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Summary 
 
Background: Genetics has the potential to inform biologically relevant drug 
treatment and repurposing which may ultimately improve patient care. In this study, 
we combine methods which leverage the genetics of psychiatric disorders to 
prioritize potential drug targets and compounds.  
 
Methods: We used the largest available genome-wide association studies, in 
European ancestry, of four psychiatric disorders [i.e., attention deficit hyperactivity 
disorder (ADHD), bipolar disorder, depression, and schizophrenia] along with genes 
encoding drug targets. With this data, we conducted drug enrichment analyses 
incorporating the novel and biologically specific GSA-MiXeR tool. We then 
conducted a series of molecular trait analyses using large-scale transcriptomic and 
proteomic datasets sampled from brain and blood tissue. This included the novel use 
of the UK Biobank proteomic data for a proteome-wide association study of 
psychiatric disorders. With the accumulated evidence, we prioritize potential drug 
targets and compounds for each disorder.  
 
Findings: We reveal candidate drug targets shared across multiple disorders as well 
as disorder-specific targets. Drug prioritization indicated genetic support for several 
currently used psychotropic medications including the antipsychotic paliperidone as 
the top ranked drug for schizophrenia. We also observed genetic support for other 
commonly used psychotropics (e.g., clozapine, risperidone, duloxetine, lithium, and 
valproic acid). Opportunities for drug repurposing were revealed such as cholinergic 
drugs for ADHD, estrogens for depression, and gabapentin enacarbil for 
schizophrenia. Our findings also indicate the genetic liability to schizophrenia is 
associated with reduced brain and blood expression of CYP2D6, a gene encoding a 
metabolizer of drugs and neurotransmitters, suggesting a genetic risk for poor drug 
response and altered neurotransmission.    
 
Interpretation: Here we present a series of complimentary and comprehensive 
analyses that highlight the utility of genetics for informing drug development and 
repurposing for psychiatric disorders. Our findings present novel opportunities for 
refining psychiatric treatment. 
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Introduction 
 
Genetics can provide insights into the underlying mechanisms of a trait that can be 

leveraged to inform drug treatment. Drugs with supporting genetic evidence have a 

2.6 times greater probability of success in development compared to drugs lacking 

genetic support.1 Notably, drugs for psychiatric treatment tend to have targets with 

less supporting genetic evidence than drugs for respiratory, metabolic, and 

cardiovascular diseases.1,2 This lack of genetically informed treatment may partly 

explain the poor therapeutic response, adverse drug effects, and poor treatment 

compliance observed in psychiatry.1,3,4 Furthermore, complex traits, such as 

psychiatric disorders and other medical conditions, share associated genes to a 

varying degree, a concept known as pleiotropy.5 This pleiotropy may facilitate the 

repurposing of drugs approved or previously investigated for different indications. 

Therefore, leveraging genetics to inform drug discover, target prioritization, and 

repurposing may help improve psychiatric treatment. 

 

The genome-wide association study (GWAS) of various psychiatric disorders have 

previously been leveraged to prioritize drug targets and compounds. Some studies 

use GWAS to perform gene-set analyses testing for enrichment of genes encoding 

drug targets.6–8 While this approach has provided genetic support for various drugs 

with psychiatric indications, standard tools may be biased towards drugs with many 

targets potentially providing less disorder specificity.9 Moreover, disorder-associated 

genetic variants can modulate gene expression and protein abundance providing a 

link to molecular traits (i.e., genes and proteins) serving as potential drug targets.10 

Therefore, transcriptome or proteome wide association studies (i.e., TWAS or 

PWAS) have been used to prioritize molecular traits as potential drug targets for 
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several psychiatric disorders.11,12 Moreover, Mendelian randomization (MR) is 

commonly used to identify causal relationships between molecular traits and 

psychiatric disorders.13–16 Applying these analyses has revealed for example that 

calcium signalling is associated with multiple psychiatric disorders.7,11,14 However, 

many studies tend to focus on one type of molecular trait or neglect bidirectional MR 

analyses. Also, while transcriptomic data provides greater coverage of the genome, 

drug targets are often proteins. Therefore, leveraging both types of molecular data is 

complementary and more comprehensive. Although studies leveraging multiple 

methodologies and types of molecular data to inform novel drug targets and 

indications exist,17–21 few integrate enrichment and comprehensive molecular trait 

analyses with a focus on psychiatric disorders. 

