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Abstract: The use of nanomaterials alone or in composites with proteins is a promising alternative
to inhibit pathogenic bacteria. In this regard, this study used seed proteins from both fenugreek
(Trigonella foenum-graecum L.) (FNP) and mung bean (Viga radiate) (MNP), with silver nanoparticles
(Ag-NPs) and nanocomposites of either Ag-NPs plus FNP (Ag-FNP) or Ag-NPs plus MNP (Ag-MNP)
as inhibitory agents against pathogenic bacteria. FNP and MNP were isolated from fenugreek seeds
and mung bean seeds, respectively, and fractionated using Sodium Dodecyl Sulfate–Polyacrylamide
Gel Electrophoresis (SDS–PAGE). Both FNP and MNP were immobilized with Ag-NPs to synthesize
the nanocomposites Ag-FNP and Ag-MNP, respectively. The physicochemical characteristics of
Ag-NPs and their composites with proteins were studied by X-ray Diffraction (XRD), dynamic light
scattering (DLS), the zeta potential, Scanning and Transmission Electron Microscopy (SEM and TEM,
respectively), Atomic Force Microscopy (AFM), and the Brunauer–Emmett–Teller isotherm (BET),
elucidating their structural parameters, size distribution, size charges, size surface morphology,
particle shape, dimensional forms of particles, and specific surface area, respectively. The sole
proteins, Ag-NPs, and their nanocomposites inhibited pathogenic Gram-positive and Gram-negative
bacteria. The inhibitory activities of both nanocomposites (Ag-FNP and Ag-MNP) were more than
those obtained by either Ag-NPs or proteins (FNP, MNP). Minimum inhibitory concentrations (MICs)
of Ag-FNP were very low (20 and 10 µg mL−1) against Salmonella typhimurium and Pseudomonas
aerugenosa, respectively, but higher (162 µg mL−1) against E. coli and Listeria monocytogenes. MICs of
Ag-MNP were also very low (20 µg mL−1) against Staphylococcus aureus but higher (325 µg mL−1)
against Listeria monocytogenes. TEM images of Staphylococcus aureus and Salmonella typhimurium,
treated with Ag-FNP and Ag-MNP, at their MIC values, showed asymmetric, wrinkled exterior
surfaces, cell deformations, cell depressions, and diminished cell numbers.

Keywords: mung bean; fenugreek; seed proteins; silver nanoparticles; nanocomposite; antibacterial
activity

1. Introduction

Several published studies have reported the highest incidences of pathogenic mi-
crobes in different foods [1–3]. Some of the microbial pathogens isolated from different
sources were identified and classified as multidrug-resistant [4–7]. Further research works
are required to discover innovative strategies for controlling multidrug-resistant bacte-
ria by (i) nanomaterials [8–11], (ii) phage therapy [12], (iii) plant extracts either singly or
in combination with antibiotics [13,14], (iv) probiotics [15–18], and (v) plant or animal
proteins [19–21]. As legume proteins have shown promising inhibitions of pathogenic
multidrug-resistant bacteria in vitro and in situ [22,23], the current study was an endeavor
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to evaluate the antibacterial activity of nanocomposites prepared from the seed proteins of
either fenugreek (FNP) or mung bean (MNP) as coupled with silver nanoparticles (AgNPs).
As fenugreek seed protein is a rich-legume protein with a favorable amino acid composition,
it can be a potential source of bioactive agents [24–26], releasing upon digestion specific
bioactive peptides, which can inhibit bacterial pathogens [27]. Angiotensin I-converting
enzyme (ACE) inhibitors, antioxidants, and anticancer agents can be provided by the
peptides constituting the mung bean protein hydrolysate [28]. Nanoparticles explicitly
used as carriers of drugs or therapeutic molecules can be used as large as 100 nm in one
dimension. They are made of various materials such as natural or synthetic polymers,
lipids, or metals. The quicker and more efficient biological absorption of nanoparticles
than larger macromolecules nominate them as excellent delivery systems materials [29,30].
Silver nanoparticles (AgNPs) have become one of the most investigated and explored
nanotechnology-derived nanostructures during the past few years, having antimicrobial
activities against bacteria and fungi, counteracting multidrug-resistant bacterial strains [31].
AgNPs can disturb bacterial membranes and destroy the cells, producing severe distur-
bances in the cell function and structure, leading to cell death [32,33]. The present study
aimed to investigate the isolation, fractionation, and characterization of fenugreek seed
proteins (FNP) and mung bean seed proteins (MNP), in parallel with the characteriza-
tion of AgNP nanocomposites: FNP-AgNPs and MNP-AgNPs, while following their
antibacterial activities.

