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Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds
extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for
ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction,
alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection,
antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been
increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it
is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function
of NBP in various disorders.

1. Introduction

There is growing evidence that inflammation and immune
response are critically involved in the initiation and severity
of a series of other significant diseases. Neurological disor-
ders, for example, acute ischemic stroke, activate inflamma-
tory and immune cells within the central nervous systems
(CNS) and induce the infiltration and accumulation of the
inflammatory and immune cells from the peripheral system,
which exacerbates the pathologies and worsens neurological
prognosis [1]. Thus, the treatments with the ability to mod-
ulate inflammatory and immune responses can effectively
prevent disease progression and minimize related
disabilities.

3-N-Butylphthalide (NBP) is composed of optical iso-
mers l-3-N-butylphthalide (l-NBP) isolated from seeds of
Apium graveolens (Chinese celery), d-3-N-butylphthalide
(d-NBP), and a synthesized compound, dl-3-N-butylphtha-
lide (dl-NBP). NBP is oxidized by cytochrome P450 (P450)
after oral administration. Moreover, hydroxylation of the

n-butyl side chain and C-3 are involved in the primary
metabolism process. Then, dl-NBP converts to four princi-
pal metabolites, including 10-keto-NBP (M2), 3-hydroxy-
NBP (M3-1), 10-hydroxy-NBP (M3-2), and NBP-11-oic
acid (M5-2), and finally is discharged mainly by the kid-
neys [2].

Furthermore, dl-NBP has been approved by the State
Food and Drug Administration of China and introduced in
the Chinese market as an anti-ischemic drug since 2002.
Former clinical research and animal experiment concerning
ischemic stroke have demonstrated that dl-NBP has multiple
functions, including microcircular reconstruction [3], allevi-
ating inflammation [4], ameliorating blood-brain barrier
(BBB) damage [5], mitochondrial function protection [6,
7], antiplatelet aggregation, antithrombosis [8], decreasing
oxidative damage [9], and reducing neural cell apoptosis
[10]. Besides, NBP is an efficient and effective therapy for
neurodegenerative diseases, brain edema, neural trauma,
neurotoxicity, epilepsy, autoimmune diseases, and other
nonneurologic conditions [11, 12].
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2. The Potential Mechanism of NBP in Immune
and Inflammatory Modulation

Some emerging experiments consider NBP as a novel agent
for autoimmune disease treatment, such as idiopathic
inflammatory myopathies (IIM) [13, 14] and multiple scle-
rosis (MS) [15]. Additionally, according to the current
reports, a shift of macrophage/microglia polarization from
proinflammatory M1 to anti-inflammatory M2 phenotype
was observed in NBP-dependent ways [16, 17], indicating
the possible underlying NBP’s mechanism of inflammatory
modulation and the potential of immune regulation. More
explorations about the pathways via which NBP exerts a
protective role are required. Therefore, based on existing evi-
dence, we review and discuss the possible and potential
NBP-mediated functions regarding regulating immunity
and inflammation. The utility of NBP, targeting the signal
molecules concerning the response to immune and inflam-
mation, can be a promising therapeutic drug for inflamma-
tory and immune-mediated diseases.

2.1. NBP and NF-κB. Nuclear factor-kappa light chain
enhancer of activated B cells (NF-κB), as a family of evolu-
tionarily conserved transcription factors, is well known in
gene induction in a wide range of biological processes,
including neurodegeneration, regulating cell growth and
survival to immunity and inflammation [18–21]. Generally,
the NF-κB family of transcription factors consists of five
members, p50, p52, p65 (RelA), c-Rel, and RelB. In resting
cells, inhibitory protein IκBα binds with NF-κB, and the for-
mation of complexes keeps NF-κB as an inactive state in the
cytoplasm. In canonical NF-κB signaling pathways, phos-
phorylation, ubiquitination, and degradation of IκBα in the
proteasome then allow NF-κB to translocate to the nucleus,
bind to specific DNA binding sites, and initiate the tran-
scription of target proinflammatory genes, upon stimulation
such as lipopolysaccharide (LPS) [22, 23]. NF-κB’s specific
binding regions have been identified in proinflammatory
genes such as TNF-α, IL-1β, and IL-6. Accordingly, target-
ing the NF-κB pathway is regarded as a therapeutic strategy
against inflammatory disorders.

