REVIEW

Cardiovascular Data Quality in the Danish National Patient Registry (1977–2024): A Systematic Review

Katrine Hjuler Lund^{[]1-3}, Cecilia Hvitfeldt Fuglsang^{[]1,2}, Sigrun Alba Johannesdottir Schmidt^{[]1,2,4}, Morten Schmidt^{[]1,2,5}

¹Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; ²Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; ³Department of Acute Medicine, Viborg Regional Hospital, Viborg, Denmark; ⁴Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark; ⁵Department of Cardiology, Gødstrup Regional Hospital, Herning, Denmark

Correspondence: Morten Schmidt, Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200 Aarhus N, Denmark, Tel +45 87168063, Fax +45 87167215, Email morten.schmidt@clin.au.dk

Background: The increasing use of routinely collected health data for research puts great demands on data quality. The Danish National Patient Registry (DNPR) is renowned for its longitudinal data registration since 1977 and is a commonly used data source for cardiovascular epidemiology.

Objective: To provide an overview and examine determinants of the cardiovascular data quality in the DNPR.

Methods: We performed a systematic literature search of MEDLINE (PubMed) and the Danish Medical Journal, and identified papers validating cardiovascular variables in the DNPR during 1977–2024. We also included papers from reference lists, citations, journal e-mail notifications, and colleagues. Measures of data quality included the positive predictive value (PPV), negative predictive value, sensitivity, and specificity.

Results: We screened 2,049 papers to identify 63 relevant papers, including a total of 229 cardiovascular variables. Of these, 200 variables assessed diagnoses, 24 assessed treatments (10 surgeries and 14 other treatments), and 5 assessed examinations. The data quality varied substantially between variables. Overall, the PPV was \geq 90% for 36% of variables, 80–89% for 26%, 70–79% for 16%, 60–69% for 7%, 50–59% for 4%, and <50% for 11% of variables. The predictive value was generally higher for treatments (PPV \geq 95% for 92%) and examinations (PPV \geq 95% for 100%) than for diagnoses (PPV \geq 80% for 71%). Moreover, the PPV varied for individual diagnoses depending on the algorithm used to identify them. Key determinants for validity were patient contact type (inpatient vs outpatient), diagnosis type (primary vs secondary), setting (university vs regional hospitals), and calendar year.

Conclusion: The validity of cardiovascular variables in the DNPR is high for treatments and examinations but varies considerably between individual diagnoses depending on the algorithm used to define them.

Keywords: cardiovascular diseases, epidemiological methods, medical record linkage, registries, validation studies

Introduction

Patient registries with complete nationwide coverage and individual-level linkage potential are rare.¹ The Danish National Patient Registry (DNPR), established in 1977, is renowned for its longitudinal data registration and is, therefore, a commonly used data source for population-based research.² It encompasses personal and admission data, and information on diagnoses, treatments, and examinations.² However, the increasing use of routinely collected health data for research puts great demands on data quality. Variables recorded in the DNPR are not automatically validated; consequently, the assessment of data quality relies on ad hoc validation studies. Although an increasing number of such validation studies have been published, the information is scattered and has not been systematically reviewed since 2015.²

The reporting of the cardiovascular data quality in registry-based research is often insufficient. Not uncommonly, papers only cite a single validation study, typically the most recent one (in terms of publication year) or the one reporting the highest positive predictive value (PPV). Optimally, referencing should reflect a summary of the evidence available from all existing validation studies for a specific variable in the study period. In addition to prioritizing larger over

smaller validation studies, such summaries should consider the components of the algorithm used to identify a study variable and to what extent these components align with previous validation studies. Thus, the diagnosis code is only one component of an algorithm used to identify a disease in the DNPR. Other components include admission data (eg admission type, patient contact, and department specialty), other diagnostic specifications (such as primary vs secondary diagnoses), procedures, in-hospital medical treatment, previous medical history (to identify incident events), time since first diagnosis (to identify recurrent events), and calendar year.² The importance of individual algorithm components for the validity of a variable has not been examined.

To provide an overview of the cardiovascular data quality in the DNPR and to examine key determinants of validity, we reviewed all validated cardiovascular variables in the DNPR from 1977 through 2024.

Methods

Setting

The Danish healthcare system is universal and tax-supported, providing all Danish residents equal access to health care.^{2,3} Thus, access to general practitioners, private practicing specialists, hospitals, outpatient specialty clinics, and partial reimbursement of prescribed medication is covered by taxes.^{2,3} Self-payment covers the remaining costs related to medication and dental care.² Referral to hospitals or specialists is initiated by the general practitioner, excluding emergency-related hospital contacts and contacts to ophthalmologists and ear, nose, and throat specialists.^{2,3}

The ten-digit Civil Personal Register (CPR) number, assigned to all persons residing in Denmark at birth or immigration,⁴ allows individual-level linkage of the DNPR to other Danish registries.⁴

The Danish National Patient Registry

Coverage

The primary aim of the DNPR is to monitor hospital and health services utilization.² Since 1978, the DNPR has had complete nationwide coverage of inpatient contacts. From 1995 onwards, all outpatient, psychiatric, and emergency department contacts have been included.

Data types

The DNPR records administrative data, diagnoses, treatments, and examinations.² Administrative data include personal and admission data, eg hospital and department codes, admission type, patient contact type (inpatient [IN], outpatient [OUT], or emergency department [ED]), and dates of admission and discharge.² For each hospital contact, one primary (A) and optional secondary (B) diagnoses are registered in the DNPR.^{2,3} The *diagnoses* are assigned at discharge, at transfer to another department, or at the end of an outpatient visit (before 2019 the diagnosis was assigned at the end of an outpatient course).² According to the classification systems used (see below), *treatments* are categorized as surgery, other treatments, anesthesia, and intensive care. To provide cardiological context, we focused on cardiac surgery and subcategorized "other treatments" into invasive procedures (eg radiofrequency ablation and percutaneous coronary intervention), in-hospital medical treatments, pacemakers, and mechanical circulatory support. Examinations include both non-invasive (eg cardiac CT angiography) and invasive examinations (eg coronary angiogram) (Figure 1).

Classification systems

The classifications used in the DNPR are provided in the Health Care Classification System (Danish, Sundhedsvæsenets Klassifikations System [SKS]).² The SKS is a collection of international, Nordic, and Danish classifications.² SKS codes contain up to ten alphanumeric characters, the first being a letter representing a primary group, following a monohier-archical classification system.² Thus, diagnoses are registered under "D", surgery under "K", other treatments under "B", anesthesia and intensive care under "N", and examinations under "U" or "ZZ".² Until the end of 1993, diagnoses were reported according to the World Health Organization's *International Classification of Diseases* (ICD), *eight revision* (ICD-8), and since 1994 according to the *tenth revision* (ICD-10).² From 1977–1995 surgeries were reported according to the Danish Classification of Surgical Procedures and Therapies, and since 1996 according to the Danish version of the Nordic Medico-Statistical Committee Classification of Surgical Procedures (NOMESCO).²

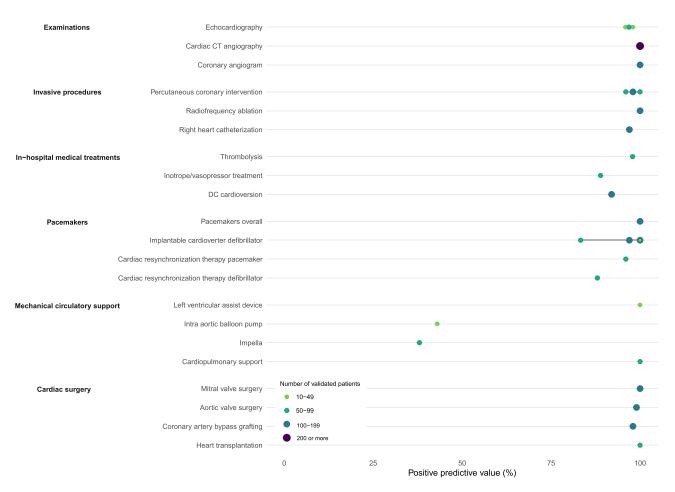


Figure I Overview of the range of positive predictive values reported for individual cardiovascular treatments and examinations in the Danish National Patient Registry (1977–2024).

Notes: The figure includes one PPV per validated variable. Thus, in cases where several PPVs were reported for a variable, we used the highest PPV. All PPVs for each validated variable are listed in Table 1.

All hospitals are legally required to upload their data to the DNPR at least monthly. In practice this is, however, often done on a weekly or daily basis.² Since 2003, private hospitals have been obliged to report to the DNPR.²

Measures of data quality

Data quality covers accuracy and completeness. Measures for accuracy include the PPV and the negative predictive value (NPV).^{2,3} The *PPV* is the most often used measure and is defined as the proportion of patients registered with a given disease who truly have the disease. The *NPV* refers to the proportion of people without a given registration of a disease who truly do not have the disease. Measures of completeness, include sensitivity and specificity. *Sensitivity* is the proportion of true cases with a given disease who are correctly registered with that disease in the DNPR (true positive). *Specificity* is the proportion of people without a given disease who are correctly classified as unaffected in the registry (true negative). Of note, the NPV and specificity of cardiovascular variables in the DNPR are rarely assessed as they require a sample of people without diagnosis/procedure codes.

Systematic review

Search strategy

Figure 2 presents an overview of the review process, including the search string. To provide an overview of the data quality of cardiovascular variables in the DNPR, we performed a systematic literature search of MEDLINE (PubMed) and the Danish Medical Journal (http://ugeskriftet.dk/udgivelser). Both databases were searched until 2023. In practice, we performed two

Table I Bibli
Algorithm Co
Codes

Algorithm Compo	onents					n ^c	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
Diagnoses									
C00–D48: Neopla	sms								
C38	Cardiac tumors	2010–2012	-	IN/OUT; A/B; I st	C38, C380, C388, D151, D487A, C380X, ZM88400	26	PPV=84.6 (66.5-93.9)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
E00–E90: Endocri	ne, nutritional, and me	tabolic diseas	es			•			
E780	Hypercholesterolemia	2010–2012	_	IN/OUT; A/B; I st	E780	94	PPV=95.7 (89.6-98.3)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
G00-G99: Disease	es of the nervous syste	m				•			
G45	Transient ischemic attack	1998–1999	-	IN ^e ; A/B ^e ; n/a	G45	38	PPV=57.9 (42.2–72.2) to 68.4 (52.5–80.9)	MR; DS	Krarup LH et al, Neuroepidemiology 2007 ⁷
		1994–1999 ^e	-	IN/OUT/ED; A/B ^e ; n/a	G45	134	PPV=60.5 (52.0-68.3)	MR; DS	Johnsen SP et al, Cl Epidemiol. 2002 ⁸
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	G45	34	PPV=8.8 (3.1-23.0)	MR	Bindslev JB et al, Cl Epidemiol. 2023 ⁹
100–199: Diseases	of the circulatory syste	em				•			
110	Arterial hypertension	1983–1990	-	IN; A; n/a	40199	310	PPV=40 (26–55) to 60 (49–70) ^f	MR	Nielsen HW et al, Ugeskr Læger. 1996 ¹⁰
		2010–2012	-	IN/OUT; A/B; I st	110–115	97	PPV=91.8 (84.6-95.8)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
		1977–2010	Males	IN/OUT; A/B; n/a	400-404; 110-115	524	PPV=88.2 (85.4-90.9)	PR	Schmidt M et al, Bl Open 2013 ¹¹
		2014–2015	Primary and secondary hypertension, age <16y	n/a; A/B; n/a	110–112, 115	200	PPV=93.5 (89.2-96.2); Se= 84.2 (78.9-88.4)	MR for PPV. Pediatric cases validated with MR for se	Langhoff AF et al, Acta Pediatr. 2019