2. Materials and Methods
2.1. Plant Materials and Chemicals

Mung bean (Vigra radiata L.) seeds were purchased from the Agriculture Research
Center, Cairo, Egypt. Fenugreek (Trigonella foenum-graecum L.) seeds were purchased from
the local market, 10th of Ramadan City, Sharkia Governorate, Egypt (20 km from North
Cairo). They were identified by Dr. Samir Teleb, Botany and Microbiology Department,
Faculty of Science, Zagazig University. All the chemicals used were provided by Sigma
chemical company (Burlington, MA, USA).

2.2. Microorganisms

Gram-positive pathogenic bacteria such as Staphylococcus aureus DSM 1104 (S. au-
reus), Streptococcus pyogenes ATCC 018 (S. pyogenes), and Listeria monocytogenes LMG10470
(L. monocytogenes) were used. Gram-negative bacteria such as Pseudomonas aeruginosa LMG
8029 (P. aeruginosa), Escherichia coli LMG 8223 (E. coli), Salmonella typhimurium LMG 10395
(S. typhimurium), Klebsiella pneumonia ATCC 43816 (K. pneumonia), and Proteus mirabilis
WPM111 (P. mirabilis) were also used in this study. All the indicator bacteria were provided
by the Laboratory of Bacteriology, Botany, and Microbiology Department, Faculty of Sci-
ence, Zagazig University, Zagazig, Egypt. They were stored in glass beads at −20 ◦C and
subcultured into Brain Heart Infusion broth (Oxoid Wade Road, Basingstoke, Hampshire,
RG24 8PW, UK) [34].

2.3. Extraction of Seed Proteins (FNP, MNP)

Mung bean and fenugreek seeds were ground in a grinder (Moulinex, France) and
defatted with n-hexane (Sigma Chem-Company, Burlington, MA, USA) (1:10 w/v, seeds-
to-solvent ratio) with constant stirring for two hours at room temperature. The slurry
was defatted two more times and then filtered using cheesecloth filters (ultrafine grade,
cotton-made, Gomhuria Company, Zagazig, Egypt). After drying, the defatted seeds were
used for protein isolation. About 5% (w/v) defatted slurry was dispersed in distilled water
adjusted at pH 9.0 using 0.1 N NaOH at room temperature, shaken for one hour, and
centrifuged for 15 min, at 2000× g. In order to obtain increased yields, the extraction and
centrifugation procedures were repeated on the residue. The extracts were combined, and
the pH was adjusted to 4.5 with 1 N HCL to precipitate the protein. The proteins were
recovered by centrifugation at 2000× g for 15 min followed by removing the supernatant
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by decantation. Crud protein was washed with distilled water, dispersed in distilled water
at pH 7.5, dialyzed against distilled water for 48 h at 4 ◦C, and lyophilized [35]. Both
fenugreek and mung bean proteins were designated FNP and MNP, respectively, and were
used in the experiments.

2.4. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS–PAGE)

Twenty milligrams of either MNP or FNP were dissolved in 1 mL aliquots of SDS
(10%) with 100 µL of β-mercaptoethanol and subjected to intermittent vortexing for 15 min.
The mixture was then centrifuged at 10,000× g for 5 min to separate the extract. Twenty
milliliters of the extract was mixed with 20 µL of SDS sample loading buffer (SDS 4%,
β-mercaptoethanol 3%, glycerol 20%, Tris-HCl 50 mM pH 6.8, and bromophenol blue
traces) and heated at 96 ◦C for 5 min, and 10 µL aliquots were electrophoresed (10 µL of
protein/lane) and analyzed by SDS–PAGE [36]. In addition, the composition of mung bean
and fenugreek seed proteins was investigated by Powder X-ray Diffraction (XRD) (Bruker,
D8 discover).