Accumulating research has shown that NBP modulates
NF-κB pathways. In current studies, NBP vastly reduced
the NF-κB protein level to alleviate inflammation in diverse
animal models [24–27] and played a neuroprotective role in
demyelination reduced by chronic cerebral hypoperfusion
(CCH) [28] and ethidium bromide [29]. Numerous articles
have demonstrated that the inactivation of the NF-κB path-
way is related to proinflammatory reactions in macrophages.
Compared with the control group, LPS-stimulated RAW
264.7 macrophages have a higher protein concentration of
NF-κB-related proteins (p65 in the cell nucleus, phosphory-
lated-IκB-α, phosphorylated-IKK-α/β) and lower cell cyto-
sol protein concentration of p65, confirming that LPS
induces the translocation of NF-κB dimers from the cytosol
to the nucleus to regulate macrophage/microglia properties.
Conversely, pretreatment with AAL, a medicine extracted
from Chinese medicinal plant, effectively inhibited this
translocation and at the same time reduced production of

TNF-α and IL-6 [30]. Similarly, previous studies revealed
that administrations of NBP in rat models with cerebral
ischemia reperfusion-induced brain injury [31] and with spi-
nal cord injury [32] inhibited the expression of proinflam-
matory cytokines, including IL-6, IL-1β, and TNF-α, via
reducing expression of TLR4 and NF-κB (including p-NF-
κB, p-IκB-α, and p-IKK-α). Furthermore, the polarization
of macrophage/microglia is under control by NF-κB. It has
been reported that blocking NF-κB on ovarian cancer cell
conditioned media suppressed M1 macrophage-induced
metastatic potential [33]. Another study showed that NBP
remarkably suppressed the expression of nuclear p65 and
reduced proinflammatory molecules in LPS-stimulated as
well as MPPC-stimulated BV2 cells by Western blot analysis
of nuclear and cytoplasmic fractions. Moreover, NBP have
prevented the accumulation of nuclear p65 in response to
LPS stimuli by immunofluorescence assay [34]. Based on
the above results, we propose that NBP can regulate the
polarization of macrophage/microglia via NF-κB.

Besides the relationship with macrophage/microglia
polarization, NF-κB is associated with other immune cells.
The functions of dendritic cells (DCs) depend on their mat-
uration level. The maturation of DCs, in terms of upregula-
tion of major histocompatibility complex and costimulatory
molecules, is under control by activation of the NF-κB path-
way, especially the NF-κB protein RelB [35, 36]. Inhibition
of NF-κB enables DC to induce Treg formation and Th2
polarization in vitro and in vivo [37, 38]. The indispensable
roles of NF-κB proteins in B cell development, maintenance,
and function have been demonstrated [39]. Consequently, it
has been presumed that NBP’s function on innate or adap-
tive immunity cells is mediated through NF-κB.

2.2. NBP and p38MAPK. The p38 mitogen-activated protein
kinase (p38MAPK, termed here p38) is a vital signaling pro-
tein kinase that guides a signaling cascade to transmit extra-
cellular signals to their intracellular targets. Abnormal
activity and dysregulation of p38 have been shown to partic-
ipate in the induction of pathologies such as inflammation
[40], cancer [41], autoimmune diseases [42], Parkinson’s
disease [41], Alzheimer’s disease [43], cardiac hypertrophy
[44], and diabetes [45]. In many cases, p38 regulates inflam-
mation and immunity, which contributes to the develop-
ment of the diseases.