		2005–2017	-	IN/OUT; A/B; n/a	110–115	30,463	PPV=90.0 (89.7–90.4); NPV= 76.2 (76.1–76.3); Se=21.9 (21.6–22.1); Sp=99.0 (99.0–99.1)	Self-reported (survey)	Bonnesen K et al, Clin. Epidemiol. 2024 ¹³
1200	Acute coronary syndrome	1993–2003	-	IN/OUT/ED; A/B ^e ; n/a	410, 42727; 1200, 121, 146	1,558	PPV _{IN/OUT/ED} =65.5 (63.1–67.9); PPV _{IN} =80.1 (77.7–82.3)	MR; DS; blood tests; ECG	Joensen AM et al, Clin Epidemiol. 2009 ¹⁴
		2007	-	IN/OUT/ED; A/B; n/a	1200, 121, 122	494	PPV _{verified} =86.6 (83.4–89.4); PPV _{verified} _{+possible} =87.9 (84.7–90.5)	MR; ECG; biomarkers; Possible cases fulfill criteria, but biochemical markers are missing	Bork CS et al, Da Med J. 2017 ¹⁵
		2007	-	IN/OUT/ED: A; n/a	1200, 121, 122	398	PPV _{verified} =90.2 (86.9–92.8); PPV _{verified} _{+possible} =91.5 (88.3–93.8)	MR; ECG; biomarkers; Possible cases fulfill criteria, but biochemical markers are missing	Bork CS et al, Da Med J. 2017 ¹⁵
		2007	-	IN/OUT/ED: B; n/a	1200, 121, 122	96	PPV _{verified} =71.9 (62.2–79.9); PPV _{verified} _{+possible} =72.9 (63.3–80.8)	MR; ECG; biomarkers; Possible cases fulfill criteria, but biochemical markers are missing	Bork CS et al, Da Med J. 2017 ¹⁵
	Unstable angina pectoris	1993–2003	-	IN/OUT/ED; A/B ^e ; n/a	1200	444	PPV _{IN/OUT/ED} =27.5 (23.5–31.8); PPV _{IN} =42.0 (36.0–48.0)	MR; DS; blood tests; ECG	Joensen AM et al, Clin Epidemiol. 2009 ¹⁴
		2010–2012	-	IN; A/B; I st	1200	96	PPV=87.5 (79.4–92.7)	MR; DS	Sundbøll J et al, B Open 2016 ⁶
1209	Stable angina pectoris	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	413; 120	15	PPV=46.7 (24.8-69.9)	Self-reported outcome	Langballe R et al, Cancer Surviv. 2018 ¹⁶

Algorithm Compo	onents					n°	PPV; NPV; Sensitivity;	Reference Standard	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Specificity ^d	Standard	
		2007	-	IN/OUT/ED; A/B; n/a	1209, 1251	455	PPV _{definite} =5.9 (4.1–8.5); PPV _{definite+probable} =45.9 (41.4–50.5)	MR	Bork CS et al, Dan Med J. 2017 ¹⁵
		2007	-	IN/OUT/ED; A; n/a	1209, 1251	360	PPV _{definite} =4.2 (2.5–6.8); PPV _{definite+probable} =44.7 (39.7–49.9)	MR	Bork CS et al, Dan Med J. 2017 ¹⁵
		2007	-	IN/OUT/ED; B; n/a	1209, 1251	95	PPV _{definite} =12.6 (7.4–20.8); PPV _{definite} + _{probable} =50.5 (40.7–60.4)	MR	Bork CS et al, Dan Med J. 2017 ¹⁵
		2010–2012	-	IN; A/B; I st	120 (without 1200), 125, 1259	96	PPV=92.7 (85.7–96.4)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
121	MI	1979–1980	-	IN; A/B; n/a	410-414	527	PPV=92.4 (89.8–94.4)	DS	Madsen M et al, Ugeskr laeger. 1990 ¹⁷
		1982–1991	-	IN; A/B; n/a	410, 42724, 42727, 42791, 42797	5,022	$\begin{array}{c} PPV_{A}{=}94.3 \; (93.6{-}94.9);\\ PPV_{A{+}B}{=}\; 93.4 \\ (92.6{-}94.0); \; Se_{A}{=}62.8 \\ (61.7{-}64.0); \; Se_{A{+}B}{=}69.5 \\ (68.4{-}70.6) \end{array}$	DANMONICA definite or possible cases incl. cardiac arrest	Madsen M et al, J Clin Epidemiol. 2003 ¹⁸
		1993–2003	-	IN/OUT/ED; A/B ^e ; n/a	410; 121	1,072	$\begin{array}{c} PPV_{IN/OUT/ED}{=}81.9 \\ (79.5{-}84.1); \; PPV_{IN;\; A/} \\ {}_{B}{=}92.4 \; (90.4{-}93.9); \\ PPV_{IN;\; A}{=}94.4 \\ (92.6{-}95.7) \end{array}$	MR; DS; blood tests; ECG	Joensen AM et al, J Clin Epidemiol. 2009 ¹⁴
		1996–2009	-	IN ^e ; A; n/a	121	148	PPV=100 (97.5-100)	MR	Coloma PM et al, BMJ Open 2013 ¹⁹
		1998–2007	-	IN/OUT; A; n/a	121–123	50	PPV=98.0 (89.5-99.7)	DS	Thygesen SK et al, BMC Med Res Methodol. 2011 ²⁰
		2010–2012	-	IN; A/B; I st	121	99	PPV=97.0 (91.5-99.0)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶

870

		1977–2013	Breast cancer	IN/OUT/ED°; A/B°; n/a	410; 121–123	2	PPV=100.0 (34.2-100.0)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
		2001–2014	Diabetes mellitus	n/a; n/a; n/a	121–124	69	PPV=75.4 (64.0-84.0)	MR; DS; laboratory results; MRI; CT scans	Dalsgaard EM et al, BMC Public Health 2019 ²¹
	MI after PCI	2006–2012	DES, all hospitals	IN; A/B; n/a	121	618	PPV=41.8 (37.9-45.7); NPV= 99.8 (99.6-99.9); Se=95.2 (92.0-97.2); Sp=93.4 (92.7-94.0)	MR	Egholm G et al, Clin Epidemiol. 2016 ²²
		2006–2012	DES, all hospitals	IN; A; n/a	121	338	PPV=70.4 (65.3-75.0); NPV= 99.2 (99.0-99.4); Se=85.0 (80.4-88.7); Sp=98.2 (97.8-98.5)	MR	Egholm G et al, Clin Epidemiol. 2016 ²²
		2006–2012	DES, all hospitals, acute admissions only	IN; A/B; n/a	121	357	PPV =73.4 (68.6–77.7); NPV= 99.6 (99.3–99.7); Se=93.9 (90.5–96.2); Sp=98.3 (97.9–98.6)	MR	Egholm G et al, Clin Epidemiol. 2016 ²²
		2006–2012	DES, all hospitals, acute admissions only	IN; A; n/a	121	284	PPV =81.0 (76.0-85.1); NPV= 99.1 (98.8-99.3); Se=82.1 (77.2-86.2); Sp=99.0 (98.7-99.2)	MR	Egholm G et al, Cli Epidemiol. 2016 ²²
		2006–2012	DES, hospitals with CAG capability, acute admissions only	IN; A/B; n/a	121	282	PPV=67.7 (62.1-72.9); NPV= 99.0 (98.7-99.2); Se=78.0 (72.4-82.7); Sp=98.3 (98.0-98.6)	MR	Egholm G et al, Cli Epidemiol. 2016 ²²
		2006–2012	DES, hospitals with CAG capability, acute admissions only	IN; A; n/a	121	189	PPV=86.8 (81.2–90.9); NPV= 97.9 (97.4–98.2); Se=58.0 (52.1–63.6); Sp=99.5 (99.3–99.7)	MR	Egholm G et al, Cli Epidemiol. 2016 ²²
	STEMI Non-STEMI	2010–2012	-	IN; A/B; I st	1211B, 1210B, 1213	23	PPV=95.7 (79.0-99.2)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
		2010-2012	-	IN; A/B; I st	1211A, 1210A, 1214	39	PPV=92.3 (79.7–97.4)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
	Recurrent MI	2010–2012	-	IN; A/B; I st	121	100	PPV=88.0 (80.2-93.0)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶

•	Table	I	(Continued).	
---	-------	---	--------------	--

Algorithm Compo	onents	•	-			nc	PPV; NPV; Sensitivity;	Reference Standard	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Specificity ^d	Standard	
	Perioperative MI	2016–2021	Age ≥18y with a non- cardiac surgery code at admission for MI or < 30d prior to MI	IN; A/B ^e ; I st	121 + KA–E, KG, KH, KQ, KJ, KK, KL, KM, KN, or KP	167	PPV=92.2 (87.1–95.4)	MR	Korsgaard S et al, Circ Cardiovasc Qual outcomes 2022 ²³
124–125	Coronary heart disease, overall	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	411, 412, 414; 124–125	8	PPV=50.0 (21.5-78.5)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
126	PE	1994–2006	-	IN/OUT/ED; A/B; n/a	45099; 126	353	PPV _{AII} =67.4 (62.4–72.1); PPV _{IN/OUT} =82.1 (77.2–86.1); PPV _{ED} = 29.6 (22.0–38.5); PPV _A =87.0 (81.9–90.9)	MR; DS; blood tests; ultrasound; venography; echo; V-P lung scan; CT scan	Severinsen MT et al, J Clin Epidemiol. 2010 ²⁴
		2010–2012	-	IN/OUT; A/B; I st	126	49	PPV=89.8 (78.2-95.6)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		1980–2001	During pregnancy or postpartum	IN ^e ; A ^e ; n/a	45000–45099; 1260–1269 + (650–666; O80–84)	22	PPV _{preg+postpartum} =81.8 (59.7–94.8) ^f ; PPV _{preg} = 63.6 (40.7–82.8) ^f	MR	Larsen TB et al, J Clin Epidemiol. 2005 ²⁵
		2003–2006	After admission to stroke unit and age ≥18y	IN; A/B; n/a	126	11	PPV=90.9 (62.3-98.4); NPV= 97.4 (95.8-98.4); Se=0.0 (0.0-32.4); Sp=100 (99.3-100)	MR	Ingeman A et al, Clir Epidemiol. 2010 ²⁶
		2008–2014	<6 mo after surgical treatment for spinal degenerative diseases	IN/OUT ^e ; A ^e ; n/a	1260, 1269, T817D	2	PPV=50.0 (9.5-90.6)	MR; patient confirmation	Winther C et al, Dar Med J. 2019 ²⁷
	Recurrent PE	2010–2012	-	IN; A/B; I st	126	54	PPV=70.4 (57.2-80.9)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
126	Blood clots in head, lung, arms, legs, or pelvis	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	432–435, 44441–44490, 450; 126, 163–166, 1693, 1694, 1742–1745	17	PPV=70.6 (46.9-86.7)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
127	Pulmonary hypertension	2010–2012	-	IN/OUT; A/B; I st	127	100	PPV=87.0 (79.0-92.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶

872

130–132	Pericarditis	2010–2012	-	IN/OUT; A/B; I st	130–132	98	PPV=91.8 (84.7-95.8)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
	Pericarditis or pericardial constriction	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	39109, 39300, 39301, 420, 42301–42309, 42300; 1010, 1092, 130, 1310, 132, 1311	2	PPV=100.0 (34.2-100.0)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
1312	Non-traumatic bleeding (thorax and respiratory passages)	2019 March- December	Age ≥65y	IN/OUT/ED; A/B; I st	1312, J942, R04	102	PPV=94.1 (87.8–97.3)	MR	Thaarup M et. al. Clin Epidemiol. 2023 ²⁸
I33 Infective endocarditis	2007–2017	-	IN/OUT ^e (Only IN, as no OUT contacts were identified); A/B ^e ; n/a	133, 138–139	1,484	PPV=77.1 (74.9–79.2)	MR	Lassen H et al, Int J Infect Dis. 2020 ²⁹	
	2010–2012	-	IN/OUT; A/B; I st	133, 138, 1398	96	PPV=82.3 (73.5-88.6)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶	
		2010–2012	-	IN; A/B; I st	133, 138, 1398	92	PPV=83.7 (74.8–89.9); PPV _{admission <2} weeks=65.2 (44.9–81.2); PPV _{admission} ≥2 =89.9 (80.5–95.0)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	Prosthetic heart valve	IN; A/B; I st	133, 138, 1398, KFKD, KFMD, KFGE, KFJF	15	PPV=86.7 (62.1–96.3)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	No prosthetic heart valve	IN; A/B; I st	133, 138, 1398	77	PPV=83.1 (73.2-89.9)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	Cardiac implantable electronic device	IN; A/B; I st	133, 138, 1398, BFCA0, BFCB0	21	PPV=81.0 (60.0-92.3)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	No implantable electronic device	IN; A/B; I st	133, 138, 1398	71	PPV=84.5 (74.4-91.1)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	Transesophageal echo during admission	IN; A/B; I st	133, 138, 1398, UXUC81	63	PPV=82.5 (71.4-90.0)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	No transesophageal echo during admission	IN; A/B; I st	133, 138, 1398	29	PPV=86.2 (69.4–94.5)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰

Algorithm Compo	onents			-		nc	PPV; NPV; Sensitivity;	Reference Standard	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Specificity ^d	Standard	
		2010–2012	PET/CT during admission	IN; A/B; I st	I33, I38, I398 WDIPSFAXX, WDLPSFAXX, WDTCPXYXX	4	PPV=75.0 (30.1–95.4)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
		2010–2012	No PET/CT during admission	IN; A/B; I st	133, 138, 1398	88	PPV=84.1 (75.1-90.3)	MR; DS	Østergaard L et al, Epidemiol Infect. 2018 ³⁰
134–139	Valvular heart disease	1977–2013	Breast cancer	IN/OUT/ED°; A/B°; n/a	394–397, 424; 105–108, 134–139	11	PPV=72.7 (43.4-90.3)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
134	Mitral regurgitation or stenosis	2010–2012	-	IN/OUT; A/B; I st	105, 134, 1390, 1511A	49	PPV=95.9 (86.3-98.9)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
135	Aortic regurgitation or stenosis	2010–2012	-	IN/OUT; A/B; I st	106, 135, 1391	50	PPV=98.0 (89.5-99.7)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
140	Myocarditis	2010–2012	-	IN/OUT; A/B; I st	140, 141, 1090, 1514	66	PPV=63.6 (51.6-74.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
142	Cardiomyopathy	2010–2012	-	IN/OUT; A/B (except takotsubo cardiomyopathy IN only); I st	1420, 1421, 1422, 1425, 1428A, 1428B	89	PPV=89.9 (81.9-94.6)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
	Peripartum cardiomyopathy	2005–2014	Registered <9 mo before or 12 mo after delivery or stillbirth recorded in DNPR, MBR or CDR	n/a; n/a; n/a	142	143	PPV=30.1 (23.2-38.0)	MR	Ersbøll AS et al, Euro J Heart Fail. 2017 ³¹
1420	Dilated cardiomyopathy	2010–2012	-	IN/OUT; A/B; I st	1420	20	PPV=75.0 (53.1-88.8)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1421–1422	Hypertrophic cardiomyopathy	2010–2012	-	IN/OUT; A/B; I st	1421, 1422	20	PPV=90.0 (69.9-97.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1425	Restrictive cardiomyopathy	2010–2012	-	IN/OUT; A/B; I st	1425	9	PPV=77.8 (45.3-93.7)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶

Dovepress

1428A	Arrhythmogenic right ventricular cardiomyopathy	2010–2012	-	IN/OUT; A/B; I st	1428A	20	PPV=100.0 (83.9-100.0)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
I428B	Takotsubo cardiomyopathy	2010–2012	-	IN; A/B; I st	I428B	20	PPV=100.0 (83.9-100.0)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
142–143+150	Cardiomyopathy or congestive heart failure	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	425, 42709–42719, 428; 142–143, 150, 1110, 1130, 1132	6	PPV=16.7 (3.0-56.4)	Self-reported outcome	Langballe R et al, J Cancer Surv. 2018 ¹⁶
143	Peripartum cardiomyopathy	2005–2014	Registered <9 mo before or 12 mo after delivery or stillbirth recorded in DNPR, MBR or CDR	n/a; n/a; n/a	143	3	PPV=33.3 (6.2–79.2)	MR	Ersbøll AS et al, Euro J Heart Fail. 2017 ³¹
144	Bradycardia	2010–2012	-	IN/OUT; A/B; I st	1440, 1441, 1442, 1443, 1455A, 1455B, 1455C, 1455G	100	PPV=87.0 (79.0-92.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
144–145	Atrioventricular block, left bundle branch block, and atrial fibrillation	1977–2013	Breast cancer	IN/OUT/ED ^e ; A/B ^e ; n/a	42720–42797; 144–145, 147–149	29	PPV=69.0 (50.8-82.7)	Self-reported outcome	Langballe R et al, J Cancer Surviv. 2018 ¹⁶
146	Cardiac arrest	1993–2003	-	IN/OUT/ED; A/B ^e ; n/a	42727; 146	42	PPV _{IN/OUT/ED} =50.0 (35.5–64.5); PPV _{IN} =53.1 (36.5–69.1)	MR; DS; blood tests; ECG	Joensen AM et al, J Clin Epidemiol. 2009 ¹⁴
		2010–2012	-	IN; A/B; I st	146	100	PPV=94.0 (87.5-97.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
147	Ventricular tachycardia or fibrillation	2010–2012	-	IN/OUT; A/B; I st	1470, 1472, 1490	96	PPV=80.2 (71.1-87.0)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
148	Atrial fibrillation or flutter	1980–2002	-	n/a; n/a; n/a	42793, 42794; 148	174	PPV=98.9 (95.9–99.7)	MR; heart rhythm documentation	Frost L et al, AM J Med. 2007 ³²
		1980–2002	-	n/a; n/a; n/a	42793, 42794; 148	116	PPV=96.6 (91.5-98.7)	MR; heart rhythm documentation	Frost L et al, Arch Intern Med. 2004 ³³

Lund et al

Dovepress

Algorithm Compo	onents					nc	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b	-	Sensitivity; Specificity ^d	Standard	
		1993–2009	-	IN/OUT/ED; A/B; n/a	42793, 42794; 148	284	PPV _{AII} =92.3 (88.6–94.8); PPV _{IN/OUT} =94.0 (90.5– 96.3) (independent of diagnosis type and department specialty); PPV _{ED} = 64.7 (41.3–82.7)	MR; heart rhythm documentation	Rix TA et al, Scand Cardiovasc J. 2012 ³⁴
		2010–2012	-	IN/OUT; A/B; I st	148	97	PPV=94.9 (88.5-97.8)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1489A	Atrial flutter	1977–1999	-	IN/OUT/ED; A/B; n/a	42794; 1489A	108	PPV=50.0 (40.7–59.3)	MR; heart rhythm documentation	Rix TA et al, Scand Cardiovasc J. 2012 ³⁴
150	Heart failure	1998–1999	-	IN; A/B; n/a	150	156	PPV=80.8 (73.9-86.2); NPV= 90.1 (88.9-91.2); Sp=98.9 (98.5-99.2); Se=29.4 (25.3-33.9)	Clinical examination	Kümler T et al, Eur J Heart Fail. 2008 ³⁵
		1998–2007	-	IN/OUT; A; n/a	150, 1110, 1130, 1132	50	PPV=100 (92.9-100)	DS	Thygesen SK et al, BMC Med Res Methodol. 2011 ²⁰
		2007	-	IN/OUT/ED; A/B; n/a	1500–1509	500	PPV _{Overall} (definite+probable) =83.6 (80.1–86.6); PPV _A =88.0 (84.5–90.8); PPV _B =66.0 (56.3–74.5)	MR; DS	Delekta J et al, Dan Med J. 2018 ³⁶
		2010–2012	-	IN; A/B; I st	1500, 1501, 1502, 1503, 1508, 1509, 1110, 1130, 1132, 1420, 1426, 1427, 1428, 1429	96 ^h	PPV _{IN; A/B; 1st} =75.8 (66.3–83.3); PPV _{IN; A/B; 2nd =76.0 (66.6–83.5)}	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		2005–2007	Heart failure at university hospital cardiac care unit	IN/OUT; A/B; n/a	1110, 1130, 1132, 1420, 1426–9, 1500–1501, 1509	758	PPV _{Overall} : 84.0 (81.3– 86.5); PPV _{First-time events} : 77.9 (74.1–81.6) ^f	MR	Mard S et al, Clin Epidemiol. 2010 ³⁷

	2016–2018	Reduced ejection fraction (EF ≤40%), surviving at least 120 d and receiving renin- angiotensin system inhibitors and/or beta- blockers	IN/OUT; A; I st	150	485	PPV=94.9 (92.5–96.5); NPV= 63.0 (56.5–69.1); Se=85.0 (81.8–87.8); Sp=84.7 (78.3–89.4)	MR; echo	Madelaire C et al, Clin Epidemiol. 2020 ³⁸
	2017–2022	-	IN/OUT; A/B; I st	1130, 1132, 1420, 1426– 1429, 1500–1502, 1508, 1509, 1510	200 ^h	PPV _{IN/OUT: A/B: 1st} =80.5 (74.5–85.4); PPV _{IN: A:} 1st=80.0 (67.0–88.8); PPV _{IN: B: 1st} =76.0 (62.6– 85.7); PPV _{OUT: A: 1st} =80.0 (67.0–88.8); PPV _{OUT: B:} 1st=86.0 (73.8–93.1)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
	2017–2022	-	IN/OUT; A; I st	150	91	PPV=82.4 (73.3-88.9)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
Readmission for heart failure	2017–2022	Readmission after implantable cardioverter- defibrillator	IN/OUT; A; 2 nd	1130, 1132, 1420, 1426– 1429, 1500–1502, 1508, 1509, 1510 after procedures BFCB00, BFCB01, BFCB20	71 ^h	$\begin{array}{c} PPV_{IN/OUT; A; 2nd=25.4} \\ (16.7\text{-}36.6); PPV_{IN; A;} \\ _{2nd}=38.1 \ (20.8\text{-}59.1); \\ PPV_{OUT; A; 2nd}=20.0 \\ (11.2\text{-}33.0) \end{array}$	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
		Readmission after cardiac resynchronization therapy	IN/OUT; A; 2 nd	1130, 1132, 1420, 1426– 1429, 1500–1502, 1508, 1509, 1510 after procedures BFCB05, BFCB06, BFCA21, BFCA63, BFCB03, BFCB21	62 ^h	$\begin{array}{c} PPV_{IN/OUT;\ A;\ 2nd}{=}17.7\\ (10.2{-}29.0);\ PPV_{IN;\ A;}\\ _{2nd}{=}38.5\;(17.7{-}64.5);\\ PPV_{OUT;\ A;\ 2nd}{=}12.2\;(5.7{-}24.2) \end{array}$	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
Peripartum heart failure	2005–2014	Registered <9 mo before or 12 mo after delivery or stillbirth recorded in DNPR, MBR or CDR	n/a; n/a; n/a	150	114	PPV=39.5 (31.0-48.7)	MR	Ersbøll AS et al, Euro J Heart Fail. 2017 ³¹

877

Algorithm Compo	onents					n ^c	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b	-	Sensitivity; Specificity ^d	Standard	
160	Non-traumatic bleeding	2019 March- December	Age ≥65y	IN/OUT/ED; A/B; I st	 I60, I61, I62, I312, J942, R04, K228(F), K250, K252, K254, K256, K260, K262, K264, K266, K270, K272, K274, K276, K280, K282, K284, K286, K290, K298 (A), K625, K638B, K638C, K661, K838(F), K868(G), K920, K921, K922, M250, N938, N939, N95, R31, R58 	907 ^h	PPV _{IN/OUT/ED; A/B;} Ist=94.1 (92.3–95.4); PPV _{IN/OUT/ED; A; Ist} = 98.7 (97.6–99.3); PPV _{IN/OUT/} ED; B; Ist=68.8 (60.7–75.9)	MR	Thaarup M et al, Clin Epidemiol. 2023 ²⁸
160–169	Cerebrovascular disease	1994–1999	-	IN/OUT/ED; A/B ^e ; n/a	160–1698, G45	565	PPV=68.5 (64.6-72.2)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
		1998–1999	-	IN ^e ; A/B ^e ; n/a	160–169, G45	236	PPV=78.4 (72.7–83.2) to 80.1 (74.5–84.7)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷
		1998–2007	-	IN/OUT; A; n/a	160–169, G45–G46	50	PPV=94.0 (83.8–97.9)	DS	Thygesen SK et al, BMC Med Res Methodol. 2011 ²⁰
160–164	Stroke	1994–1999 ^e	-	IN/OUT/ED; A/B ^e ; n/a	160–164	377	PPV=79.3 (74.9-83.1)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
		1998–1999	-	IN ^e ; A/B ^e ; n/a	160–164	164	PPV=80.5 (73.8-85.8) to 86.0 (79.8-90.5)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷
		1980–2002	Atrial fibrillation/flutter	n/a; A/B; n/a	430-434, 436; 160-164	164	PPV=97.0 (93.1-98.7)	MR	Frost L et al, AM J Med. 2007 ³²

Clinical Epidemiology 2024:16	

		1993-2009	Age 50–64y, no previous cancer	IN/OUT/ED; A/B; I st	430, 431, 433, 434, 43601, 43690; 160, 161, 163, 164	3,326 ^h	$\begin{array}{l} PPV_{IN/OUT/ED; A/B;} \\ {}_{1st} = 69.3 \ (67.7 - 70.9); \\ PPV_{IN; A/B; 1st} = 79.6 \\ (77.9 - 81.3)^{f}; PPV_{OUT; A/B;} \\ {}_{1st} = 43.0 \ (37.6 - 48.5)^{f}; \\ PPV_{ED; A/B; 1st} = 54.1 \\ (50.9 - 57.5)^{f} \end{array}$	MR; DS	Lühdorf P et al, Scand J Pub Health 2017 ⁴⁰
		1993–2009	Age 50–64y, no previous cancer	IN/OUT/ED; A/B; I st	160	3,326	PPV=60.6 (53.4-67.7) ^f	MR; DS	Lühdorf P et al, Scand J Pub Health 2017 ⁴⁰
		1993–2009	Age 50–64y, no previous cancer	IN/OUT/ED; A/B; I st	161	3,326	PPV=73.1 (68.1–78.0) ^f	MR; DS	Lühdorf P et al, Scand J Pub Health 2017 ⁴⁰
		1993–2009	Age 50–64y, no previous cancer	IN/OUT/ED; A/B; I st	163	3,326	PPV=80.1 (77.9-82.3) ^f	MR; DS	Lühdorf P et al, Scand J Pub Health 2017 ⁴⁰
		1993–2009	Age 50–64y, no previous cancer	IN/OUT/ED; A/B; I st	164	3,326	PPV=57.8 (55.4-60.3) ^f	MR; DS	Lühdorf P et al, Scand J Pub Health 2017 ⁴⁰
		2001–2014	Diabetes mellitus	n/a; n/a; n/a	161–165	46	PPV=69.6 (55.2-80.9)	MR; DS; laboratory results; MRI; CT scans	Dalsgaard EM et al, BMC Public Health 2019 ²¹
		2010	Admission to neurologic wards	IN; A; n/a	161, 163–164	46	PPV=93.5 (82.5-97.8); NPV= 71.8 (62.8-79.4); Se=58.1 (46.7-68.7); Sp=96.3 (89.8-98.8)	MR including MRI and CT scan for PPV. Other neurologic disorders were included to assess Se, Sp, and NPV	Wildenschild K et al Clin Epidemiol. 2013 ⁴¹
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	160–164, 167–168, G08, G45	309	PPV=38.8 (33.6-44.4)	MR	Bindslev JB et al, Clir Epidemiol. 2023 ⁹
160–162	Hemorrhage stroke	2001–2014	Diabetes mellitus	n/a; n/a; n/a	160–162	5	PPV=60.0 (23.1-88.2)	MR; DS; laboratory results; MRI; CT scans	Dalsgaard EM et al, BMC Public Health 2019 ²¹