 
Here, we present an extensive genetic interrogation of potential drug targets and 

compounds for attention deficit hyperactivity disorder (ADHD), bipolar disorder (BIP), 

depression (DEP), schizophrenia (SCZ) and as a comparator diastolic blood 

pressure (DBP) (Figure 1). We conduct gene-set analysis incorporating the novel 

GSA-MiXeR tool which identifies enrichment for biologically specific and smaller 

gene-sets than common approaches.9 We use large scale molecular trait data from 

brain and blood tissue to identify potential drug targets. Blood is more readily 

available than brain tissue, resulting in larger datasets, and provides complementary 

identification of potential drug targets. We apply a series of molecular trait analyses 

including the novel use of UK Biobank (UKB) data for PWAS of psychiatric disorders. 

Finally, we combine the results to prioritize potential drug targets and compounds.  
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Figure 1. Study Design. Depicted is the series of analyses conducted to generate a list of prioritized 
drug targets and compounds. First pairings of genome-wide association study (GWAS) traits with 
drugs are generated using enrichment analyses. Next a series of molecular trait analyses are 
conducted to generate and rank list of potential drug targets for each GWAS trait. Finally, enrichment 
and molecular trait results are combined to generate a ranked list of prioritized drugs for each GWAS 
trait based on supporting genetic evidence. ADHD = Attention deficit hyperactivity disorder, BIP = 
Bipolar disorder, DEP = Depression, SCZ = Schizophrenia, DBP = Diastolic blood pressure, RNA = 
ribonucleic acid, XWAS = both transcriptome and proteome wide association studies, MR = 
Mendelian randomization, coloc = colocalization. 
 

 

 

 

Methods 
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Genome Wide Association Study Summary Statistics 

We used summary statistics from the largest publicly available GWAS of four major 

psychiatric disorders in European samples. For ADHD we used a GWAS containing 

a total of 38,691 cases and 186,843 controls.22 For BIP we used a GWAS including 

41,917 cases and 371,549 controls.7 For DEP we used a GWAS by Als et al. (2022) 

that excluded the 23andMe sample (ncases=294,322 ncontrols=741,438).23 For SCZ we 

used a GWAS including 76,755 cases and 243,649 controls.24 As a comparator trait 

we used GWAS summary statistics for DBP containing a total of 1,076,093 

individuals.25 To avoid sample overlap in analyses with the UKB proteomic samples, 

we used summary statistics which excluded the UKB sample for BIP (ncases=40,463,  

ncontrols=313,436) and DEP (ncases=166,773, ncontrols=507,679), however, for DBP a 

GWAS conducted by the Million Veterans Program (n=220,387)26 was used. We 

chose DBP as a comparator for several reasons: there are many blood pressure 

drugs and most target well-defined mechanisms, hypertension is associated with 

psychiatric disorders to a varying degree providing an interesting comparison for 

drug prioritization, and DBP is a continuous trait contrasting the dichotomous 

disorder GWAS and enriching the assessment of our approach. 

 

 

Candidate Drug Identification 

 To obtain drug-target genes, we used data from the Drug Gene Interaction database 

(DGIdb; https://www.dgidb.org/)27 which collates data from 28 different sources and 

is a common resource for drug enrichment analyses.6,7,28,29 The Supplementary 

Methods contains data processing details. 
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As our primary method to test each GWAS trait (i.e., ADHD, BIP, DEP, SCZ, DBP) 

for drug gene-set enrichment, we used GSA-MiXeR 

(https://github.com/precimed/gsa-mixer).9 Trait-drug pairs with a positive delta AIC 

value were considered enriched (Supplementary Methods). We additionally applied a 

gene-set analysis with MAGMA.30 While MAGMA tends to identify enrichment among 

larger gene-sets than GSA-MiXeR,9 observed enrichment with GSA-MiXeR validated 

at a nominal significance level (p<0.05) with MAGMA provides more robust and 

potentially clinically actionable associations.  

 

A list of candidate drugs for each GWAS trait was determined based on enrichment 

using both GSA-MiXeR (AICdelta >0) and MAGMA (p<0.05) and ranked using fold 

enrichment values from GSA-MiXeR (Supplementary Methods). To assess the 

degree of overlapping enriched drugs across GWAS traits, we used a 

hypergeometric test. Enriched drugs were assigned an anatomic therapeutic 

chemical (ATC) code using classifications released in June 2023 from BioPortal. To 

determine if Level 1 ATC codes were over-represented among the candidate drugs 

for each GWAS trait, we used hypergeometric tests. 