Some experimental results showed that NBP could regu-
late p38 expression. In the LPS-induced mouse model of Par-
kinson’s disease (PD) [46] and rats of cerebral ischemia-
reperfusion injury [5], phosphorylated-p38/p38 was signifi-
cantly reduced following treatment with NBP. Contrary to
the previous studies, NBP treatment promoted phosphory-
lated-p38/p38 in spinal cord injury (SCI) mice and BV2 cells
[16]. Furthermore, there is a close association between macro-
phage/microglia polarization and p38 phosphorylation. For
example, the p38 pathway is involved in microglia activation
and positively affects microglia’s proinflammatory secretory
function in vivo and in vitro [46–49]. Another study showed
that Gr-1(+) CD115(+) monocytes in tumor-bearing mice
exhibited M2 characteristics. Conversely, LPS could transfer
M2-type cells into M1 type through activating the P38 MAPK
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pathway, which, in turn, leads to the inhibition of the anti-
inflammatory function of Gr-1(+) CD115(+) [50]. In BV2
cells and SCI mice, SB203580, a selective p38 pathway inhibi-
tor, reversed the effect of NBP on inhibition of M1 marker
expression and promotion of M2 marker expression [16],
implying that NBP can enhance M2 polarization and inhibit
M1 polarization in a p38-dependent way. Besides, p38 plays
a significant role in macrophages to regulate the activity of
transcription factors involved in inflammation response. Mac-
rophages isolated from p38 γ/δ deficiency mice had lower
reduced production of TNF-α, IL-1β, and IL-10, which dem-
onstrated that p38 γ/δ are critical regulatory components of
the innate immune response [51]. Environmental and cellular
stresses stimulate p38 phosphorylation in macrophages [52],
leading to the release of proinflammatory mediators, such as
IL-1β, TNF-α, PGE2, and IL-12, as well as COX-2, IL-8, IL-
6, IL-3, IL-2, and IL-1 from macrophages [53–56]. Inhibition
of p38 by its specific inhibitor SB203580 significantly inhibited
morphine-induced apoptosis and caspase-3 activation in BV2
cells [57]. Thus, it is reasonable to presume that NBP can reg-
ulate the p38 pathway somehow to influence macrophage/
microglia activation, polarization, and subsequent expression
of inflammatory mediators.

2.3. NBP and HIF-1α. Hypoxia-induced factor (HIF) is a
transcription factor consisting of an alpha and beta subunit.
There are three known alpha subunits (HIF-1α, HIF-2α, and
HIF-3α) and three beta subunits (HIF-1β, HIF-2β, and HIF-
3β, also known as ARNT1, ARNT2, and ARNT3). Except
for the contributions to the cells’ ability to adapt to changes
in oxygen levels, angiogenesis, cell survival, invasion, and
metastasis of the tumor, HIF is also related to the modula-
tion of various immune cells, including macrophages, DCs,
neutrophils, and T/B cells [58].

Researchers reported that dl-NBP treatment in a photo-
chemical reaction-induced focal permanent middle cerebral
artery occlusion (MCAO) model upregulated expressions
of HIF-1α and VEGF [7]. The expression of HIF-1α was
increased under chronic intermittent hypoxia hypercapnia
(CIHH) exposure and was further expressed in rats with
chronic NBP administration, which was consistent with the
expression of Bcl-2/adenovirus E1B 19 kDa-interacting pro-
tein 3 (Bnip3), a known HIF-1α target protein [59]. HIF-1α
expression in the nucleus was extraordinarily increased after
rat brain microvessel endothelial cells (BMECs) were
exposed to 2-hour oxygen-glucose deprivation (OGD) and
24-hour reperfusion and with NBP treatments [60, 61].
The above results suggest that NBP affects the expression
of HIF-1α to a certain extent.

It is known that HIF-1α is involved in immune and
inflammatory processes. In in vitro and in vivo inflamma-
tory models, the deletion of HIF-1α dramatically decreased
ATP levels in macrophages as well as reduced aggregation,
motility, and macrophages’ bacterial killing [62]. Overex-
pression of HIF-1α in macrophages promotes M1 polariza-
tion with a hyperinflammatory state [63–65], which is via
upregulating expression of glycolysis and pentose phosphate
pathway intermediates [64]. HIF-1α leads to T cells differen-
tiating into Th17 through direct transcriptional activation of

RORγt and subsequently p300 recruitment to the IL-17 pro-
moter. Concurrently, HIF-1α reduces Treg development by
binding with Foxp3 and targeting it for proteasomal degra-
dation [66]. Similar proinflammatory characteristics for
HIF-1α have been revealed in cell metabolism, differentia-
tion, migration, and cell survival of DCs [67, 68], neutrophils
[69, 70], and other immune cells [71]. It is reported that
HIF-1α-dependent regulation of NF-κB is directly involved
in regulating neutrophil survival in hypoxia via a compari-
son between HIF-1α wild-type and gene knockdown murine
neutrophils [69].