Algorithm Compo	onents					nc	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
		2019 March– December	Age ≥65y	IN/OUT/ED; A/B; I st	160–162	168	PPV=92.9 (87.9–95.9)	MR	Thaarup M et. al. Clin Epidemiol. 2023 ²⁸
160	Subarachnoid hemorrhage	1998–1999	-	IN ^e ; A/B ^e ; I st	160	3	PPV=66.7 (20.8–93.9)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷
		994– 999 ^e	-	IN/OUT/ED; A/B ^e ; n/a	160	29	PPV=48.3 (31.4-65.6)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
		1977–1995	-	IN°; A/B°; n/a	430; 160	191	PPV _{neurosurgery} wards=93 (85–98) ^f ; PPV _{neurology} wards=75 (60–87) ^f ; PPV _{non-specialty} wards=47 (36–59) ^f	MR; DS; autopsy reports	Gaist D et al, BMJ. 2000 ⁴²
		2008–2014	Age ≥18y	IN; A; n/a	1600–1609	842	PPV=63.8 (60.5-67.0)	MR; DS; imaging; spinal fluid analysis	Sonne A et al, Clin Epidemiol. 2019 ⁴³
		2015–2018	Emergency telephone call to the Copenhagen emergency medical dispatch center identified in DNPR or at a department of neurosurgery and neurointensive care	IN; A ^e ; n/a	1600–1609	668	PPV=33.5 (30.1–37.2)	MR	Sonne A et al, Scand J Trauma Resusc Emerg Med. 2021 ⁴⁴
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	160	30	PPV _{for any type of stroke} =6.7 (1.9–21.3); PPV _{SAH} =0 (0.0–11.4)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹
161	ІСН	1998–1999	-	IN ^e ; A/B ^e ; I st	161	23	PPV=73.9 (53.5-87.5)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷

880

Clinical Epidemiology 2024:16

		1994–1999 ^e	-	IN/OUT/ED; A/B ^e ; n/a	161	35	PPV=65.7 (49.2–79.2)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
		2009–2017	Age >20y	IN; A; n/a	161	3,169 ^h	$\begin{array}{c} PPV_{IN;\ A;\ n/a}{=}76.2\ (74.7{-}\\77.6);\ PPV_{IN;\ B;\ n/a}{=}49.4\\ (45.5{-}53.3);\ PPV_{IN;\ A/B;\ n/}\\ {}_a{=}71.7\ (70.3{-}73.1);\\ PPV_{OUT/ED;\ A/B;\ n/a}{=}7.4\\ (3.2{-}16.1);\ PPV_{IN/OUT/ED;}\\ {}_{A/B;\ n/a}{=}70.6\ (69.1{-}72.0) \end{array}$	DS; brain imaging reports	Hald SM et al, Clin Epidemiol. 2020 ⁴⁵
		2010–2015	Age>18y	IN; A; n/a	161	400	PPV=89.5 (86.1-92.1)	DS; brain imaging reports	Hald SM et al, Clin Epidemiol. 2018 ⁴⁶
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	161–162	107	PPV _{ICH} = 37.4 (28.8– 46.8); PPV _{any type of} _{stroke} =42.1 (33.1–51.5)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹
	Spontaneous ICH	2009–2017	Age >20y	IN; A; n/a	161	3,169 ^h	$\begin{array}{l} PPV_{IN;\ A;\ n/a}{=}70.2\ (68.6{-}\\ 71.8);\ PPV_{IN;\ B;\ n/a}{=}43.7\\ (39.9{-}47.6);\ PPV_{IN;\ A/B;\ n/}\\ {}_{a}{=}65.8\ (64.3{-}67.3);\\ PPV_{OUT/ED;\ A/B;\ n/a}{=}7.4\\ (3.2{-}16.1);\ PPV_{IN/OUT/ED;}\\ {}_{A/B;\ n/a}{=}64.8\ (63.3{-}66.3) \end{array}$	DS; brain imaging reports	Hald SM et al, Clin Epidemiol. 2020 ⁴⁵
		2010–2015	Age >18y	IN; A; n/a	161	400	PPV=76.8 (72.4-80.6)	DS; brain imaging reports	Hald SM et al, Clin Epidemiol. 2018 ⁴⁶
	Recurrence of spontaneous ICH	2009–2018	First-time spontaneous ICH with a 120d blank period. See paper for different follow up	IN ^e ; A ^e ; I st	161	98	PPV=80.6 (71.7-87.2); NPV=98.2 (97.5-98.6); Se=63.7 (55.0-71.6); Sp=99.2 (98.8-99.5)	MR; brain imaging reports	Jensen MM et al, Clin Epidemiol. 2021 ⁴⁷
1620	Acute non-traumatic subdural hematoma	2000–2012	-	IN; A; n/a	1620	45	PPV=62.2 (47.6–74.9)	MR	Poulsen FR et al, Pharmacoepidemiol Drug Saf. 2016 ⁴⁸
162+165–169	Other cerebrovascular disease	1998–1999	-	IN ^e ; A/B ^e ; I st	162+165–169	34	PPV=5.9 (1.6–19.1) to 17.7 (8.4–33.5)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	167–168, except 1676 + 1676A	43	PPV=39.5 (26.4–54.4); PPV _{stroke as reference} =11.6 (5.1–24.5)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹

Algorithm Compo	onents					nc	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
		1994–1999 ^e	-	IN/OUT/ED; A/B ^e ; n/a	162+165–1698	54	PPV=33.3 (22.2-46.6)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
163–168	Pediatric stroke	2010–2015	Age 28d–16y	IN; n/a; n/a	163–1639, 164–1649, 167– 1679, 168–1689	152	PPV _{any time} =74.3 (66.9– 80.6); PPV _{ischemic} _{stroke} =53.3 (45.4–61.0)	MR	Helmuth IG et al, Pediatric Neurol. 2018 ⁴⁹
163–164	Pediatric arterial thrombosis	1994–2006	Age 0–18y	IN/OUT/ED ^e ; A/B; n/a	163–164, H341–H342, 174, N280A, N280D, 121	472	PPV _{all} =53.6 (49.1–58.1); PPV _{ED} = 7.3 (2.5–19.4); PPV _{ward} =58.0 (53.3– 62.6); PPV _{neonates} =75.3 (64.9–83.4)	MR; lab tests; ECG; radiology reports	Tuckuviene R et al, Clin Epidemiol. 2010 ⁵⁰
163	Ischemic stroke	1994–1999	-	IN/OUT/ED; A/B ^e ; n/a	163	113	PPV=87.6 (80.3-92.5)	MR; DS	Johnsen SP et al, J Clin Epidemiol. 2002 ⁸
		1998–1999	-	IN ^e ; A/B ^e ; I st	163	33	PPV=97.0 (84.7-99.5) to 100 (89.6-100)	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷
		2001–2014	Diabetes mellitus	n/a; n/a; n/a	163	23	PPV=78.3 (58.1–90.3)	MR; DS; laboratory results; MRI; CT scans	Dalsgaard EM et al, BMC Public Health 2019 ²¹
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	163 except 1636	54	PPV=83.3 (71.3-91.0)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹
1636	Central venous thrombosis	2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	1636, 1676, 1676A, G08	13	PPV=30.8 (12.7-57.6)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹
164	Unspecified stroke	1998–1999	-	IN ^e ; A/B ^e ; I st	164	105	PPV=72.4 (63.2–80.0) to 80.0 (71.4–86.5) for unspecified stroke confirmed as being any stroke	MR; DS	Krarup LH et al, Neuroepidemiology. 2007 ⁷

https://doi.org/10.2147/CLEP.S471335 DovePress

883

		2001–2014					confirmed as being any stroke		Clin Epidemiol. 2002 ⁸
		2001–2014	Diabetes mellitus	n/a; n/a; n/a	164	18	PPV=50.0 (29.0-71.0)	MR; DS; laboratory results; MRI; CT scans	Dalsgaard EM et al, BMC Public Health 2019 ²¹
		2017–2020	Age 28d–17y	IN/OUT/ED; A/B; I st	164	28	PPV=57.1 (39.1–73.5)	MR	Bindslev JB et al, Clin Epidemiol. 2023 ⁹
1675 Mo	1oyamoya disease	1994–2017	-	IN/OUT; A/B; n/a	1675	74 ^e	PPV=86.5 (76.9–92.5) ^e	MR; radiology notes; radiographic film	Birkeland P et al, Euro J. of Neurol. 2020 ⁵¹
	eripheral arterial lisease	1993–2009	Identified in DNPR + Danish National Vascular Registry	IN/OUT; A/B; I st	44390, 44500, 44509, 44590, 44599, 44020, 44030; 1739A, 1739C, 1739B, 1702A, 1702	1,097 ^h	$\begin{array}{l} PPV_{IN/OUT; A/B; 1st}{=}61.5 \\ (58.6-64.4); PPV_{IN/OUT;} \\ A; n/a}{=}76.1 (73.4-78.7); \\ PPV_{IN/OUT; B; n/a}{=}59.0 \\ (50.5-66.9); PPV_{IN: A/B; n/a}{=}81.2 (76.3-85.3); \\ PPV_{OUT; A/B; n/a}{=}66.8 \\ (64.0-69.4) \end{array}$	MR	Lasota AN et al, Eur J Vasc Endovasc Surg. 2017 ⁵²
		1998–2007	-	IN/OUT; A; n/a	170–174, 177	50	PPV=100 (92.9–100)	DS	Thygesen SK et al, BMC Med Res Methodol. 2011 ²⁰
	Atherosclerosis of ower extremities	1993–2009	ldentified in DNPR + Danish National Vascular Registry	IN/OUT; A/B; n/a	I702, I702A No ICD-8 codes identified	771	PPV=68.6 (65.3-71.8)	MR	Lasota AN et al, Eur J Vasc Endovasc Surg. 2017 ⁵²
1710 Ac	Nortic dissection	1996–2016	-	IN; A; n/a	1710, 1710A, 1710B	3,767	PPV=71.1 (69.6–72.5) for specific time period, see paper	MR; surgical descriptions; CT scans; MRI	Obel LM et al, Clin Epidemiol. 2022 ⁵³
		2010–2012	-	IN; A/B; I st	44109; 1710	50	PPV=92.0 (81.2-96.9)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		2006–2016	-	IN; A; n/a	1710	1,586	PPV=63.5 (61.1-65.8)	MR; surgical descriptions; CT scans; MRI	Obel LM et al, Clin Epidemiol. 2022 ⁵³