 

 

Candidate Target Identification 

Transcriptome- and Proteome-Wide Association Studies 
 
To identify potential drug targets for each GWAS trait, we used the FUSION tool to 

conduct a TWAS and PWAS, which we jointly refer to as XWAS.31 For TWAS using 

brain tissue, we used pre-computed single nucleotide polymorphism (SNP) weights 

for 14,751 genes from the PsychENCODE sample of 1321 individuals.32 For TWAS 
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using blood tissue, we used pre-computed weights for 4,701 genes from the Young 

Finns Study (n=1,264).31,33 For PWAS using brain tissue, we used pre-computed 

weights for 2,745 proteins in 720 participants from the Wingo et al. (2023) study.34 

For PWAS using blood tissue, we derived our own weights for 2841 proteins in 

33,239 participants from the UKB (Supplementary Methods). We performed 

correction for multiple comparisons across all XWAS analyses using the Benjamini-

Hochberg method.  

 

 

Mendelian Randomization 

To further interrogate potential drug targets, we applied MR analyses using the R 

package TwoSampleMR35. We assessed both forward causal relationships (i.e., from 

molecular trait to GWAS trait) and reverse causal relationships (i.e., from GWAS trait 

to molecular trait). The Supplementary Methods provides details on the handling of 

potentially pleiotropic and proxy SNPs. We used the Wald ratio or inverse variance 

weighted MR methods for analyses containing a single or multiple SNP(s), 

respectively.  

 

For each trait, we performed analyses using local (cis) expression or protein 

quantitative trait loci (i.e., eQTL or pQTL), generally referred to as xQTLs. From brain 

tissue, we used eQTL data for 18,397 genes from the MetaBrain sample (n=6,518)36 

and pQTL data for 7,553 proteins from the Religious Orders Study (ROS)/Rush 

Memory and Aging Project (MAP) sample (n=376)37. From blood tissue, we used 

eQTL data for 19,250 genes from eQTLGen sample (n=31,684)38 and pQTL data for 

2938 proteins from the UK Biobank sample (n=34,090)39. To avoid sample overlap 
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between eQTLGen and DBP, we used GTEx v8 eQTL data. We performed 

correction for multiple comparisons across all MR analyses using the Benjamini-

Hochberg method. 

 

 

Colocalization  

Colocalization analyses help determine if two phenotypes share causal SNPs. For all 

nominally significant (p<0.05) molecular trait associations, we conducted 

colocalization analyses with the associated GWAS trait using the R package 

COLOC.40 We considered the molecular and GWAS trait colocalized when the 

posterior probability of colocalization was greater than 0.8 (Supplementary Methods). 

 

 

Prioritization of Candidate Targets 

To generate a ranked list of candidate drug targets for each GWAS trait, we 

combined evidence across the molecular trait analyses (i.e., XWAS, MR, and 

colocalization). We binarized (yes=1, no=0) and then summed the evidence 

supporting a particular molecular trait. Each molecular trait was then ranked based 

on their summed support score. For example, if ADHD was significantly associated 

with molecular trait A using blood TWAS (+1), blood and brain MR pQTL (+2) 

analyses, and colocalization with brain pQTLs (+1), the summed score would be 4. 

Note, this approach is biased towards proteins (or protein coding genes) as they 

have a larger scoring potential. For each GWAS trait, we performed a gene-ontology 

analysis of the candidate targets using the R package clusterProfiler. 
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Drug Prioritization 

Negative Correlation Test 

We extracted drug-induced gene expression data from Connectivity Map 2020 for all 

enriched drugs using the phase 2 release of the Library of Integrated Cellular 

Signatures (LINCS) with the cmapR package (v 4.3.1).41,42 For each drug and GWAS 

trait pairing, a Spearman correlation between drug induced gene expression and 

variation in molecular trait associations was conducted. Negative correlations 

indicate the drug may reverse changes in molecular trait abundance associated with 

the GWAS trait. This “negative correlation test” was run separately for each 

molecular trait analysis and corrections for multiple comparisons, for XWAS and MR 

analyses, were conducted using the Benjamini Hochberg method.   