2.5. Synthesis of Silver Nanoparticles (AgNPs)

The synthesis of silver nanoparticles was achieved following the co-precipitation
method, employing tri-sodium citrate (TSC) as a reducing and capping agent. First, AgNO3
solution (0.02 M) was dissolved in 100 mL of deionized water, heated to boiling, and then
TSC was added drop by drop with rough stirring (750 rpm) and heated until the mixture
color became pale yellow. Finally, the mixture was cooled to room temperature under dark
conditions to avoid light [37].

2.6. Synthesis of FNP and MNP Nanoparticles

Synthesis of FNP (fenugreek protein nanoparticles) and MNP (mung bean protein
nanoparticle) was carried out by the top-down method in which the large particles (bulk)
were converted to small ones (nanoparticles). Both fenugreek and mung bean, extracted
proteins, used as source materials, were of more than 98.5% and 99.8% purity, respectively.
The ball mill method was used to prepare either FNP or MNP with multi-step processes.
A quantity (5 g) of either fenugreek or mung bean was charged into 40 cm ball milling
stainless-steel vials; ball mills consisted of silicon carbide and stainless-steel balls that were
mounted on a vibrating plate. First, 10 g of stainless-steel balls with a 0.2 cm diameter were
added to the vibrating plate, and the milling was conducted for 10 h. Secondly, the silicon
carbide balls with a diameter of 0.02 cm were added to the vibrating plate, and milling
lasted for 10 h [37].

2.7. Synthesis of Silver-Fenugreek Nanocomposite (Ag-FNP) or Silver-Mung-Bean Nanocomposite
(Ag-MNP)

Synthesis of either the silver-fenugreek nanocomposite (Ag-FNP) or silver-mung-bean
nanocomposite (Ag-MNP) was carried out by direct precipitation of silver nanoparticles
in the presence of fenugreek and mung bean nanoparticles through a synthesis process.
First, 1 g of mung bean or fenugreek dispersion in 200 mL of deionized distilled water
was added to a 250 mL beaker of 0.1 g of silver nitrate and heated until boiling. Then,
trisodium citrate (5 g/50 mL) was added dropwise under stirring at 800 rpm until the
yellow color appeared.

2.8. Characterization of Both AgNPs and Nanocomposites (Ag-FNP, Ag-MNP)

XRD (Bruker, D8 discover) (Billerica, MA, USA) was applied to Ag-FNP and Ag-
MNP to confirm their colloidal nature and to test the homogeneity and purity of synthesis
processes. In addition, the size and charge of both Ag-FNP and Ag-MNP were measured
by both dynamic light scattering (DLS) and zeta potential (Entgris, Z3000) (Billerica, MA,
USA), as previously described in [38–40].
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Scanning Electron Microscopy (SEM) (JEOL, Akishima, Tokyo 196-8558, Japan) was
carried out also to study the surface morphology of AgNPs, Ag-FNP, and Ag-MNP. Ac-
cording to Jol 2000, Japan, the SEM images were taken, operating at an acceleration voltage
of 20 kV and magnification of 160,000×. In addition, Transmission Electron Microscopy
(TEM) was carried out for both AgNPs and either Ag-FNP or Ag-MNP. Either AgPNs or
Ag-MNP and Ag-FNP were added to double-deionized water and sonicated for 50 min
using an ultrasound instrument of 50 kHz, at an amplitude of 85% and 0.65 of a cycle
(UP400S, Hielscher, Germany). An aliquot (5 microns) of the slurry was then placed
onto a carbon-coated copper grid. TEM examinations were carried out using a TEM-2100
high-resolution electron microscope (JEOL, Akishima, Tokyo 196-8558, Japan).

Atomic Force Microscopy (AFM 5600LS, Agilent, Santa Clara, California, USA) was
used to provide 2-dimensional and 3-dimensional AFM of both AgNPs and either Ag-FNP
and Ag-MNP. First, samples were subjected to ultrasound waves for one hour, a condition
of 60 kHz, and an amplitude of 85% and 0.6 of a cycle (UP400S manufactured by Hielscher,
Teltow, Germany); then, a thin film was created using a spin coating instrument model
Laurell-650Sz under the condition of 820 rpm under vacuum [41].