Algorithm Compo	onents					nc	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
1710A	Aortic dissection, type A	2006–2016	-	IN; A; n/a	I710A	598	PPV=90.3 (87.7-92.4)	MR; surgical descriptions; CT scans; MRI	Obel LM et al, Clin Epidemiol. 2022 ⁵³
1710B	Aortic dissection, type B	2006–2016	-	IN; A; n/a	1710B	438	PPV=88.1 (84.8–90.8)	MR; surgical descriptions; CT scans; MRI	Obel LM et al, Clin Epidemiol. 2022 ⁵³
1711	Aortic aneurysm/ dilatation	2010–2012	-	IN/OUT; A/B; I st	1711–1716, 1718–1719	50	PPV=100.0 (92.9-100)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1739	Peripheral vascular disease, other	1993–2009	Identified in DNPR + Danish National Vascular Registry	IN/OUT; A/B; n/a	44390, 44500; 1739 No cases identified with ICD- 8 codes.	664	PPV=70.3 (66.8–73.7)	MR	Lasota AN et al, Eur J Vasc Endovasc Surg. 2017 ⁵²
1739A	Arterial claudication	2010–2012	-	IN/OUT; A/B; I st	1739A	97	PPV=90.7 (83.3-95.0)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1800	Superficial thrombophlebitis	1980–2001	During pregnancy/post- partum	IN ^e ; A ^e ; n/a	45101, 45191; 1800 + (650–666; O80–84)	125	PPV _{preg+postpartum} =89.6 (84.3-95.0) ^f ; PPV _{preg} =88.0 (81.0-82.8) ^f	MR	Larsen TB et al, J Clin Epidemiol. 2005 ²⁵
1801–3	DVT	1994-2006	-	IN/OUT/ED; A/B; n/a	45100, 45108, 45109, 45199; 1801–1809	742	PPV _{AII} =54.6 (51.0–58.1); PPV _{IN/OUT} =71.3 (67.4– 74.9); PPV _{ED} = 31.9 (27.1–37.0); PPV _A =72.4 (68.2–76.2)	MR; DS; blood tests; ultrasound; venography; echo; V-P lung scan; CT scan	Severinsen MT et al, J Clin Epidemiol. 2010 ²⁴
		2010–2012	-	IN/OUT; A/B; I st	1801–1803	50	PPV=86.0 (73.8-93.1)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		1980–2001	During pregnancy and post-partum	IN ^e ; A ^e ; n/a	45100, 45108-45109, 45190, 45192, 45199; 1801-1809 + (650-666; O80-84)	153	PPV _{preg+postpartum} =86.3 (79.8–91.3) ^f ; PPV _{preg} =74.5 (66.8–81.2) ^f	MR	Larsen TB et al, J Clin Epidemiol. 2005 ²⁵
		2008–2014	<6 mo after surgical treatment for spinal degenerative diseases	IN/OUT ^e ; A ^e ; n/a	1802, 1803, T817C	10	PPV=70.0 (39.7-89.2)	MR; patient confirmation	Winther C et al, Dan Med J. 2019 ²⁷

Lund et al

884

	Recurrent DVT	2010–2012	-	IN; A/B; I st	1801–1803	39	PPV=74.4 (58.9-85.4)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
1801–182	Pediatric VTE	1994–2006	Age 0–18y	IN/OUT/ED ^e ; A/B; n/a	1676, 1636, G08, H348, 126, 1801–1809, 181–182, O225A, O873, O223, O228–O229, O87A– O87F, O871	640	PPV _{all} =53.9 (50.0-57.7); PPV _{ED} = 7.4 (4.1-13.1); PPV _{ward} =66.3 (62.1- 70.3); PPV _{neonates} =82.4 (66.5-91.7)	MR	Tuckuviene R et al, Clin Epidemiol. 2010 ⁵⁰
1801–3+126	VTE	1994–2006	-	IN/OUT/ED; A/B; n/a	45099, 45100, 45108, 45109, 45199; 126, 1801– 1809	1,100	$\begin{array}{c} PPV_{AII}{=}58.5 \ (55.5{-}61.3);\\ PPV_{INI}{_OUT}{=}75.0 \ (71.9{-}\\77.8); \ PPV_{ED}{=} 31.3 \\ (27.2{-}35.7); \ PPV_{A}{=}77.0 \\ (73.7{-}80.0) \end{array}$	MR; DS; blood tests; ultrasound; venography; echo; V-P lung scan; CT scan	Severinsen MT et al, Clin Epidemiol. 2010 ²⁴
		2010–2012	-	IN/OUT; A/B; I st	1801–1803, 126	99	PPV=87.9 (80.0-92.9)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		2010–2012	Without code for ultrasound or CT during admission	IN/OUT; A/B; I st	1801–1803, 126	22	PPV=77.3 (56.6-89.9)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
		2010–2012	VTE with code for ultrasound (UXUG) or CT (UXCA) during admission	IN/OUT; A/B; I st	1801–1803, 126	77	PPV=90.9 (82.4-95.5)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
		2010–2012	VTE with code for ultrasound (UXUG) and CT (UXCA) during admission	IN/OUT; A/B; I st	1801–1803, 126	13	PPV=100.0 (77.2-100.0)	MR; DS	Sundbøll J et al, BM Open 2016 ⁶
		2004–2012	VTE + AC prescription ≤30 d after	IN/OUT; A/B; n/a	1801–3, 126	20	PPV=90.0 (69.9-97.2)	MR	Schmidt M et al, J Thromb Haemost. 2014 ⁵⁴
		2001–2009	Non-pregnant women, age 15–49y	IN/OUT ^e ; A/B ^e ; n/a	438, 450, 45100, 45108, 45199, 45302; 126, 1676, 1801–1803, 1822–1823, 1828–1829	200	PPV=76.0 (69.6–81.4); PPV _{+AC} =99 ^f	MR; ultrasound; plebography; CT; scientigraphy	Lidegaard O et al, BMJ. 2011 ⁵⁵
		1980–2001	During pregnancy and postpartum	IN ^e ; A ^e ; n/a	45000–45099, 45100– 45199; 1260–1269, 1800– 1809 + (650–666, O80–84)	304	PPV _{preg+postpartum} =87.3 (83.0–90.9) ^f ; PPV _{preg} =79.3 (74.3–83.8) ^f	MR	Larsen TB et al, J Clin Epidemiol. 2005 ²⁵

Dovepress

Algorithm Compo	onents					nc	PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
		1995–2012	Prostate cancer	IN/OUT; A/B; n/a	126, 1801–3 (+C61)	115	PPV=86.1 (78.6–91.3); NPV=98.3 (94.0–99.5); Se=98.0 (93.1–99.5); Sp=87.8 (81.1–92.3)	MR; VTE diagnosis	Drljevic A et al, Clin Epidemiol. 2014 ⁵⁶
		2008–2014	<6 mo after surgical treatment for spinal degenerative diseases	IN/OUT ^e ; A ^e ; n/a	1260, 1269, 1802, 1803, T817C, T817D	12	PPV=66.7 (39.1-86.2)	MR; patient confirmation	Winther C et al, Dan Med J. 2019 ²⁷
		2007–2014	Diffuse large B-cell lymphoma	IN/OUT/ED ^e ; A/B ^e ; n/a	45099, 45100, 45108, 45109, 45199; 126, 1801– 1809 ^e	20	PPV=85.0 (64.0-94.8); Se=53.1 (36.5-69.1)	MR; radiological imaging	Borg IH et al, Leuk Lymphoma 2016 ⁵⁷
	Recurrent VTE	2010–2012	-	IN; A/B; I st	1801–1803, 126	93	PPV=72.0 (62.2-80.2)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		2010–2012	Without code for ultrasound or CT	IN; A/B; I st	1801–1803, 126	25	PPV=44.0 (26.7-62.9)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
		2010–2012	Recurrent VTE with code for ultrasound (UXUG) or CT (UXCA) during admission	IN; A/B; I st	1801–1803, 126, UXUG or UXCA	68	PPV=82.4 (71.6-89.6)	MR; DS	Sundbøli J et al, BMJ Open 2016 ⁶
		2010–2012	Recurrent VTE with code for ultrasound (UXUG) and CT (UXCA) during admission	IN; A/B; I st	1801–1803, 126, UXUG or UXCA	7	PPV=71.4 (35.9-91.8)	MR; DS	Sundbøli J et al, BMJ Open 2016 ⁶
		2004–2012	>3 mo after first-time diagnosis + ultrasound/ CT scan during admission or AC prescription ≤30 d after	IN/OUT; A/B; n/a	I801–3, I26	90	$\begin{array}{c} PPV_{IN/OUT, A/B, scan}{=}27.5\\ (16.1-42.8); PPV_{IN/OUT, A/}\\ B, AC use{=}30.2 (18.6-\\ 45.1); PPV_{IN, A/B, }\\ scan{=}79.0 (56.7-91.5);\\ PPV_{IN, A/B, AC} use{=}56.5\\ (36.8-74.4) \end{array}$	MR	Schmidt M et al, J Thromb Haemost. 2014 ⁵⁴

988

1829	DVT after stroke	2003–2006	After admission to stroke units and age ≥18y	IN; A/B; n/a	1829	8	PPV=87.5 (52.9-97.8); NPV= 97.1 (95.4-98.2); Se=16.7 (3.0-56.4); Sp=100 (99.3-100)	MR	Ingeman A et al, Clin Epidemiol. 2010 ²⁶
1829A-E	Stroke complications	2003–2006	After admission to stroke unit and age ≥18y	IN; A/B; n/a	JI2–JI8, N300, N308, N309, NI0, L899, R297, EUHE, I829A–E, I26, K590	88	PPV=76.1 (66.3-83.8); NPV= 85.1 (83.9-86.1); Se=7.7 (5.8-10.3); Sp=99.5 (99.2-99.7)	MR	Ingeman A et al, Clin Epidemiol. 2010 ²⁶
K00–K93: Dis	eases of the digestive syste	em							
K228	Gastrointestinal and intraabdominal bleeding	2019 March— December	Age ≥65y	IN/OUT/ED; A/B; I st	K228(F), K250, K252, K254, K256, K260, K262, K264, K266, K270, K272, K274, K276, K280, K282, K284, K286, K290, K298 (A), K625, K638B, K638C, K661, K838(F), K868(G), K920, K921, K922	468	PPV=92.7 (90.0-94.8)	MR	Thaarup M et al, Clin Epidemiol. 2023 ²⁸
N00-N99: Dis	seases of the genitourinary	system	•	·					·
N938	Reproductive tract bleeding	2019 March- December	Age ≥65y	IN/OUT/ED; A/B; I st	N938, N939, N95	10	PPV=100.0 (72.3-100.0)	MR	Thaarup M et al, Clin Epidemiol. 2023 ²⁸
000-099: Pro	egnancy, childbirth, and pu	erperium	I					1	1
013	Gestational hypertension	1982–1987	-	IN; A/B ^e ; n/a	n/a	112	PPV=70 ^f ; NPV=98 ^f ; Se=75 ^f	MR	Kristensen J et al, J Clin Epidemiol. 1996 ⁵⁸
		1998–2000	-	IN/OUT; A/B ^e ; n/a	O139	3,039	PPV=56.3 (33.2-76.9); NPV= 97.3 (96.7-97.8); Se=10.0 (5.4-17.9); Sp=99.8 (99.5-99.9)	MR	Klemmensen ÅK et al, Am J Epidemiol. 2007 ⁶⁰
		1998–2000	-	IN/OUT; A/B ^e ; n/a	0139-0141-0142, 0149-0150	3,039	PPV=88.8 (81.0–93.6); NPV= 96.9 (96.2–97.5); Se=48.9 (41.6–56.2); Sp=99.6 (99.3–99.8)	MR	Klemmensen ÅK et al, Am J Epidemiol. 2007 ⁶⁰
		2010–2012	-	n/a; n/a; n/a	013	62	PPV=29.0 (19.2–41.3); NPV= 98.7 (98.1–99.1); Se =39.1 (26.4–53.5); Sp =97.9 (97.2–98.5)	MR; biochemical results	Luef BM et al, Acta Obstet Gynecol Scand. 2016 ⁵⁹

Algorithm Components							PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
O903	Peripartum cardiomyopathy or heart failure	2005–2014	Women identified in DNPR, MBR, and CDR 9 mo prior to giving birth to 12 mo postpartum	n/a; n/a; n/a	O903, I50 or O754, I42 or I43	207	PPV _{C9903} =95.7 (79.0– 99.2); PPV _{All codes} =29.5 (23.7– 36.0)	MR	Ersbøll AS et al, Eurc J Heart Fail. 2017 ³¹
Q00-Q99: Conger	nital malformations, de	eformations, a	nd chromosomal abnor	malities					
Q20	Congenital cardiac malformations	1991–1994	-	IN; A/B ^e ; n/a	740–759; Q00–99 (except 75569, 75210–75219, Q53, Q65)	744	PPV=88.2 (85.7–90.3); Se=89.9 (87.5–91.9)	MR; Medical Birth Registry; National Registry of Congenital Abnormalities	Larsen H et al, Scand J Public Health. 2003 ⁶¹
		1994–2002	-	IN/OUT ^e ; A/B ^e ; n/a	Q20–Q26	418	PPV=89.0 (85.6-91.7)	MR; Echo; autopsy	Jepsen B et al, Int J Risk Saf Med. 2006 ⁶
		2000–2008	-	IN/OUT/ED ^e ; A/B ^e ; n/a	Q20–25, except Q209, Q219, Q229, Q239, Q249, Q259	3,356	PPV=98.4 (98.0-99.8)	MR	Agergaard P et al, Clin Epidemiol. 2011 ⁶³
R00–R99: Sympto	ms, signs, and abnorm	al clinical and	laboratory findings, not	elsewhere classified					
R31	Urinary tract bleeding	2019	Age ≥65y	IN/OUT/ED; A/B; I st	R31	135	PPV=99.3 (95.9-99.9)	MR	Thaarup M et al, Clir Epidemiol. 2023 ²⁸
R559	Syncope	2007–2010	-	IN/ED; A; n/a	R559	750	PPV _{IN/ED} =94.7 (92.8– 96.1); PPV _{IN} = 95.0 (93.0–96.5); PPV _{ED} =93.3 (88.2–96.3)	MR	Ruwald MH et al, Europace 2013 ⁶⁴
		2008	Admission to or visiting the ED for medical reasons	IN/ED; A; n/a	R559	49	PPV=95.9 (86.3-98.9); NPV= 99.5 (99.2-99.6); Se= 62.7 (51.4-72.7); Sp=100.0 (99.9-100.0)	MR	Ruwald MH et al, Europace 2013 ⁶⁴
R570	Shock overall	2005–2012	-	IN; A/B; n/a	R570–R572, A419A (+BFHC92, BFHC93 excl. BFHC93E–H, BFHC95)	158	PPV=86.1 (79.8–90.6); PPV ₊ Inotrope/ vasopressor=93.1 (84.8– 97.0)	MR	Lauridsen MD et al, BMC Med Res Methodol. 2015 ⁶⁵