However, there are some controversies. NBP alleviates
inflammation while it also inhibits HIF-1α with proinflam-
matory properties. On the one hand, the role of HIF-1α pro-
duced is different during various stages of the disease.
Knockdown of HIF-1α during the early stage of Mycobacte-
rium tuberculosis (MTB) infection resulted in a heightened
disease state in these mice, while blocking HIF-1α during
the late stage of MTB increased macrophage apoptosis and
decreased bacillary loads [72]. The same results could be
observed in sepsis [73]. Therefore, increasing expression of
HIF-1α induced by NBP has a positive effect during the early
stage of immune-mediated diseases. Accordingly, the data
suggests that NBP may modulate immune cells (e.g., macro-
phage and neutrophil) and respond to inflammation
through HIF-1α.

2.4. NBP and AMPK/SIRT1. AMP-activated protein kinase
(AMPK), a serine/threonine kinase, is considered a meta-
bolic sensor that maintains energy balance at the cellular
and systemic levels [74]. Sirtuins (SIRT), as AMPK down-
stream molecules, belong to the class III histone deacetylase
family and are classified into seven subtypes in mammals
characterized by the same c.275-amino-acid core deacetylase
domain and various N- and C-terminal domains [75]. As the
most studied SIRT in mammals, SIRT1 is another nutrient
sensor with widespread effects on metabolism and inflam-
mation [76].

Many studies suggest that NBP affects SIRT1 expression.
Min et al. confirmed that the neuroprotective effect of NBP
under CIHH conditions might be caused by activating the
SIRT1/PGC-1α signaling pathway [59]. At two weeks and four
weeks after bilateral common carotid artery occlusion (2VO),
NBP treatment suppressed inflammation, reduces demyelin-
ation, and promotes oligodendrocyte regeneration by revers-
ing declining levels of AMPK/SIRT1 in CCH rats [28]. The
expression of AMPK increased in themodel of ischemic stroke
after treatment with NBP [77].

Firstly, there is some evidence elucidating the role of
AMPK in regulating immune cell metabolism and function.
CD8+ T cells with deletion of AMPKα1 cannot revert to
memory cells in metabolic dormancy [78]. Th cell develop-
ment in response to infection requires AMPKα1 [79], which
is in keeping with the experiments where the upregulation of
AMPK increases the number of Treg cells for anti-
inflammation [80]. Metabolically regulating immunity and
inflammation of AMPK in natural killer (NK) cells was con-
firmed by the recent emerging report [81]. Pharmaceutical
activation of AMPK, as a promising therapy, reduces the
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secretion of inflammatory markers (e.g., COX-2 and IL-1)
[82, 83]. It is suggested that NBP can affect the differentia-
tion of T cells and the functions of NK cells and finally reg-
ulate inflammation and immunity due to its similar effect on
AMPK.

Secondly, inhibition of AMPK blocks autophagy via
increasing mitochondrial reactive oxygen species (ROS) pro-
duction, which is a way to reduce inflammation [84, 85].
Further, NBP pretreatment reduces the proinflammatory
molecules and prevents oxidative damage by inhibiting the
release of NO cells and the ROS production in BV-2 cells
[34], in SH-SY5Y neuroblastoma cells [86] and in vitro ani-
mal models [5, 77, 87, 88], though increasing AMPK expres-
sion [77]. Thus, we speculate that NBP increases activation
of AMPK and subsequently influences the expression of
NO and ROS from immune cells to regulate inflammation.

Thirdly, the SIRT1-HIF1α axis guides the cytokines’ pro-
duction from the dendritic cell in the metabolically depen-
dent ways, promotes the differentiation of CD4+ T cells,
determines macrophage phenotype, and switches innate
immune signals to adaptive immune responses [89, 90],
which implies NBP can also produce the same immunomod-
ulatory effect through the SIRT1-HIF1α axis.

Collectively, it indicates that NBP increases the expres-
sion of SIRT1 and AMPK to regulate immune and
inflammation.

2.5. NBP and PI3K/Akt. Since the discovery of protein kinase
B (PKB, also known as Akt) 25 years ago [91] and the iden-
tification of phosphatidylinositol 3-kinases (PI3K) as its
upstream regulator [92], PI3K/Akt acts as a central node of
many signaling pathways, such as immune modulation,
tumor cell proliferation, and apoptosis.