The specific surface area was measured for both proteins (FNP, MNP) and protein-
nanocomposites (Ag-FNP, Ag-MNP) by the BET method (the Brunauer–Emmett–Teller
isotherm). A Quantachrome, NOVA touch LX2 model was used in this work. Samples
were degassed at 50 ◦C for 3 h. Nitrogen was the adsorbate model, with the following
specifications: cross-sectional area (16.2 Å2/molec), molecular weight (28.0134 g), bath
temperature (77.35 K), magnetic susceptibility (2 (mL/mol) × 10−29), critical pressure
(33.5 atm), critical temperature (126.2 K), and supercritical adsorption. In addition, the
isotherm curves of AgNPs and Ag-protein nanocomposites were constructed as described
by [41].

2.9. Antibacterial Activity of AgNPs, Protein Nanoparticles, and Ag-Protein Nanocomposite

The antibacterial activity of AgNPs, protein only (FNP and MNP), and protein plus
Ag NPs in composites (Ag-FNP and Ag-MNP) was studied against the indicator Gram-
positive bacteria such as S. aureus, S. pyogene, and L. monocytogenes and Gram-negative
bacteria such as P. aeruginosa, E. coli, S. typhimurium, K. pneumonia, and P. mirabilis. To
assess the MIC of different substances against different bacteria, tube dilution was used.
The tested substance was serially diluted in bacterial growth media, added to the test
organisms, and incubated, and the bacterial growth was observed and recorded. The MIC
is defined as the lowest concentration preventing observable bacterial growth on culture
plates. The bacterial suspensions were spread over the surface of nutrient agar plates. Then,
sterilized filter paper discs of about 6 mm in diameter were soaked in each tested material
(1 MIC expressed as µg/mL). In another experiment, they were soaked in extracts of either
proteins or nanocomposites at different concentrations (1300, 195 650, 325, 162, 80, 40, 20,
and 10 µg/mL) and were then laid onto the surface of nutrient agar media (Oxoid) and
inoculated with different tested bacteria with appropriate distances separating them from
each other. The nutrient agar plates were incubated at 37 ◦C for 24–48 h. Diameters of
inhibition zones were measured using a millimeter ruler [42,43].

2.10. Transmission Electron Microscopy (TEM) of Sensitive Bacteria in Response to the Proteins
and Nanocomposites Used

S. aureus and S. typhimurium, selected for the TEM studies, were propagated in Brain
Heart Infusion broth for 24 h at 37 ◦C. Cell suspensions were centrifuged at 10,000 rpm for
10 min, and the cell pellets were resuspended in buffered peptone water (0.1% peptone plus
0.85% NaCl) and diluted to 105 CFU/mL as the final concentration. They were then treated
with MIC values of either Ag-FNP or Ag-MNP and incubated at 37 ◦C for 4 h. Bacterial
cells were then fixed in glutaraldehyde (2.5% in 0.1 M of phosphate buffer (pH 7.4) and
post-fixed with 1% osmium tetroxide for 2 h at 4 ◦C. The washing step was repeated, and
the cells were dehydrated sequentially using 30%, 50%, 70%, and 95% acetone for 15 min
for each and finally with 100% acetone three times for 30 min. Subsequently, cells were
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treated with propylene oxide twice for 10 min at 4 ◦C and sequentially filtrated with a
mixture of propylene oxide and Durcupan’s ACM epoxy resin (3:1, 1:1, and 1:3) for 45 min.
Polymerization of the resin to form specimen blocks was performed in an oven at 60 ◦C
for 72 h. The specimen blocks were sectioned with a diamond knife in a Reichert Ultracut
R ultramicrotome (Leica, Wetzler, Germany). Thin sections (70–80 nm) were placed on
300 mesh copper grids, stained for 15–20 min in uranyl:ethyl alcohol (1:1), and then washed
three times with saline solution for 2 min. A drop of Reynol’s lead citrate was added before
examination using a TEM (JEOL, Akishima, Tokyo 196-8558, Japan) [44,45].

2.11. Statistical Analysis

All data were subjected to statistical analysis by the one-way ANOVA test using SPSS
software for Windows version 22 (Armonk, NY, USA: IBM Corp.). A probability of p ≤ 0.05
was considered as the level of significance unless otherwise stated.