888

	Cardiogenic shock	2005–2012	-	IN; A/B; n/a	R570 (+BFHC92, BFHC93 excl. BFHC93E–H, BFHC95)	46	PPV=93.5 (82.5–97.8); PPV _{+ Inotrope/} vasopressor=96.0 (80.5– 99.3)	MR	Lauridsen MD et al, BMC Med Res Methodol. 2015 ⁶⁵
R571	Hypovolemic shock	2005–2012	-	IN; A/B; n/a	R57I (+BFHC92, BFHC93 excl. BFHC93E–H, BFHC95)	34	PPV=70.6 (53.8–83.2); PPV+ Inotrope/ vasopressor=69.2 (42.4– 87.3)	MR	Lauridsen MD et al, BMC Med Res Methodol. 2015 ⁶⁵
R572	Septic shock	2005–2012	-	IN; A/B; n/a	R572, A419A (+BFHC92, BFHC93 excl. BFHC93E– H, BFHC95)	78	PPV=69.2 (58.3–78.4); PPV ₊ Inotrope/ vasopressor=82.4 (66.5– 91.7)	MR	Lauridsen MD et al, BMC Med Res Methodol. 2015 ⁶⁵
S00–T98: Injury,	poisoning and certain	other consequ	ences of external causes		•				
T817	Postsurgical VTE	2009–2019	Age ≥18y and <180d after first-time lower limb orthopedic surgery	IN/OUT ^e ; A/B ^e ; n/a	126, 1801–1809, T817C, T817D, KNEx, KNFx, KNGx, KNHx	420	PPV=85.2 (81.5-88.3); NPV=99.5 (98.6-99.8)	MR	Galsklint J et al, Clin Epidemiol. 2022 ⁶⁶
	Postsurgical DVT	2009–2019	Age ≥18y and <180d after first-time lower limb orthopedic surgery	IN/OUT ^e ; A/B ^e ; n/a	1801–1809, T817C, KNEx, KNFx, KNGx, KNHx	275	PPV=82.6 (77.6-86.6); NPV=99.5 (98.6-99.8)	MR	Galsklint J et al, Clin Epidemiol. 2022 ⁶⁶
	Postsurgical PE	2009–2019	Age ≥18y and <180d after first-time lower limb orthopedic surgery	IN/OUT ^e ; A/B ^e ; n/a	I26, T817D, KNEx, KNFx, KNGx, KNHx	145	PPV=90.3 (84.5-94.2); NPV=100 (99.5-100)	MR	Galsklint J et al, Clin Epidemiol. 2022 ⁶⁶
T823D, T823E	Stent thrombosis	2010–2012	-	IN; A/B; I st	T823D, T823E	24	PPV=91.7 (74.2-97.7)	MR; DS	Sundbøll J et al, BMJ Open 2016 ⁶
Treatments									
Surgery									
KFG00	Intra-aortic balloon pump	2017–2022	-	IN	KFXG00	14	PPV=42.9 (21.4-67.4)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
KFK	Mitral valve surgery	2010–2012	-	IN	KFK	100	PPV=100 (96.3-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷

Algorithm Compo	onents		nc	PPV; NPV;	Reference	Reference			
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
KFM	Aortic valve surgery	2010–2012	-	IN	KFM	100	PPV=99.0 (94.6-99.8)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
KFNA-KFNE	Coronary artery bypass grafting	2010–2012	-	IN	KFNA-KFNE, KFNH20	100	PPV=98.0 (93.0-99.5)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
KFQA	Heart transplantation	2010–2012	-	IN	KFQA	39	PPV=100 (91.0-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
		2017–2022	-	IN	KFQA00, KFQA10	56	PPV=100.0 (93.6-100.0)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
KFXD00	Cardiopulmonary support	2017–2022	-	IN	KFXD00, KFXE00	50	PPV=100.0 (92.9-100.0)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
KFXL00	Impella	2017–2022	-	IN	KFXL00	50	PPV=38.0 (25.9–51.9)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
KFXL10	Left ventricular assist device	2017–2022	-	IN	KFXLI0, KZFX70	20	PPV=100.0 (83.9-100)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
KTFC00	Right heart catheterization	2010–2012	-	IN	KTFC00	100	PPV=97.0 (91.6-99.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
Procedure				·					
KFNG, KFNF	PCI overall	2010–2012	-	IN	KFNG, KFNF	100	PPV=98.0 (93.0-99.5)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
	PCI, unspecified	2010–2012	-	IN	KFNG, KFNF	50	PPV=100.0 (92.3-100)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
KFNG05	PCI with stent implantation	2010–2012	-	IN	KFNG05	50	PPV=96.0 (86.5-98.9)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷

BFCA0, KFPE, KFPF	Cardiac pacemaker	2010–2012	-	IN	BFCA0, BFCA6, KFPE00, KFPE10, KFPE20, KFPE96, KFPF00, KFPF10, KFPF20, KFPF96	100	PPV=100 (96.3-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
BFCB	Implantable cardiac defibrillator, overall	2010–2012	-	IN	BFCB0, BFCB6, KFPG	100	PPV=100 (96.3-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
		2017–2022	-	IN	BFCB00, BFCB01, BFCB20	100	PPV=97.0 (91.6-99.0)	MR	Bonnesen K et al, Int J Popul Data Sci 2024 ³⁹
	Implantable cardiac defibrillator, primary	2010–2012	-	IN	BFCB0, BFCB6, KFPG	54	PPV=83.3 (71.3-91.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
	Implantable cardiac defibrillator, secondary	2010–2012	-	IN	BFCB0, BFCB6, KFPG	46	PPV=100.0 (92.3-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
	Cardiac resynchronization therapy defibrillator	2017–2022	-	IN	BFCB03, BFCB21	50	PPV=88.0 (76.2-94.4)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
	Cardiac resynchronization therapy pacemaker	2017–2022	-	IN	BFCB05, BFCB06, BFCA21, BFCA63	50	PPV=96.0 (86.5-98.9)	MR	Bonnesen K et al, Int J Popul Data Sci. 2024 ³⁹
BFFA0	Cardioversion	2010–2012	-	IN/OUT	BFFA0	100	PPV=92.0 (85.0-95.9)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
BFFB	Radiofrequency ablation	2010–2012	-	IN	BFFB	100	PPV=100.0 (96.3-100.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
BFHC92	Inotropes/ vasopressors in shock patients	2005–2012	-	IN	BFHC92–BFHC93, BFHC95 (excl. BFHC93E– H) (+R570–R572, A419A)	72	PPV=88.9 (79.6–94.3)	MR	Lauridsen MD et al, BMC Med Res Methodol. 2015 ⁶⁵
BOHAI	Thrombolysis	2010–2012	-	IN	BOHAI	96	PPV=97.9 (92.7–99.4)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷

168

https

892

Table I (Continued).

Algorithm Components							PPV; NPV;	Reference	Reference
Codes (Chronological) ^a	Condition	Study Period	Specified Patient Subgroup	Contact Type; Diagnosis Type; Occurrence Type	Codes (Specified) ^b		Sensitivity; Specificity ^d	Standard	
Examinations									
UXAC85	Coronary angiogram	2010–2012	-	IN	UXAC85	100	PPV=100.0 (96.3-100)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
UXCC00A	Cardiac CT angiography	2008–2012	-	n/a	UXCC00A	289	PPV=100 (98.7-100)	MR	Nielsen LH et al, Clin Epidemiol. 2014 ⁶⁸
UXUC80- UXUC8I	Echocardiography, overall	2010–2012	-	IN/OUT	UXUC80, UXUC81	98	PPV=96.9 (91.4-99.0)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
UXUC80	TTE	2010–2012	-	IN/OUT	UXUC80	49	PPV=98.0 (89.3-99.6)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷
UXUC8I	TEE	2010–2012	-	IN/OUT	UXUC8I	49	PPV=95.9 (86.3-98.9)	MR	Adelborg K et al, BMJ Open 2016 ⁶⁷

Notes: ^a The ordering corresponds to the SKS browser, ie, ICD-10 for diagnoses and NOMESCO for surgery. ^b ICD codes without and with capital letters refer to ICD-8 and ICD-10 codes, respectively. ^c Reflects the reviewed number of records in the DNPR (ie, the denominator in calculations of PPV). ^d Confidence intervals were calculated using Wilson's score method. ^e Information not specified in validation papers but confirmed through correspondence with authors. Unspecified and unconfirmed data are listed as not available (n/a). ^f Recalculation of confidence intervals using Wilson's score method not possible due to insufficient data. ^g Confidence limit equals 100 due to rounding. ^h The highest number is reported. See paper for the denominator for each PPV.

Abbreviations: A=primary diagnosis; AC=anticoagulant therapy; B=secondary diagnosis; CDR=Causes of Death Registry; CT=Computed Tomography; d=day; DANMONICA=Danish Monitoring Trends and Determinants in Cardiovascular Disease Project; DES=drug eluting stent; DNPR=Danish National Patient Registry; DS=discharge summaries; DVT=deep venous thrombosis; echo=echocardiography; ED=emergency department; ICD=international classification of diseases; ICH=intracerebral hemorrhage; IN=inpatient contact; MBR=Medical Birth Registry; MI=acute myocardial infarction; mo=month; MR=medical records; n/a=not available; NPV=negative predictive value; NSTEMI=Non-ST elevation myocardial infarction; OUT=outpatient contact; PCI=percutaneous coronary intervention; PE=Pulmonary embolism; PPV=positive predictive value; PR=Prescription Registry; Se=study sample sensitivity; Sp=study sample specificity; STEMI=ST segment myocardial infarction; TEE=transesophageal echocardiography; TTE=transthoracic echocardiography; Ultrasound=ultrasonography; V-P=ventilation-perfusion; VTE=venous thromboembolism; y=year(s); Ist =first-time; 2nd=readmission; – = no subgroup.

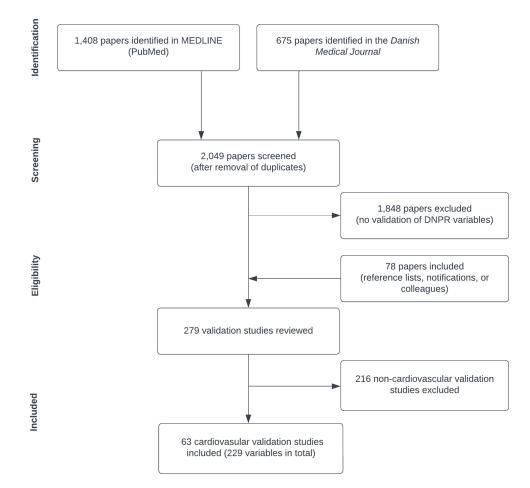


Figure 2 Flow-chart of the systematic review of studies validating cardiovascular variables in the Danish National Patient Registry (1977–2024). Notes: The literature search was performed using the following search string in 1) PubMed: "Danish National Patient Registry" OR "Danish National Registry of Patients" OR "Danish National Hospital Register" OR "Danish National Health Registry" OR "Danish National Patient Register" OR "Danish Hospital Discharge Registry" OR "Danish National Hospital Registry" OR "Danish Hospital Registers"; and 2) the Danish Medical Journal: "Landspatientregisteret".

searches, the first in 2015 (covering 1977–2015), and the second in 2023 (covering 2013–2023). We used identical search strings (in 2015 and 2023) as developed and published in 2015.² It included the Danish name ("Landspatientregisteret") as well as commonly used English terms for the DNPR. Validation may be a secondary aim not highlighted in the title or abstract of an article, potentially leading to incompleteness of the search string. Further, we used a two-year overlap with the previous search to increase the completeness. We therefore also retrieved relevant papers from reference lists, citations in screened papers, e-mail notifications from the journal Clinical Epidemiology (known to publish many validation studies), and colleagues. To provide the most updated overview, we included such additional papers through October 2024. The literature review was conducted by MS and SAJS for the 1977–2015 period and by KHL and CHF for the 2013–2024 period.

Eligibility

Titles, abstracts, and, if necessary, the full text of all retrieved papers were screened for eligibility. A study was eligible for inclusion if it was published during 1977–2024 and reported any information on data quality for cardiovascular diseases within the ICD chapter I00–I99: *Diseases of the circulatory system*, and cardiovascular conditions outside the ICD 100–I99 chapter eg cardiac tumors (C00–D48: *Neoplasms*) or congenital cardiac malformations (Q00–Q99: *Congenital malformations, deformations, and chromosomal abnormalities*). We also included validation studies of cardiovascular treatments, ie, surgery (K codes) or other treatments (B codes), and examinations (U codes).