Various experiments have shown that NBP affects the
PI3K and Akt to play a protective role. P-Akt levels were
decreased in the CCH 8-week group but activated in the
NBP-treated group, coinciding with the results that NBP acti-
vated PI3K/Akt in oxygen-glucose deprivation/reperfusion
(OGD/R) [93], the animal model of depression [94], MCAO
rats [31], and bone marrow stem cells (BMSCs) [95]. Notice-
ably, expression of p-Akt instead of total Akt is dramatically
increasing after NBP treatments. [96]. Similarly, in the study
about OGD/R inducing cognitive impairment, there was no
difference of total protein expressions of Akt andmTOR, Akt’s
downstream molecule, between any of the groups. In contrast,
the vehicle group had a significantly higher p-Akt/t-Akt ratio
and p-mTOR/t-mTOR ratio than the sham group [97], sug-
gesting NBP mainly alters Akt phosphorylation.

It has been widely recognized that the PI3K/Akt pathway
regulates and orchestrates the response to different meta-
bolic and inflammatory signals in immune cells. Firstly,
PI3K and Akt kinases’ activation or overexpression sup-
presses macrophage activation [98]. Furthermore, activating
the PI3K/Akt pathway is critically involved in restricting
proinflammatory and promoting anti-inflammatory
responses in TLR-stimulated macrophages [99]. The signals
(such as TGF-β [100], IL-10 [101], and BMP-7 [102]) result-
ing in M2 macrophage polarization remarkably increase via
PI3K/Akt. Suppression of Akt2 inhibits phagocytosis of

opsonized beads from macrophages, demonstrating Akt
activation appears essential for phagocytosis [103]. Akt and
the downstream signaling pathway have been reported to
produce the biological effects that enable neutrophils to bet-
ter respond to viruses and microbial invasion [104]. As one
of the well-known antiapoptotic molecules, Akt prolongs
neutrophil survival time by directly controlling caspase-9
activity, phosphorylation of proapoptotic Bcl-2 family mem-
bers (such as Bad) [105] and Ser184 phosphorylation of Bax
[106]. It is accordant with the results that increasing p-Akt
and decreasing expression of Bax are seen under NBP
administration [14, 93].

Combined with the literature above, it is fair to assume
that PI3K/Akt is another signaling pathway to exert NBP’s
effect on regulating macrophage activation, macrophage
polarization, phagocytosis, and neutrophil longevity.

2.6. NBP and Nrf-2/HO-1. The nuclear factor erythroid 2-
related factor 2 (Nrf2), a basic leucine zipper (bZip) tran-
scription factor, protects a variety of tissues and cells from
oxidative stress and inflammation through a variety of stage
II detoxification and antioxidant enzymes (including NAD
(P) H-H-1 (NQO1) and heme oxygenase-1 (HO-1)) medi-
ated by the antioxidant response elements (ARE) [107,
108]. HO-1 is an ubiquitously expressed and essential cyto-
protective enzyme that catalyzes the rate-limiting step in
heme degradation, leading to equimolar quantities of carbon
monoxide (CO), free iron, and biliverdin under pathologic
conditions [109].

NBP is confirmed to have the effect of regulating Nrf2/
HO-1. Zhao et al. found that PC12 neuronal cells exposed
to OGD, as an in vitro model of ischemic stroke, signifi-
cantly downregulated Nrf2 and HO-1, while NBP pretreat-
ment significantly upregulated these genes [77]. The
mRNA and protein expression of Nrf-2 and HO-1 in the
NBP treatment group was dramatically increased at 24 hours
after cerebral infarction compared with that in the control
group [110], which was consistent with the effect of the
NBP in a mouse model of amyotrophic lateral sclerosis
[25]. Previous studies have shown that NBP increased
Nrf2/HO-1 to inhibit atrial structural remodeling and finally
prevent atrial fibrillation in heart failure rats [111].