 

 

Prioritization of Drugs  

Our primary strategy to prioritize drugs for each GWAS trait first selected only the 

enriched drugs for each GWAS trait to increase biological specificity. Next, the 

support from the molecular trait analyses for drug-target genes and the negative 

correlation analyses, were binarized and summed. For example, say SCZ was 

enriched for drug A (+1). We then find drug A genes were implicated in SCZ 

analyses for TWAS in blood and brain (+2), MR pQTLs in blood (+1), and a negative 

correlation test with brain TWAS (+1). The resulting support score for drug A would 

be 5 for SCZ. Drugs were ranked for each GWAS trait using these scores. Our 

secondary strategy for ranking drugs was similar except there was no pre-filtering for 
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enriched drugs allowing all drugs with molecular trait support for a GWAS trait to be 

ranked.  

 

 

Validation 

Using the secondary approach to drug prioritization, we assessed genetic support for 

commonly used antidepressants, antipsychotics, mood stabilizers/anticonvulsants, 

and stimulants (Supplementary Methods). 

 

 

Ethics 

This study was approved by the Regional Committee for Medical Research Ethics 

including the use of individual and genetics data from the UKB (accession number 

27412). 

 

 

 

Results 

Drug Enrichment Analyses 

We used 7,235 drug gene-sets (Supplementary Table 1) to perform enrichment 

analyses. GWAS of ADHD, BIP, DEP, and SCZ were enriched for a total of 9, 52, 

72, and 149 drugs using both GSA-MiXeR (Supplementary Table 2) and MAGMA 

(Supplementary Tables 3). We observed substantial overlap among the candidate 

drugs for BIP and SCZ (n=47, p=4.95e-21) but less among the other disorders (BIP-

DEP: n=2, p=9.99e-1, DEP-SCZ: n=9, p=1.00), and none with ADHD (Figure 2). The 
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ATC code for nervous system drugs (Supplementary Table 4) was enriched, for BIP 

(n=6/25, p=4.77e-3) and SCZ (n=39/78, p=5.30e=25) but not ADHD (n=1/8, 

p=1.97e-1) or DEP (n=5/39, p=5.97e-1). Among the top 10 candidate drugs for BIP 

and SCZ were several drugs with antipsychotic properties (e.g., benperidol, 

mazapertine, and sarizotan).  For DEP, the top 10 candidate drugs had antipsychotic 

and antidepressant properties (e.g., benperidol, nemonapride, cariprazine). For 

ADHD, candidate drugs were primarily acetylcholine receptor modulators. 

 

The DBP GWAS was enriched for the most drugs (n=192; Supplementary Tables 2 

and 3). No significant overlap between candidate drugs for DBP and the psychiatric 

disorders was observed (DBP-ADHD: n=1, p=9.91e-1, DBP-BIP: n=20, p=6.78e-1, 

DBP-DEP: n=6, p=1.00, DBP-SCZ: n=27, p=1.00; Supplementary Figure 1). There 

was no ATC code enrichment for nervous system drugs (n=3/112, p=1.00) but there 

was enrichment for cardiovascular system drugs (n=67/112, p<0.001). 
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Figure 2. Overlap of Enriched Drugs for Psychiatric Disorders. A network plot depicting each of 
the enriched drugs (colored nodes) for each psychiatric disorder labelled central hubs. Each drug 
node is colored based on their level 1 anatomical therapeutic chemical classification. The thicker the 
edge (line connecting nodes to disorder), the larger the fold enrichment. ADHD = Attention deficit 
hyperactivity disorder, BIP = Bipolar disorder, DEP = Depression, SCZ = Schizophrenia, MULTIPLE = 
A drug with multiple classifications, NAN = No anatomical therapeutic chemical code. 
 
 

Molecular Trait Analyses 

XWAS analyses identified 440, 912, 940, and 1436 significant molecular trait 

associations for ADHD, BIP, DEP, SCZ, respectively (Figure 3, Supplementary Table 

5). The molecular traits associated with enriched drugs are labelled in Figure 3 

where several were supported by multiple XWAS analyses such as ANKK1 with 

DEP. Colocalization analyses revealed 605 (16.23%) of the significant XWAS 

associations had colocalized genetic signal (Supplementary Tables 6) and 13 were 

enriched drug-target genes (Figure 3). Moreover, a significant negative correlation 

test was observed between estriol induced gene expression and DEP brain PWAS 

effects (Supplementary Table 7).  
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Figure 3. Transcriptome- and Proteome-Wide Association Study Results. For each 
psychiatric disorder the results of transcriptome- and proteome-wide association studies are 
presented. Significantly associated molecular traits that are also a part of gene sets for enriched 
drugs are labelled. Labelled molecular traits that were also colocalized are represented with an 
asterisk. ADHD: attention deficit hyperactivity disorder, BIP: bipolar disorder, DEP: Depression, 
SCZ: schizophrenia, TWAS = Transcriptome wide association study, PWAS = Proteome wide 
association study, ns= not significant. 