Extracted information

All authors independently extracted relevant information from eligible papers (MS/SAJS in 2015, and KHL/CHF in 2024). For each study, we extracted patient contact type (IN/OUT/ED), diagnosis type (A/B), occurrence type (first-time/

readmission), codes/algorithms used, measures of accuracy (PPV/NPV), measure of completeness (sensitivity/specificity), the reference standard used, and results (absolute numbers, proportions, and confidence intervals [Cls]). In case of missing information, we requested additional details from the corresponding author. As CIs can be calculated in several ways, we recalculated proportions using Wilson's score method based on the absolute numbers provided in the articles, as it ensured comparability across studies.⁵ If no absolute numbers were available in the article, we reported the proportions as stated by the authors. Any disagreements during the review were resolved by discussions.

Results

Literature search

We identified 1,408 papers in PubMed and 675 papers in the Danish Medical Journal. After removal of duplicates a total of 2,049 papers were screened, and among these 1,848 papers were excluded because they did not validate variables in the DNPR. Additionally, 78 papers were identified from reference lists, citations, journal e-mail notifications, or colleagues. We reviewed 279 validation studies of which 63 papers assessed cardiovascular variables (34 additional papers since the first 2015 search). These 63 papers included a total of 229 cardiovascular variables covering a broad range of cardiovascular diseases, treatments, and examinations (Figure 2).

Bibliography of cardiovascular variables

A complete bibliography of all validated cardiovascular variables is presented in Table 1. The bibliography includes detailed information on time period, patient contact type, type of diagnosis, occurrence type, specified patient subgroup, measurement(s) of validity, and the reference standard used. When we describe the validity of a disease/treatment in the following sections, we refer to the validity of the algorithm used to identify the disease/treatment in the DNPR.

To supplement Table 1 and to provide an overview of key findings, we have summarized the PPVs according to the coding classification systems (Table 1S and 2S) and clinical categorization (Figures 1 and 3). Table 1S presents a summary of the results for the validated cardiovascular diseases including ICD code, number of validation studies/variables, study period range, and PPV range. Table 2S presents a similar summary of treatments, categorized as surgeries, procedures, and examinations. Variables presented in Tables 1, 1S, and 2S are listed chronologically according to the coding classification systems. Figures 1 and 3 provide a visual overview of the PPVs for cardiovascular diseases and treatments according to clinical areas. If a study reported more than one PPV for the same variable (ie using different algorithms), we only included one of the reported PPVs in the figure. All reported PPVs for each validated variable are listed in Table 1.

Cardiovascular variables overall

Among the 229 validated cardiovascular variables, 200 variables assessed diagnoses and 29 assessed procedures, including 10 surgeries, 14 other treatments, and 5 examinations (Tables 1S and 2S). The information stated in the medical record was most commonly used as the reference standard for validation. Most often one cardiovascular diagnosis, treatment, examination, or procedure was validated in each paper, but two recent studies validated 29 cardiovascular diagnoses and 14 procedures, respectively.^{6,67} Overall, the PPV was \geq 90% for 83 (36%) variables, 80–89% for 59 (26%) variables, 70–79% for 36 (16%) variables, 60–69% for 17 (7%) variables, 50–59% for 9 (4%) variables, and <50% for 25 (11%) variables (Table 1). The data quality was generally higher for treatments (92% had PPVs \geq 95%) and examinations (100% had PPVs \geq 95%) than diagnoses (71% had PPVs \geq 80%) (Table 1).

Cardiovascular diagnoses

Although many different diagnoses have been validated (Table 1), some remain to be assessed. For many diagnoses, eg, ischemic heart disease, the PPV improved over time. Thirty variables assessed the validity of a diagnosis of ischemic heart disease. There was an increase in the rate of validated variables over time. Eighteen variables describing acute myocardial infarction (MI) were validated. For MI, the PPVs increased over time from 92% (1979–1980) to >97% (1996–2012).^{6,14,16–23} However, lower PPVs were also reported in MI subgroups.^{16,21} Acute coronary syndrome was validated four times during 1993–2007. The PPV increased from 66% (1993–2003) to 92% (2007).^{14,15} Likewise, the

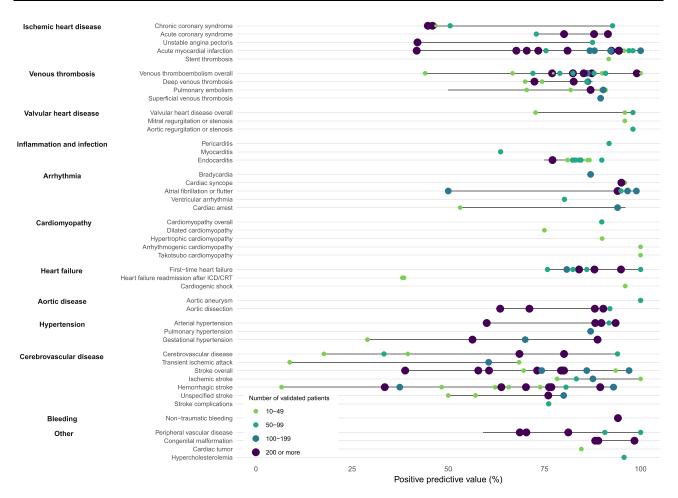


Figure 3 Overview of the range of positive predictive values reported for individual cardiovascular diagnoses in the Danish National Patient Registry (1997–2024). Notes: The figure includes one PPV per validated variable. Thus, in cases where several PPVs were reported for a variable, we used the highest PPV. All PPVs for each validated variable are listed in Table 1.

Abbreviation: ICD=implantable cardiac defibrillator; CRT=cardiac resynchronization therapy.

PPV for unstable angina pectoris increased from 28% (1993–2003) to 88% (2010–2012).^{6,14} The PPV for angina pectoris ranged from 4 to 93% with the lowest estimates observed in subgroups, eg in breast cancer patients (PPV 47%).^{6,15,16}

Treatment and examinations

Four studies have validated cardiac treatments and examinations (Table 1),^{39,65,67,68} the majority validated during 2010–2012.⁶⁷ Most variables had PPVs >95% (24/29 variables). The PPV range for examinations (including echocardiography, cardiac CT angiography, and coronary angiogram) was 96–100%. For invasive procedures (including percutaneous coronary intervention, radiofrequency ablation, and right heart catheterization), the PPV range was 96–100%, while the PPV range was 89–98% for in-hospital medical treatment (including DC cardioversion, thrombolysis, and inotrope/vasopressor treatment). The PPV range was 98–100% for cardiac surgery (including mitral valve surgery, aortic valve surgery, coronary artery bypass grafting, and heart transplantation). Except for impella (PPV 38%) and intra-aortic balloon pump (PPV 43%), the PPV was also high for mechanical circulatory support (PPV 100%), including left ventricular assist device and cardiopulmonary support. Finally, the PPV was between 83 and 100% for cardiac devices, including cardiac pacemaker, cardiac resynchronization therapy pacemaker, implantable cardiac defibrillator, implantable cardioverter defibrillator, and cardiac resynchronization therapy defibrillator.

Determinants of validity

We found that the validity of a diagnosis was not solely based on the ICD code, but a combination of the ICD code and administrative data (patient contact type, type of diagnosis, and occurrence type),^{39,45} setting, and time period.⁵³ For most diagnoses or treatment codes, only one overall PPV was reported. In some cases, PPVs were also reported for subgroups, eg breast cancer patients or patients with diabetes mellitus.^{16,21} Overall, NPVs, sensitivity, and specificity were only reported for a few validated variables.^{22,26,35,38}

Discussion

We identified 63 papers, which validated a total of 229 variables in the DNPR during 1977–2024. The variables covered the most common cardiovascular diagnoses, treatments, and examinations. Of these, 200 variables assessed diagnoses, 24 assessed treatments (10 surgeries and 14 other treatments), and 5 assessed examinations. We observed a considerable increase in the number of validation studies^{45,46} and PPVs^{6,13}, for many diagnoses over time.^{6,17,18,20,22,35,39,45,46} The data quality varied substantially between variables. The predictive value was generally higher for treatments (PPV \geq 95% for 100%) than for diagnoses (PPV \geq 80% for 71%). Key determinants for the validity of diagnoses were patient contact type (inpatient vs outpatient), diagnosis type (primary vs secondary), setting (university vs regional hospitals), and calendar year.

Variations in predictive values

Predictive values depend on disease prevalence, which in turn may vary according to the setting. Thus, some studies only included diagnoses/treatments recorded at university hospitals,³⁷ where higher PPVs are expected owing to the higher prevalence in these specialized settings. The diagnostic process for a disease may also affect the PPV. For example, low PPVs may be seen in diseases that can be challenging to diagnose, such as myocarditis (PPV=64% during 2010–2012).⁶ A condition, which is difficult to diagnose may likewise be challenging to validate. Some studies excluded patients with insufficient information in their medical records, which may result in lower PPVs. Similarly, PPV improvements over time may be explained by the implementation of diagnostic guidelines (eg new diagnostic criteria) or modalities to confirm or reject a disease. For instance, the use of troponin measurements for diagnosing acute myocardial infarction or updated definitions of myocardial infarction and myocardial injury.^{69,70} Increased awareness of correct coding among clinicians may also play a role. Finally, until 2019, the distribution of finances to the Danish hospitals was based on the use of ICD-codes according to the Diagnosis Related Groups system (DRG), which may have motivated more detailed or comprehensive coding, eg coding B diagnoses or treatments.⁷⁰

Researchers should be aware that because of these possible time trends in data quality, the results may not be extrapolated outside the validated calendar periods. For instance, aortic dissection was validated during 1996–2016 while types of aortic dissection (type A and B) were only validated during the latter part of 2006–2016; thus, the validity stratified by type of dissection may not generalize to times before 2006.⁵³ This is particularly a limitation for diagnoses and treatments with sparse validated data.

Strengths and limitation

Although the most common cardiovascular diseases, treatments, and examinations registered in DNPR have been validated, several variables remain to be examined. Nevertheless, variables related to cardiovascular disease have been more thoroughly validated than other medical specialties, eg diseases of the eye and ear (ICD-10 codes: H00–H95) or skin and subcutaneous tissue diseases (ICD-10 codes: L00–L99).² Furthermore, there has been an increase in the rate of validated cardiovascular variables over time.² Despite using a systematic search to identify all relevant papers, our search string may have missed some validation studies within cardiovascular diseases.

Some papers did not provide information on eg patient contact type, type of diagnosis, occurrence type, and numbers for recalculation. Although we contacted authors in case of uncertainty, we were not always able to obtain the relevant missing information. Any missing information is listed as not available (Table 1). In a few cases, the paper was excluded due to sparse information.

Perspectives and implications

This paper elucidates that the validity of diagnoses registered in the DNPR depends on components in the algorithm used for validation. Therefore, we recommend that researchers specify variable definitions according to such characteristics and strongly advise against using superficial and imprecise wordings for data quality such as "The validity of cardiovascular diagnoses in the DNPR is high" to imply that it is therefore also high for the given study variable. In contrast, we have shown that the PPV varies considerably between individual diagnoses and depends on the algorithm used to define them.

This overview of validated cardiovascular variables provides researchers with an opportunity to assess and report the validity of a diagnosis, treatment, or examination according to their study population based on several validated variables instead of a single validation study. Based on these key factors, researchers can avoid reporting a single PPV, which may give overconfidence to one or few selected validation studies, and instead provide an interval of most likely PPVs to summarize the available evidence.

Conclusions

The predictive values for cardiovascular variables in the DNPR were overall high for treatments and examinations, supporting their use for cardiovascular registry-based research. For diagnoses, the validity varied considerably between individual variables and depended on the components of the algorithm used to define them. Such components must, therefore, be considered when designing and interpreting a study using cardiovascular data from the DNPR. Importantly, not all cardiovascular variables have been validated and the data quality may change over time. The ongoing need for conducting validation studies to assess the data quality of cardiovascular variables in the DNPR, therefore, remains.

Data sharing statement

The study is based on published papers. The search string and all papers included in the study are cited in the paper.

Data permission and ethics approval

The study is based on published papers; thus this study does not need ethical approval.