3. Results

FNP and MNP were the outputs of fenugreek and mung bean seed protein, respec-
tively. For characterizing FNP and MNP, Sodium Dodecyl Sulfate–Polyacrylamide Gel
Electrophoresis (SDS–PAGE) was run and the results are shown in Figure 1. FNP showed
five protein bands corresponding to 20, 25, 40, 63, and 100 kDa, while MNP showed seven
bands corresponding to 30, 32, 40, 48, 65, 75, and 135 kDa. The outputs of X-ray Diffraction
(XRD) examination of FNP and MNP are given in Figure 2. One characteristic peak at
a 2θ angle of 9.1◦ and two characteristics peaks at 2θ angles of 21.709 and 24.001◦ were
noticed for FNP and MNP, respectively. Combining the two proteins with AgNPs gave
nanocomposites (Ag-FNP, Ag-MNP). Both Ag-FNP and Ag-MNP showed four sharp char-
acteristic peaks at 2θ angles of 38.26, 44.47, 64.71, and 77.73◦, indicating the cubic lattice of
nanocomposites, distinguishing them from either FNP or MNP.
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The characteristic peaks of DLS analysis were at 13.55, 55.50, and 65.02 nm for AgNPs,
Ag-MNP, and Ag-FNP, respectively. The appearance of one peak only for each of them
indicated the homogeneity of their forms (Figure 3). The peaks at −22, −34, and −49 mV
were characteristic zeta potential values for AgNPs, Ag-MNP, and Ag-FNP, respectively
(Figure 4). The sharp and high peaks of zeta potential values may refer to the purity and
homogeneity of each.

SEM images showed a very sharp spherical shape for AgNPs, while the Ag-FNP
nanocomposite showed a triangular shape and the Ag-MNP nanocomposite showed a
subspherical to a subrectangular one (Figure 5). TEM images confirmed the results of SEM
examination where AgNPs showed a spherical shape. The TEM of Ag-FNP and Ag-MNP
showed subtriangular and subrectangular shapes.
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The AFM images consolidated the results of electron microscopic examinations
wherein both FNP and Ag-FNP showed subtriangular shapes. However, both MNP
and Ag-MNP showed rectangular shapes (Figure 6).

The BET surface appeared to be 102.56, 69.64, 61.65, and 45.4395 m2/g for FNP, Ag-
FNP, MNP, and Ag-MNP, respectively (Supplementary Figure S1). The decrease in BET
surface area in some samples may be due to the formation of nanocomposites with AgNPs.
All the samples showed V isotherms shapes (Supplementary Figure S2).
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The antibacterial activities of AgNPs, sole proteins (FNP and MNP), and protein
nanocomposites (Ag-FNP, Ag-MNP) were studied against both Gram-positive and Gram-
negative pathogenic bacteria (Table 1). All the tested antimicrobial agents (at MIC) showed
antibacterial activity of significantly distinctive values (p < 0.05). Both Ag-FNP or Ag-MP
showed broader antibacterial activity than those obtained by either AgNPs or proteins
(FNP and MNP). S. aureus (Gram-positive) and S. typhimurium (Gram-negative) appeared
as the most sensitive organisms (Table 1 and Supplementary Figure S3).
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S. aureus 13.0 ± 0.6i–m 10.3 ± 0.1 j–o 12.0 ± 0.8 i–n 66.0 ± 0.2 a 68.0 ± 1.0 a 
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Figure 6. The three-dimensional form of Atomic Force Microscope (AFM) images of 50 × 50 nm of
(A) FNP, (B) Ag-FNP, (C) MNP, and (D) Ag-MNP.
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Table 1. Antibacterial activity of (at 1 MIC) AgNPs, FNP, MNP, Ag-FNP, and Ag-MNP.