 
 
Across the bidirectional MR analyses, 605, 1368, 1477, and 2460 molecular traits 

were significantly associated with ADHD, BIP, DEP, and SCZ, respectively (Figure 4, 

Supplementary Table 8). The molecular traits associated with enriched drugs are 

labelled in Figure 4 where several were supported by multiple MR analyses such as 

ANKK1 with DEP and CACNA1I with SCZ. Colocalization analyses revealed 766 

(12.96%) of the significant MR associations had colocalized genetic signal 

(Supplementary Tables 9) and 10 were enriched drug-target genes (Figure 4). There 

were no significant negative correlation tests (Supplementary Tables 10).  
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DBP had the largest number of significant molecular trait associations for XWAS 

(n=3547) and MR (n=3145) (Supplementary Tables 5 and 8) with many enriched 

drug-target genes implicated (Supplementary Figures 2 and 3). Colocalization was 

revealed for 503 (14.18%) and 312 (9.92%) of the significant XWAS and MR 

associations, respectively (Supplementary Tables 6 and 9). Meanwhile, a significant 

negative correlation was observed between Oxprenolol, a beta blocker, and DBP 

blood PWAS effects (Supplementary Tables 7).  
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Figure 4. Mendelian Randomization Results. For each psychiatric disorder the results of the 
Mendelian Randomization (MR) analyses are presented. Panel A shows the MR results in the 
forward direction with the psychiatric disorders as the outcome traits. Panel B shows the MR 
results in the reverse direction with the psychiatric disorders as the exposure traits. Significantly 
associated molecular traits that are also a part of a drug gene set enriched for the disorder are 
labelled. Labelled molecular traits that were also colocalized are represented with an asterisk. 
ADHD: attention deficit hyperactivity disorder, BIP: bipolar disorder, DEP: Depression, SCZ: 
schizophrenia, eQTL = expression quantitative trait loci, pQTL = protein quantitative trait loci, ns= 
not significant. 
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Prioritization of Potential Drug Targets and Compounds 

We identified 769, 1537, 1605, and 2454 candidate drug targets supported by at 

least one molecular trait analysis for ADHD, BIP, DEP, and SCZ, respectively 

(Supplementary Table 11). Among these candidate targets, there was significant 

overlap observed between BIP and SCZ (n=589, p=1.04e-7) as well as ADHD and 

DEP (n=206, p=9.74e-5). Figure 5 presents the top 10 candidate targets for each 

psychiatric disorder and their supporting evidence. Notably, FES, was among the top 

10 candidates for ADHD, DEP, and SCZ (ranked 14th for BIP). The gene ontology 

term “glutamatergic synapse" was enriched among the candidate targets for BIP, 

DEP, and SCZ (Supplementary Table 12). DBP had the most candidate targets 

(n=4139; Supplementary Table 11) and these did not significantly overlap with 

psychiatric disorders. DBP and SCZ shared several enriched gene-sets related to 

protein dephosphorylation and cell division (Supplementary Table 12). 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.24.24314069doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Prioritization of Candidate Drug Targets. The list of prioritized potential drug targets 
for each psychiatric disorder after combining results of molecular trait analyses from 
transcriptome and proteome wide association studies, Mendelian randomization, and 
colocalization. ADHD: attention deficit hyperactivity disorder, BIP: bipolar disorder, DEP: 
Depression, SCZ: schizophrenia, TWAS = Transcriptome wide association study, PWAS = 
Proteome wide association study, MR = Mendelian randomization, eQTL = expression 
quantitative trait loci, pQTL = protein quantitative trait loci, ns= not significant. 

 
 
 

After combining molecular trait support with drug enrichment for each psychiatric 

disorder, 29 (55.77%), 39 (54.17%), and 82 (55.03%) were supported for BIP, DEP, 

and SCZ, respectively (Supplementary Table 14-17). The nine ADHD enriched drugs 

had no molecular trait support (Supplementary Table 13). Figure 6 presents the top 

10 prioritized candidate drugs and their supporting evidence. For BIP, 5 compounds 
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have putative antipsychotic or antimanic properties (elepetrigine, mazapertine 

succinate, sarizotan, umespirone, mem-1003). For DEP, the top 10 drugs included 

predominantly estrogen related compounds except nemonapride, an antipsychotic. 