Nrf2/HO-1 participates in regulating inflammatory
immune cells through various mechanisms. As the primary
anti-inflammatory and antioxidant enzymes are regulated
by Nrf2 activation [112], HO-1 expression can affect the
switch macrophages to M2 type in vitro [113, 114]. This role
of HO-1 in regulating macrophage polarization has also
been shown in experimental animal models of diabetes,
Crohn’s disease, hypertension, alcoholic liver disease, and
bowel damage [114]. Moreover, pharmacologic induction
of HO-1 inhibits human Th (T helper) and CD8+ cytotoxic
T (TC) cell activation [115] and Treg cell function [116]. In
keeping with these observations, biliverdin/bilirubin and CO
(production of HO-1) inhibit Th cell activation [115, 117],
induce apoptosis in Jurkat T cells [118], and suppress T
cell-driven inflammatory pathologies, the rejection of trans-
planted organs [33], or autoimmune neuroinflammation
[117]. Salutary effects of HO-1 are also exerted via sustaining
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tissue function and preventing endogenous proinflamma-
tory ligands released from injured cells causing unfettered
immune activation.

Accordingly, it is assumed that the protective effects of
NBP are mediated essentially through immunoregulatory
effects of Nrf-2/HO-1 exerted in cells of the innate or adap-
tive immune system.

2.7. NBP and Antioxidative Stress. Many immune-mediated
inflammatory diseases are related to free radicals, which
results in a high level of cellular oxidative stress and tissue
injury. The death of cells driven by overreactive oxidative
stress releases their intracellular components. These compo-
nents act as proinflammatory and immunogenic agonists
recognized by pattern recognition receptors (PRRs)
expressed in immune cells, such as Mø and DCs [119]. In
addition, oxidative-stress-dependent activation of transcrip-
tion factors modulates the biosynthesis of antioxidant pro-
teins and proinflammatory factors (such as NF-κB and
Nrf2 that could be regulated by NBP discussed above), and
the activation is associated with inflammation and immune
cells [120, 121]. Therefore, we presume the effect of NBP
on modulating immune and inflammation might, at least
in part, be exerted in such ways.

On the one hand, ROS is detrimental to cell structure by
interacting with proteins and nucleic acids, especially lipids,
resulting in the peroxidation of membrane phospholipids
[122]. Severe metabolic disturbances and cell death happen
as a consequence [123]. Superoxide dismutase (SOD) is a
crucial antioxidative enzyme [124], while increased malon-
dialdehyde (MDA) indicates oxidative damage of mem-
branes, acting as an oxidative stress marker. NBP is shown
to regulate the expression of these oxidative and antioxidant
markers. The NBP treatment group has higher levels of both
SOD and catalase (CAT), and lower levels of both MDA and
proinflammatory cytokine (IL-1β and IL-6) were found in
major depressive disorder (MDD) rats [26], diabetic rats
[125], EAM guinea pigs [14], and BMSCs [95]. In cerebral
ischemia-reperfusion injury rats, NBP reduced infarction
area, cell apoptosis, blood-brain barrier destruction, and
edema content through inhibition of ROS and MDA and
via increasing activation of SOD [5]. Moreover, Nrf2 also
plays an integral role in the antioxidative stress systems of
cells. After being activated by oxidative stress, Nrf2 is trans-
ferred to the nucleus, and it binds to the ARE, finally elevat-
ing the expression of antioxidant genes and protecting cells
from oxidative damage [126]. It has been shown that NBP
could increase Nrf2 while reducing cellular oxidative stress.
In the same study concerning MDD, researchers found the
significantly upregulated level of Nrf2 in the nucleus, and
the increasing trend of HO-1 and NQO-1, the Nrf2-
downstream antioxidant genes, in NBP treatment [26], con-
sistent with results from the experiment about OGD under
NBP administration [77]. Thereby, these experiments sug-
gest that NBP possesses the effect of antioxidation.

On the other hand, the average ROS/RNS, mainly pro-
duced by normal mitochondria, functions in healthy tissues
to maintain normal physiological activities. Nevertheless,
mitochondrial dysfunction may contribute to excessive and

deregulated production of these molecules. Improper ROS,
in turn, destroys mitochondrial inner membrane integrity,
promotes mitochondrial depolarization, stems mitochon-
drial electron transfer chain, increases the opening of the
mitochondrial permeability transition pore, and loses the
intracellular calcium homeostasis [127–129]. It becomes a
vicious circle and finally leads to intracellular oxidative stress
and tissue damage. Thus, protecting mitochondria is another
method to reduce oxidative stress and then meliorate
inflammation caused by cell damage. NBP is proven to pre-
serve normal cellular and mitochondrial function after OGD
via stabling mitochondrial membrane potential (MMP),
maintaining mitochondrial morphology, and boosting the
activity of mitochondrial oxidative phosphorylation
(OXPHOS) complexes (including complexes I-IV) and
ATPase. NBP fixes the imbalance of protein that regulates
mitochondrial fusion and division [77].