Treatment/Pathogenic
Bacteria

Inhibition Zone Diameter (mm)

AgNPs FNP MNP Ag-FNP Ag-MNP

Gram-Negative Bacteria
K. pneumonia 10.3 ± 0.3 j–o 13.67 ± 0.6 h–l 10.0 ± 0.7 j–o 53.0 ± 0.4 b,c 43.0 ± 0.5 d

S. typhiurium 12.0 ± 0.6 i–n 15.3 ± 0.5 h–j 21.0 ± 0.2 g 53.0 ± 0.1 b,c 53.0 ± 0.5 b,c

E. coli 14.0 ± 0.4 h–l 5.67 ± 0.6 op 9.0 ± 0.3 k–p 43.0 ± 0.1 d 50.0 ± 0.8 c

P. aerugenosa 14.67 ± 0.5 h–k 9.0 ± 0.3 k–p 6.3 ± 0.8 n–p 40.0 ± 0.3 d,e 31.0 ± 0.1 f

P. mirabilis 11.67 ± 0.2 i–n 4.3 ± 0.7 p 6.3 ± 0.1.1 n–p 52.0 ± 0.3 b,c 53.0 ± 0.6 b,c

Gram-Positive Bacteria
S. pyogenes 16.3 ± 0.3g–i 7.3 ± 0.6 m–p 11.67 ± 1.5 i–n 31.0 ± 0.4 f 31.0 ± 0.3 f

S. aureus 13.0 ± 0.6i–m 10.3 ± 0.1 j–o 12.0 ± 0.8 i–n 66.0 ± 0.2 a 68.0 ± 1.0 a

L. monocytogenes 18.67 ± 0.5 g,h 11.3 ± 0.4 i–o 8.67 ± 1.2 l–p 35.3 ± 1.3 e,f 31.0 ± 0.5 f

FNP: fenugreek seed proteins, MNP: mung bean protein, AgNPs: silver nanoparticles, Ag-FNP: silver fenugreek protein nanocomposite,
Ag-MNP: silver mung bean protein nanocomposite. Every value is the average of three replicates ± SE. Letters (a–p) in same column refer
to significantly different values (p < 0.05).

The MICs of FNP, MNP, Ag-NP, Ag-FNP, and Ag-MNP were determined against all
experimental bacterial strains. For FNP, the MIC was recorded from 625 to 10,000 µg mL−1

and from 2500 to 5000 µg mL−1 in case G− and G+ bacteria, respectively (Table 2). For
MNP, the MIC was recorded from 2500 to 10,000 µg mL−1 and from 5000 to 10,000 µg mL−1

in case G− and G+ bacteria, respectively. For Ag-NP, the MIC values ranged between 325
and 162 µg mL−1 for G+ and G−, respectively (data not shown). For Ag-FNP, the MIC
ranged from 10 to 162 µg mL−1, while it was in the range from 20 to 325 µg mL−1 for
Ag-MNP (Table 3).

TEM images showed the reducing effect of Ag-MNP and Ag-FNP on the relative
content of the intact cells of S. typhimurium (OD600 = 0.5 at the time of application) after four
hours of incubation at 37 ◦C in the nutrient broth media (Figures 7 and 8). Some bacterial
cells showed different manifestations of deformation. Ag-FNP and Ag-MNP induced
similar signs of effects on S. aureus and S. typhimurium in nutrient broth media, including
cell shrinkage, cell membrane wrinkles, pore formation, and emptiness of bacterial cells.
TEM results indicated that the action of the cationic proteins targeted the cell wall and cell
membrane more. Ag-FNP and Ag-MNP caused high rates of bacterial cell lysis (measured
by OD600) in both S. aureus and S. typhimurium.

Table 2. Minimum inhibitory concentration (MIC; µg mL−1) of tested proteins against Gram-positive
and Gram-negative bacteria.

Treatment/Pathogenic
Bacteria

MIC (µg mL−1)

AgNPs FNP MNP Ag-FNP Ag-MNP

Gram-negative bacteria

K. pneumonia 162 10,000 10,000 40 162
S. typhiurium 162 5000 5000 20 40

E. coli 162 625 5000 162 162
P. aerugenosa 162 5000 5000 80 80
P. mirabilis 162 1250 2500 80 80

Gram-positive bacteria

S. pyogenes 325 5000 10,000 40 162
S. aureus 325 5000 5000 10 20

L. monocytogenes 325 2500 5000 162 325
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Table 3. Antibacterial activities of both Ag-FNP and Ag-MNP against different indicator bacterial pathogens.