For SCZ, two antipsychotics were among the top 10 including the top ranked drug 

paliperidone. Several calcium channel blockers were highly ranked for both BIP and 

SCZ. 

 

In our secondary approach (i.e., not restricting to enriched drugs), the top 10 drugs 

for ADHD, BIP, and DEP predominantly included known or investigational 

antineoplastic compounds. However, for SCZ, the top 10 drugs included 4 

antipsychotics (clozapine, paliperidone, aripiprazole, and risperidone) but the size of 

the drug gene-sets (meangenes=36, sd=20.90) were significantly larger than the top 

10 enriched drugs (meangenes=13.4, sd=11.97, pdifference=9.98e-3).  

 

DBP enriched drugs had the most molecular trait support [n=169 (88.02%)] 

(Supplementary Table 17) and the top 10 candidate drugs included several 

modulators of blood pressure (e.g., amlodipine besylate, cilazapril, quinapril, and 

verapamil). Using the secondary approach, the top 10 drugs included many 

antineoplastic compounds. 

 

Validation analyses revealed varying degrees of molecular trait support for 

commonly used antidepressants for DEP (e.g., duloxetine) and antipsychotics/mood 

stabilizers for BIP (e.g., haloperidol, lithium, and valproic acid) in addition to the 

above mentioned SCZ findings (Supplementary Table 18). 
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Figure 6. Prioritization of Drug Compounds. The prioritized list of drug compounds (in bold) for 
each psychiatric disorder with molecular trait support for enriched drugs. In brackets next to each drug 
compound is the level 1 anatomical therapeutic chemical (ATC) classification code. Below each drug 
compound is a brief description. In most cases the description is based on the level 3 ATC 
classification. Drugs without an ATC code use descriptions from various other sources including: 
ClinicalTrials.gov (CTG; https://clinicaltrials.gov/), PubChem (PC; https://pubchem.ncbi.nlm.nih.gov/), 
Kyoto encyclopedia of genes and genomes (KEGG; https://www.genome.jp/kegg/kegg2.html), 
Therapeutic target database (TTD; https://idrblab.net/ttd/). For drug compounds with the same 
support score, priority went to those with an ATC code (prioritizing nervous system classification) or to 
drugs previously associated with psychiatric disorders. [C] = Cardiovasculat system drug, [G] = Genito 
urinary system and sex hormones, [N] = Nervous system drug, PKC inhib/immunosup. = Protein 
kinase C inhibitor and immunosuppressant, Neg. Cor. = Drug with negative correlation support 
between proteome wide association study effect estimate and drug induced gene expression. 
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Discussion 

We prioritized potential drug targets and compounds for psychiatric disorders using 

an extensive genetically informed investigation. Our approach employed novel tools 

such as GSA-MiXeR9 for drug gene-set enrichment and the novel use of UKB 

proteomic data39 for PWAS of psychiatric disorders. The series of molecular trait 

analyses revealed candidate drug targets with varying degrees of disorder 

specificity. The prioritization of potential drugs revealed known and investigational 

compounds with indications for psychiatric treatment as well as potential 

opportunities for repurposing. Altogether, this work highlights the potential utility of 

genetics for informing psychiatric treatment. 

 

Top-ranked candidate targets exhibited varying degrees of pleiotropy. For example, 

FES was highly ranked for all GWAS traits (including DBP) and is a tyrosine kinase 

linked to semaphorin signalling which plays a role in development of the nervous and 

cardiovascular system, neurodegeneration, and cancer cell behaviour.43,44 

Therefore, FES may implicate cross-disorder similarities in pathophysiology. 

Similarly, sharing of candidate targets between BIP, DEP, and SCZ revealed 

enrichment for the gene ontology term “excitatory glutamatergic synapse” which is 

consistent with glutamate signalling as a therapeutic target for psychiatric 

disorders.45 Meanwhile, we and others12,46 have linked B3GLCT to DEP using 

multiple methods and since we found only BIP was also associated, B3GLCT may 

be mood disorder specific. In contrast, RABEP1, a mediator of vesicle transport and 

neurotransmission, was ranked second and was specific to SCZ.47 Therefore, we 

prioritized candidate targets with varying degrees of specificity for psychiatric 
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disorders potentially informing development of drugs for cross-disorder or disorder-

specific treatment. 