What is more, complex I, also named NADH-
ubiquinone oxidoreductases, is linked with oxidative stress
in mitochondria. Mutation leading to dysfunction of com-
plex I has a positive effect on ROS production [130]. At
the molecular level, NBP regulates the function of complex
I to affect mitochondria and serve as an antioxidant agent
mainly by competing for the sites (the 1,4-dihydronicotina-
mide adenine dinucleotide) [131]. (S)-ZJM-289, as a novel
NO-releasing derivative of NBP, attenuated OGD/R-
induced mitochondrial dysfunction with the noticeable res-
toration of mitochondrial complex I/IV activity. It also
markedly decreased ATP level, ROS generation, and
[Ca2+]i accumulation in cortical neurons [132].

It has been reported that impaired mitochondrial bio-
genesis was alleviated by preserving mtDNA copy numbers
[133]. TFAM has also been shown to maintain mtDNA
and modulate the copy number [134]. NRF-1 is another cru-
cial molecule in regulating energy supply and controlling
mitochondrial biogenesis [135]. Tian et al. have found that
NBP also significantly increased the contents of mitochon-
drial DNA (mtDNA) and mitochondrial biogenesis factors
(NRF-1 and TFAM) after exposing cells to H2O2 [136],
which further ascertains the function of NBP on promoting
mitochondrial biogenesis. Therefore, NBP plays a role in sta-
bilizing immunity and reducing inflammation by protecting
the structure and function of mitochondria.

Given the above, besides the possible direct effects on
immunity, NBP’s roles include sustentation of tissue func-
tion and prevention of uncontrolled immune responses,
which contribute to, to some extent, inflammation and
immune modulation.

3. Therapeutic Potential of NBP in
Inflammatory and Immune-
Mediated Diseases

3.1. NBP in Idiopathic Inflammatory Myopathies. Idiopathic
inflammatory myopathies (IIM) are a group of autoimmune
diseases characterized by muscle injury and other organ sys-
tems’ damage such as skin, lungs, and joints. Regardless of
the different subtypes, the essential pathology of IIM is
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skeletal muscle infiltration by T cells, B cells, and macro-
phages [137]. Some emerging provided a basis for consider-
ing NBP as a novel agent for the IIM treatment. Compared
with the control group, clinical manifestations and inflam-
matory cell infiltration of experimental autoimmune myosi-
tis (EAM, a common animal model mimicking IIM in
humans) were dose-dependently ameliorated in guinea pigs
treated with NBP, which is through improving the Ca2
+-ATPase activity of the muscle’s mitochondrial membrane
and muscle’s plasma membrane. Regarding the NBP effects
on T cell-associated cytokines, NBP remarkably reduced
the expression of IFN-γ mRNA in muscle tissues and signif-
icantly elevated Foxp3 and RORγt mRNA expression levels
[13]. Additionally, NBP exerted a protective effect by
improving the antioxidant enzyme activity, reducing oxida-
tive damage, and decreasing the apoptotic muscle cells in
an EAM model [14]. Therefore, more research is needed in
the future to explore the therapeutic effect of NBP in IIM
and its underlying mechanism.

3.2. NBP in Multiple Sclerosis. Multiple sclerosis (MS) is an
autoimmune-mediated neurodegenerative disease character-
ized by inflammatory demyelination with axonal transec-
tion. Elevated expression of PGAM5 (the components of
necroptosis complex [138]) and worse inflammation
induced by experimental autoimmune encephalomyelitis
(EAE, a common-used animal model of MS) were reversed
by NBP administration. Moreover, reexpression of PGAM5
counteracted the protective effect of NBP on the pathogene-
sis of EAE, in accordance with the results seen in vitro. It is

implicated that NBP suppresses microglial cell growth,
necroptosis, and inflammatory factor release by regulating
PGAM5 [15].