C
on

ce
nt

ra
ti

on
µ

g
m

L
−

1

Inhibition Zone Diameter (mm) Against Sensitive Bacteria

Gram-Negative Gram-Positive

K. pneumonia S. typhimurium E. coli P. aerugenosa P. mirabilis S. pyogenes S. aureus L. monocytogenes

A B A B A B A B A B A B A B A B

1300 51 ± 2.5 a 43 ± 1 c 53 ± 2.5 a 58 ± 2 a 43 ± 2 b 50 ± 1 b 40 ± 1.73 b 30 ± 3 d 51 ± 0.5 a 53 ± 2 b 33 ± 2 b 33 ± 2 b 66 ± 4 a 66 ± 4 a 35 ± 5 b 35 ± 5 b

650 32 ± 2 c 31 ± 1 c 45 ± 5 a,b 43 ± 1 b 31 ± 2 c 39 ± 4 a 40 ± 2 b 46 ± 4 a,b 49 ± 2 a 50 ± 5 a 33 ± 2 b 20 ± 2 a 66 ± 4 a 50 ± 5 b 35 ± 5 b 22 ± 3 c

325 22 ± 2 c 21 ± 1 b 34 ± 1 b 30 ± 3 c 25 ± 5 c 31 ± 2 c 35 ± 2 b 34 ± 1 b 45 ± 2 a 43 ± 2 a 27 ± 2 b 11 ± 2 b 50 ± 2 a 42 ± 3 b 20 ± 2 b 11 ± 1 c

162 17 ± 3 c 15 ± 1 c 30 ± 2 b 25 ± 2 b 17 ± 1 c 15 ± 1 c 29 ± 2 b 22 ± 2 b 39 ± 3 a 25 ± 2 b 22 ± 3 a 8 ± 1 a 41 ± 3 a 31 ± 1 a 12 ± 1 b 0 ± 0 b

80 12 ± 3 c 0 ± 0 b 25 ± 2 a 17 ± 2 a 0 ± 0 d 0 ± 0 b 25 ± 1 a 15 ± 3 a 21 ± 2 b 16 ± 1 a 15 ± 1 a 0 ± 0 b 30 ± 1 a 25 ± 5 a 0 ± 0 c 0 ± 0 b

40 9 ± 1 c 0 ± 0 b 15 ± 2 b 12 ± 1 b 0 ± 0 d 0 ± 0 b 20 ± 2 a 0 ± 0 b 0 ± 0 d 0 ± 0 b 9 ± 1 a 0 ± 0 b 21 ± 2 a 19 ± 3 a 0 ± 0 b 0 ± 0 b

20 0 ± 0 c 0 ± 0 b 9 ± 2 b 0 ± 0 b 0 ± 0 c 0 ± 0 b 16 ± 1 a 0 ± 0 b 0 ± 0 c 0 ± 0 b 0 ± 0 b 0 ± 0 b 13 ± 2 a 11 ± 3 a 0 ± 0 b 0 ± 0 b

10 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 9 ± 2 a 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b

5 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 1 ± 0 b

(A) Ag-FNP: silver fenugreek protein nanocomposite, (B) Ag-MNP: silver mung bean protein nanocomposite. Every value is the average of three replicates ± SE. Letters (a–d) in same row refer to significantly
different values (p < 0.05).
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4. Discussion

The high incidence of resistant bacteria variants to antimicrobial food additives has
vastly impacted human mortality and healthcare [18]. Thus, there is an urgent demand
to find alternative antimicrobial food additives capable of simulating the innate immune
systems. Antimicrobial peptides are highly active against most microbes, including both
Gram-positive and Gram-negative bacteria [46]. Consequently, it is supposed that the
peptides are less bacterial resistance-generating than other antimicrobials are [20,44]. The
antimicrobial properties of plant proteins support their use as alternative food preserva-
tives [47]. Several classes of plant proteins with antibacterial and/or antifungal properties
have been isolated, identified, and recommended as antimicrobial agents [48–50]. Cationic
antimicrobial peptides or proteins (AMPs) are still the best choices and most promising
candidates for antibacterial agents [51,52] based on numerous studies indicating their broad-
spectrum antimicrobial activities against Gram-positive and Gram-negative pathogenic
bacteria [53,54]. The native proteins may be good antibacterial candidates, based on their
amino acid compositions (FNP and MNP). The relative amounts of polar acidic, basic, and
hydrophobic amino acids in FNP represent about 31.6, 14.3, and 28.5% against 33, 26.5, and
36.33% in MNP, respectively [55,56]. The antibacterial activity of the native protein may
be due to its content of positively charged cationic and hydrophobic residues of amino
acids [57–60]. The MICs of FNP and MNP were recorded between 5000 and 10,000 µg/mL.
These low impacts of these two fractions (FNP and MNP) as antibacterial agents may be
due to the high molecular weight for native proteins and the neutralization of the positively
charged protein subunits by negatively charged ones. Therefore, there is a need to continue
developing safe antimicrobial proteins through nanoparticles formation.