 

Consistent with previous studies, our results provide genetic support for drugs with 

known or putative indications for psychiatric treatment.6,7,11,29 The top 10 prioritized 

drugs for BIP included 5 putative antipsychotic/antimanic compounds and for SCZ, 

two common antipsychotics. By filtering for enriched drugs using GSA-MiXeR, our 

primary approach allowed for prioritization of drugs with fewer, more biologically 

specific targets which resulted in less non-specific prioritization of antineoplastic 

drugs. Our secondary approach, without filtering on enrichment, highly ranked 

several commonly used antipsychotics for SCZ (e.g., clozapine, aripiprazole, and 

risperidone) and revealed high candidate target support for other common 

psychotropics such as valproic acid and haloperidol for BIP. Therefore, genetic 

support for psychotropic drugs exist but whether our primary, biologically specific 

approach informs improved treatment for psychiatric patients remains to be seen. 

 

Identified drugs additionally highlight opportunities for repurposing. Eight of the nine 

enriched drugs for ADHD modulate acetylcholine receptors and while none of those 

drugs had candidate target support, cholinergic drugs have been proposed for ADHD 

treatment.48  Top ranked drugs for DEP included the antipsychotic nemonapride and 

many estrogen modulators which both have been linked to antidepressant activity.49–

51 Also, gabapentin enacarbil was highly ranked for SCZ and is occasionally used, 

off-label or as an adjunct, in psychiatric treatment.52,53 Therefore, among our top 10 

prioritized drugs alone there are several repurposing opportunities.  
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Combining enrichment with molecular trait analyses revealed important clinical 

implications for enriched drug targets. Across several analyses and consistent with 

previous reports, genetic liability to SCZ was associated with reduced expression of 

CYP2D6, an enriched drug target that plays a role in metabolism of 

neurotransmitters and drugs, including antipsychotics.14,54–56 Therefore, lower levels 

of CYP2D6 may contribute to SCZ pathophysiology and also disrupt treatment 

response which supports efforts for therapeutic monitoring of CYP2D6 

polymorphisms and evidence-based drug dosing.14,57 ANKK1 was negatively 

associated with DEP in several analyses, includes a polymorphism linked to 

reductions in dopamine receptor abundance, and is a target for several psychotropic 

drugs, including the DEP enriched nemonapride.58,59 Therefore, while many 

antipsychotics have high affinity for both dopamine and serotonin receptors,60 

ANKK1 may be an alternative link for response to antipsychotics in patients with 

DEP. Consistent with previous reports, BIP and SCZ were associated with candidate 

targets related to cellular calcium supporting the prioritization of calcium channel 

blockers and their continued investigation as therapeutic drugs in psychiatry.7,14,61  

Altogether, these currently druggable targets revealed important implications for 

psychiatric treatment. 

 

This study has several strengths and limitations. Using DBP as a comparator 

revealed the specificity of our approach given candidate drug targets and enriched 

drug compounds for DBP did not significantly overlap with any psychiatric disorder. 

DBP results also showed the generalizability of our approach beyond psychiatric 

traits. Our approach prioritizes drugs irrespective of effect direction. Therefore, we 

identify drugs with genetic evidence for beneficial or detrimental effects for a trait. 
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While this is useful, our findings require careful interpretation and further 

investigation. We also use transcriptomic and proteomic data from both brain and 

blood tissue. The molecular traits and tissue sources are complimentary but not 

completely correlated, however, their integration improves the power to identify 

modifiable drug targets.62,63 Our findings may lack generalizability beyond individuals 

of European ancestry due in part to the reliance of tools on European references and 

a lack of well powered non-European GWASs and sources of molecular trait data. 

Additionally, the power of the included GWASs varies which likely contributes to 

greater molecular support for enriched drugs of high powered GWAS traits (i.e., SCZ 

and DBP).  

 

In conclusion, our extensive analytical approach leveraged psychiatric GWAS 

combined with novel tools and molecular trait data to prioritize potential drug targets 

and compounds. The candidate targets can be used for future development of either 

cross-disorder or more disorder-specific drugs. Meanwhile, the prioritized drugs can 

be used for future repurposing efforts. This study provides clinically relevant 

evidence for how psychiatric genetics can inform treatment. Overall, our findings 

provide a basis for future drug development, repurposing, and treatment decision 

making in psychiatry.  
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