3.3. Future Perspectives. NF-κB, as a critical role in the
orchestration of the multifaceted inflammatory response, is
active and exerts an effect in the production of inflammatory
molecules in many inflammatory diseases, such as rheuma-
toid arthritis (RA), asthma, atherosclerosis, inflammatory
bowel disease (IBD), or MS [22, 23]. It has been extensively
studied that NF-κB is a target in treating inflammatory dis-
eases. For example, artemisinin and its derivatives inhibit
NF-κB by silencing these upstream pathways and/or directly
binding to NF-κB, which alleviates the severity of systemic
lupus erythematosus (SLE), autoimmune encephalitis (AE),
dermatitis, IBD, autoimmune hepatitis, and autoimmune
thyroiditis [139]. NBP has been demonstrated to downregu-
late NF-κB, implying NBP may be a potent and effective
drug for the same autoimmune-mediated conditions via
NF-κB pathways.

P38 signal is a central hub in arthritis and inflammation
of the liver, kidney, brain, and lung, and it acts as a critical
player in inflammatory diseases mediated by immune cells
such as macrophages [40, 42, 52]. Accumulating evidence
under human clinical trials shows that p38 inhibitors are a
promising therapeutic strategy to control inflammatory dis-
eases, for example, RA and chronic obstructive pulmonary
disease (COPD) [52]. Thus, NBP with the function of regu-
lating p38 activity probably has the potential to treat RA,
COPD, and other immune-mediated diseases.
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Figure 1: The potential mechanism concerning NBP’s function on inflammation and immune.
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Due to the significance of HIF-1α, AMPK/SIRT1, PI3K/
Ak, and Nrf-2/HO-1 in the inflammatory response and
immune cell responses, pharmacologically targeting these
signal pathways has been considered a treatment of many
different immune-mediated diseases, including sepsis, IBD,
RA, cancer, and autoimmune encephalomyelitis [140–143].
Similarly, NBP might be an ideal approach for sepsis, IBD,
RA, cancer, and autoimmune encephalomyelitis as its ability
to target HIF-1α, AMPK/SIRT1, PI3K/Ak, and Nrf-2/HO-1.

4. Conclusion

Although NBP is considered a compound with proven effi-
cacy in treating ischemic stroke and a growing body of
research concerning NBP’s effect on other diseases, there is
a tremendous challenge of viable and effective transition
from experimental to clinical practice. Besides, NBP’s poten-
tial mechanisms on modulating immunity and inflamma-
tion for immune- and inflammatory-mediated disease
remain unexplored. Based on these studies and data, we
come to a novel perspective that NBP exerts anti-
inflammation and immune regulation effects, at least par-
tially, by modulating the signaling pathway discussed above
(Figure 1) and alleviating oxidative stress. It potentially
paves the way for a new strategy for immune-mediated dis-
eases and inflammatory diseases to control immune
responses. However, the dynamic changes of immune cells
during the administration of NBP must be studied in much
greater detail in the coming years. Thereby, further study
will be needed to understand the precise molecular mecha-
nisms of NBP concerning inflammation and immune
response in the future.

The ways subsequently regulating immune cells are the
following: ① upregulating proinflammatory factors (TNF-
α, lL-1β, IL-6, etc.); promoting macrophages/microglia to
express a proinflammatory phenotype (M1) and prohibiting
the expression of the anti-inflammatory phenotype (M2);
regulating DC development, survival, and cytokine produc-
tion; modulating B lymphocyte survival during their differ-
entiation and in their activation; prohibiting induction of
Treg and Th2; ② increasing proinflammatory mediators
(TNF-α, PGE2, IL-1β, IL-1, IL-2, IL-3, IL-6 IL-8, IL-12,
COX-2, etc.); regulating macrophage/microglia polarization;
increasing apoptosis of immune cells; ③ shifting macro-
phages/microglia toward M1 phenotype; modulating DC
mature and immigration; regulating neutrophil extracellular
trap formation and survival; differentiating and activating
various T cells; reducing apoptosis of immune cells; ④

downregulating proinflammatory molecules (COX-2, IL-1,
etc.); accommodating T cell differentiation towards the
anti-inflammatory phenotype; determining macrophage/
microglia polarization; decreasing the production of ROS/
NO; reducing autophagy; ⑤ reducing apoptosis and
prolonging immune cell survival time; promoting phagocy-
tosis and macrophage/microglia polarization via inducing
related regulators (TGF-β, IL-10, and BMP-7); ⑥ driving
macrophage/microglia shift to M2 phenotype; prohibiting
activation of Th and TC; regulating the function of Treg.
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