Nanoparticles are now considered viable alternatives to antibiotics and seem to have
a high potential to counteract the emerging multidrug-resistant bacteria [4]. In particular,
silver nanoparticles (AgNPs) have attracted much attention in the scientific field [5,13] and
have always been used against various diseases. In the past, it proved its effectiveness
as an antiseptic and an antimicrobial agent against Gram-positive and Gram-negative
bacteria [22–24]. AgNPs were considered particularly attractive for producing a new class
of antimicrobials [61], opening up an entirely new way to combat a wide range of bacterial
pathogens based on nanomaterials [12]. The data confirmed a single peak by the DIS
technique at 13, 55, and 65 nm for AgNPs, Ag-MNP, and Ag-FNP, respectively. It was
concluded from SEM and TEM analysis that AgNPs were well dispersed in the solution
with different shapes without any agglomeration. This fact might explain the variability
of molecules that are liable for the formation of AgNPs. These molecules were used for
capping and stabilizing agents and preventing AgNPs agglomeration [9]. In addition,
AFM detected the subrectangular shape of the new nanocomposite with protein without
any agglomeration, similar to that reported previously [9]. The present investigation by
X-ray Diffraction illustrated the presence of characteristic peaks and a cubic lattice of silver
nanoparticles in a new nanocomposite of mung bean and fenugreek proteins.

The BET results showed that the area was lower in the protein nanocomposite than in
the single nanoparticles. El-Gazzar and Ismail [10] recorded that the low BET surface area
could be characteristic of the nanocomposite. In the current study, the nanocomposite of
proteins (FNP, MNP) with AgNPs recorded a low BET surface area, confirming the latter
published results [10]. The inhibitory effects of nanoparticles varied according to their
size and concentration. Several studies have shown that AgNPs activity is strongly size-
dependent [62]. In the current study, the strongest antibacterial activity was specifically
detected against S. aureus. The correlation between the bactericidal effect and AgNPs
concentrations is bacterial class-dependent [63]. Accumulating scientific evidence has
demonstrated that AgNPs activity would depend not only on their concentration [64] but
also on their shape [65].
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5. Conclusions

Ag-FNP and Ag-MNP can be employed as competent natural inhibitors against
pathogenic bacteria, e.g., S. aureus and S. typhimurium. The antimicrobial activity of the
constituting proteins may be ascribed to the positively charged cationic residues of the
alkaline amino acids such as arginine and lysine and the high ratio of the hydrophobic
residues, e.g., leucine and valine, which can interact with the bacterial membranes, causing
pores within the bacterial cell membrane, leading, finally, to their death. TEM images of
S. aureus and S. typhimurium treated with Ag-FNP and Ag-MNP exhibited cell deformations,
adherence to lysed cell content leading to cell clumping, malformations, blisters, and cell
depressions, and diminished cell numbers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113006/s1, Supplementary Figure S1. The specific surface area measured with the
Brunauer–Emmett–Teller isotherm (BET) of (A) FNP; (B) Ag-FNP; (C) MNP; (D) Ag-MNP. Supplemen-
tary Figure S2. The isotherm curve of (A) FNP; (B) Ag-FNP; (C) MNP; (D) Ag-MNP. Supplementary
Figure S3. Antibacterial activity of silver mung bean protein nanocomposite (Ag-MNP), and silver
fenugreek protein nanocomposite (Ag-FNP) against Gram-positive and Gram-negative bacteria.
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