
the progression of HCC by means of activating the Wnt
pathway and inducing the oncogenic splicing factor SRSF1
(Malakar et al., 2017). Furthermore, Liu et al. (2018)

found that knockdown of MALAT1 suppresses the growth,
migration, and motility of HCC cells by elevating miR-
195, indicating that MALAT1 is an important player in the
progression of HCC.

In addition to the aforementioned genes, lncRNAs including
EPCAM (Yamashita et al., 2008), WDR5 (Cui et al., 2018), S1PR1
(Zhou et al., 2014), HMGA1 (Andreozzi et al., 2016), TGFBR2
(Chen Y.L. et al., 2017), CXCL12 (Semaan et al., 2017), and
SENP2 (Shen et al., 2012) were also reported to participate in
the pathogenesis of liver cirrhosis and HCC. Zhang et al. (2019)
confirmed that silencing EPCAM can inhibit hepatic fibrosis and
hepatic stellate cell proliferation in mice with alcoholic hepatitis
through the PI3K/Akt/mTOR signaling pathway. Wenfang Tian
et al. (2016) also found that WDR5 is an important epigenetic
factor in the process of liver fibrosis. S1PR1 has been reported
to be associated with cholestatic liver injury in early stage
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liver cancer and may be a potential target for the prevention
of drug-induced cholestatic liver injury (Yang et al., 2017).
HMGA1 was confirmed to be involved in the proliferation
and invasion of HCC cells through the ilk/Akt/GSK3 signaling
pathway (Liu et al., 2017). TGFBR2 is involved in regulating
the regulation axis and aggravates liver fibrosis (Fu et al., 2020).
The CXCL12/CXCR4 biological axis can inhibit the activation
and migration of hepatic stellate cells in vitro and in vivo (Qin
et al., 2018). SENP2 can reduce CCl4-induced liver fibrosis by
promoting apoptosis and reversion of activated hepatic stellate
cells (Bu et al., 2018).

Three lncRNAs mentioned earlier have been found to be
associated with HBV. Studies have shown that MALAT1,
WDR5, and CXCL12 are involved in the regulation of HCC
induced by HBV through epigenetic mechanism. Bo He et al.
(2019) found that interaction of lncRNA-MALAT1 and miR-
124 regulates HBx-induced cancer stem cell properties through
PI3K/Akt signaling. Weiwu Gao et al. found that WDR5 plays
an important role in HBV-driven mouse hepatocyte proliferation
and tumor growth (Gao et al., 2020). Chao Wang et al. (2017)
found that HBx also upregulated the translocation of MDM2
into the nucleus and enhanced the transcriptional activity of
CXCL12 and CXCR4.

Though the role of lncRNAs in HCC has been partially
revealed, more large cohort studies and in-depth functional
studies are still needed to validate the HCC lncRNA signature
and to investigate the underlying mechanisms. In future research,
we will focus on the biological functions of these lncRNAs in
HBV infection, liver cirrhosis, and liver cancer, and further
explore the molecular regulatory mechanism of these lncRNAs
in cells to clarify the mechanism of lncRNAs and their important
position in cells.

CONCLUSION

Tumorigenesis is a multistage process. HBV infection is a trigger
factor for liver cirrhosis and liver cirrhosis is a transition stage to
HCC. The dynamic changes from normal to HBV infection, from
HBV infection to liver cirrhosis, from liver cirrhosis to HCC,
formed the chain reaction of tumorigenesis. We analyzed the
blood lncRNA expression profiles of different HCC progression
stages: healthy, chronic hepatitis B, liver cirrhosis patients, and

HCC. A 171-lncRNA signature was identified with advanced
machine-learning methods. These lncRNAs can help explain
the mechanisms of HCC tumorigenesis. They can be used as
biomarkers of HCC progression to monitor how bad the situation
is and provide early detection and intervention of HCC.
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