Author contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding

MS is supported by the Novo Nordisk Foundation (grant NNF19OC0054908). The funding source had no influence in the conduct of the study. This research received no specific grant from any funding agency in the public, commercial or non-for-profit sector.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Laugesen K, Ludvigsson JF, Schmidt M, et al. Nordic Health Registry-Based Research: a Review of Health Care Systems and Key Registries. *Clin Epidemiol.* 2021;13:533–554. doi:10.2147/clep.S314959

Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. *Clin Epidemiol.* 2015;7:449–490. doi:10.2147/clep.S91125

^{3.} Schmidt M, Schmidt SAJ, Adelborg K, et al. The Danish health care system and epidemiological research: from health care contacts to database records. *Clin Epidemiol*. 2019;11:563–591. doi:10.2147/clep.S179083

- 4. Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541-549. doi:10.1007/s10654-014-9930-3
- 5. Brown LD, Cai TT, DasGupta A. Interval Estimation for a Binomial Proportion. Stat Sci. 2001;16(2):101-133,33. doi:10.1214/ss/1009213286
- 6. Sundbøll J, Adelborg K, Munch T, et al. Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: a validation study. *BMJ open*. 2016;6(11):e012832. doi:10.1136/bmjopen-2016-012832
- 7. Krarup LH, Boysen G, Janjua H, Prescott E, Truelsen T. Validity of stroke diagnoses in a National Register of Patients. *Neuroepidemiology*. 2007;28(3):150–154. doi:10.1159/000102143
- Johnsen SP, Overvad K, Sørensen HT, Tjønneland A, Husted SE. Predictive value of stroke and transient ischemic attack discharge diagnoses in The Danish National Registry of Patients. J Clin Epidemiol. 2002;55(6):602–607. doi:10.1016/s0895-4356(02)00391-8
- 9. Bindslev JB, Johnsen SP, Hansen K, Valentin JB, Hoei-Hansen CE, Truelsen T. The Positive Predictive Value of Pediatric Stroke Diagnoses in Administrative Data: a Retrospective Validation Study. *Clin Epidemiol.* 2023;15:755–764. doi:10.2147/clep.S414913
- 10. Nielsen H-W, Tüchsen F, Jensen MV. Validiteten af diagnosen essentiel hypertension i Landspatientregistret. Ugeskr laeger. 1996;158(2):163–167.
- 11. Schmidt M, Johannesdottir SA, Lemeshow S, et al. Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: a Danish 33-year follow-up study. *BMJ open*. 2013;3(4):e002698. doi:10.1136/bmjopen-2013-002698
- 12. Langhoff AF, Børresen ML, Wason MP, et al. National data with high validity and completeness showed that only 0.04% of Danish children had been registered with diagnosed hypertension. *Acta Paediatr.* 2020;109(7):1458–1464. doi:10.1111/apa.15116
- Bonnesen K, Schmidt M. Validity of Prescription-Defined and Hospital-Diagnosed Hypertension Compared with Self-Reported Hypertension in Denmark. Clin Epidemiol. 2024;16:249–256. doi:10.2147/clep.S448347
- 14. Joensen AM, Jensen MK, Overvad K, et al. Predictive values of acute coronary syndrome discharge diagnoses differed in the Danish National Patient Registry. *J Clin Epidemiol.* 2009;62(2):188–194. doi:10.1016/j.jclinepi.2008.03.005
- 15. Bork CS, Al-Zuhairi KS, Hansen SM, Delekta J, Joensen AM. Accuracy of angina pectoris and acute coronary syndrome in the Danish National Patient Register. *Dan Med J*. 2017;64(5):A5369.
- Langballe R, John EM, Malone KE, et al. Agreement between self-reported and register-based cardiovascular events among Danish breast cancer survivors. J Cancer Surviv. 2018;12(1):95–100. doi:10.1007/s11764-017-0648-6
- 17. Madsen M, Balling H, Eriksen LS. The validity of the diagnosis of acute myocardial infarction in 2 registries: the Heart Registry compared to the National Patient Registry. Ugeskr Laeger. 1990;152(5):308–314.
- Madsen M, Davidsen M, Rasmussen S, Abildstrom SZ, Osler M. The validity of the diagnosis of acute myocardial infarction in routine statistics: a comparison of mortality and hospital discharge data with the Danish MONICA registry. J Clin Epidemiol. 2003;56(2):124–130. doi:10.1016/s0895-4356(02)00591-7
- 19. Coloma PM, Valkhoff VE, Mazzaglia G, et al. Identification of acute myocardial infarction from electronic healthcare records using different disease coding systems: a validation study in three European countries. *BMJ open*. 2013;3(6):e002862. doi:10.1136/bmjopen-2013-002862
- Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sørensen HT. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med Res Methodol. 2011;11(1):83. doi:10.1186/1471-2288-11-83
- 21. Dalsgaard EM, Witte DR, Charles M, Jørgensen ME, Lauritzen T, Sandbæk A. Validity of Danish register diagnoses of myocardial infarction and stroke against experts in people with screen-detected diabetes. *BMC Public Health*. 2019;19(1):228. doi:10.1186/s12889-019-6549-z
- 22. Egholm G, Madsen M, Thim T, et al. Evaluation of algorithms for registry-based detection of acute myocardial infarction following percutaneous coronary intervention. *Clin Epidemiol.* 2016;8:415–423. doi:10.2147/clep.S108906
- SSM K, Maeng M, Pedersen L, Christiansen CF, Sørensen HT. Long-term outcomes of perioperative versus nonoperative myocardial infarction: a Danish population-based cohort study (2000-2016). Circ Cardiovasc Qual Outcomes. 2022;15:e008212.
- Severinsen MT, Kristensen SR, Overvad K, Dethlefsen C, Tjønneland A, Johnsen SP. Venous thromboembolism discharge diagnoses in the Danish National Patient Registry should be used with caution. J Clin Epidemiol. 2010;63(2):223–228. doi:10.1016/j.jclinepi.2009.03.018
- Larsen TB, Johnsen SP, Møller CI, Larsen H, Sørensen HT. A review of medical records and discharge summary data found moderate to high predictive values of discharge diagnoses of venous thromboembolism during pregnancy and postpartum. J Clin Epidemiol. 2005;58(3):316–319. doi:10.1016/j.jclinepi.2004.07.004
- Ingeman A, Andersen G, Hundborg HH, Johnsen SP. Medical complications in patients with stroke: data validity in a stroke registry and a hospital discharge registry. *Clin Epidemiol.* 2010;2:5–13. doi:10.2147/clep.s8908
- 27. Winther CF, Thomsen K, Sørensen LP, Jenstrup M, Thomsen FB. Venous thromboembolic complications following surgical treatment for degenerative spinal disease. *Dan Med J.* 2019;66(5):A5541.
- Thaarup M, Nielsen PB, Olesen AE, et al. Positive Predictive Value of Non-Traumatic Bleeding Diagnoses in the Danish National Patient Register. *Clin Epidemiol.* 2023;15:493–502. doi:10.2147/clep.S400834
- 29. Lassen H, Nielsen SL, Gill SUA, Johansen IS. The epidemiology of infective endocarditis with focus on non-device related right-sided infective endocarditis: a retrospective register-based study in the region of Southern Denmark. *Int J Infect Dis.* 2020;95:224–230. doi:10.1016/j.ijid.2020.04.011
- 30. Østergaard L, Adelborg K, Sundbøll J, Pedersen L, Loldrup Fosbøl E, Schmidt M. Positive predictive value of infective endocarditis in the Danish National Patient Registry: a validation study. *Epidemiol Infect*. 2018;146(15):1965–1967. doi:10.1017/s0950268818001401
- Ersbøll AS, Johansen M, Damm P, Rasmussen S, Vejlstrup NG, Gustafsson F. Peripartum cardiomyopathy in Denmark: a retrospective, populationbased study of incidence, management and outcome. *Eur J Heart Fail*. 2017;19(12):1712–1720. doi:10.1002/ejhf.882
- 32. Frost L, Andersen LV, Vestergaard P, Husted S, Mortensen LS. Trend in mortality after stroke with atrial fibrillation. Am J Med. 2007;120(1):47-53. doi:10.1016/j.amjmed.2005.12.027
- 33. Frost L, Vestergaard P. Alcohol and risk of atrial fibrillation or flutter: a cohort study. Arch Intern Med. 2004;164(18):1993–1998. doi:10.1001/ archinte.164.18.1993
- 34. Rix TA, Riahi S, Overvad K, Lundbye-Christensen S, Schmidt EB, Joensen AM. Validity of the diagnoses atrial fibrillation and atrial flutter in a Danish patient registry. *Scand Cardiovasc J.* 2012;46(3):149–153. doi:10.3109/14017431.2012.673728
- 35. Kümler T, Gislason GH, Kirk V, et al. Accuracy of a heart failure diagnosis in administrative registers. Eur J Heart Fail. 2008;10(7):658-660. doi:10.1016/j.ejheart.2008.05.006
- 36. Delekta J, Hansen SM, AlZuhairi KS, Bork CS, Joensen AM. The validity of the diagnosis of heart failure (150.0-I50.9) in the Danish National Patient Register. *Dan Med J*. 2018;65(4):A5470.

- 37. Mard S, Nielsen FE. Positive predictive value and impact of misdiagnosis of a heart failure diagnosis in administrative registers among patients admitted to a University Hospital cardiac care unit. *Clin Epidemiol.* 2010;2:235–239. doi:10.2147/clep.S12457
- 38. Madelaire C, Gustafsson F, Køber L, et al. Identification of Patients with New-Onset Heart Failure and Reduced Ejection Fraction in Danish Administrative Registers. *Clin Epidemiol.* 2020;12:589–594. doi:10.2147/clep.S251710
- Bonnesen K, Witt CT, Loegstrup B, Eiskjær H, Schmidt M. Validity of heart faliure diagnoses, treatments, and readmissions in the Danish National Patient Registry. Int J Popul Data Sci. 2024; 9(1):26.
- 40. Lühdorf P, Overvad K, Schmidt EB, Johnsen SP, Bach FW. Predictive value of stroke discharge diagnoses in the Danish National Patient Register. *Scand J Public Health*. 2017;45(6):630–636. doi:10.1177/1403494817716582
- 41. Wildenschild C, Mehnert F, Thomsen RW, et al. Registration of acute stroke: validity in the Danish Stroke Registry and the Danish National Registry of Patients. *Clin Epidemiol.* 2014;6:27–36. doi:10.2147/clep.S50449
- 42. Gaist D, Vaeth M, Tsiropoulos I, et al. Risk of subarachnoid haemorrhage in first degree relatives of patients with subarachnoid haemorrhage: follow up study based on national registries in Denmark. *BMJ*. 2000;320(7228):141–145. doi:10.1136/bmj.320.7228.141
- 43. Sonne A, Andersen JB, Rasmussen LS. The positive predictive value of spontaneous subarachnoid hemorrhage diagnoses in the Danish National Patient Register. *Clin Epidemiol.* 2019;11:323–331. doi:10.2147/clep.S197251
- 44. Sonne A, Egholm S, Elgaard L, et al. Symptoms presented during emergency telephone calls for patients with spontaneous subarachnoid haemorrhage. Scand J Trauma Resusc Emerg Med. 2021;29(1):118. doi:10.1186/s13049-021-00934-x
- 45. Hald SM, Kring Sloth C, Agger M, et al. The Validity of Intracerebral Hemorrhage Diagnoses in the Danish Patient Registry and the Danish Stroke Registry. *Clin Epidemiol.* 2020;12:1313–1325. doi:10.2147/clep.S267583
- 46. Hald SM, Kring Sloth C, Hey SM, et al. Intracerebral hemorrhage: positive predictive value of diagnosis codes in two nationwide Danish registries. *Clin Epidemiol.* 2018;10:941–948. doi:10.2147/clep.S167576
- 47. Jensen MM, Hald SM, Kristensen LMB, Boe NJ, Harbo FSG, Gaist D. Validity of Simple Algorithms to Identify Recurrence of Intracerebral Hemorrhage in Two Danish Nationwide Registries. *Clin Epidemiol*. 2021;13:949–958. doi:10.2147/clep.S333624
- 48. Poulsen FR, Halle B, Pottegård A, García Rodríguez LA, Hallas J, Gaist D. Subdural hematoma cases identified through a Danish patient register: diagnosis validity, clinical characteristics, and preadmission antithrombotic drug use. *Pharmacoepidemiol Drug Saf.* 2016;25(11):1253–1262. doi:10.1002/pds.4058
- Helmuth IG, Mølbak K, Uldall PV, Poulsen A. Post-varicella Arterial Ischemic Stroke in Denmark 2010 to 2016. Pediatr Neurol. 2018;80:42–50. doi:10.1016/j.pediatrneurol.2017.11.018
- Tuckuviene R, Kristensen SR, Helgestad J, Christensen AL, Johnsen SP. Predictive value of pediatric thrombosis diagnoses in the Danish National Patient Registry. *Clin Epidemiol*. 2010;2:107–122. doi:10.2147/clep.s10334
- Birkeland P, Tharmabalan V, Lauritsen J, Ganesan V, Bjarkam CR, Von weitzel-mudersbach P. Moyamoya disease in a European setting: a Danish population-based study. *Eur J Neurol*. 2020;27(12):2446–2452. doi:10.1111/ene.14439
- Lasota AN, Overvad K, Eriksen HH, Tjønneland A, Schmidt EB, Grønholdt MM. Validity of Peripheral Arterial Disease Diagnoses in the Danish National Patient Registry. Eur J Vasc Endovasc Surg. 2017;53(5):679–685. doi:10.1016/j.ejvs.2016.12.031
- Obel LM, Lindholt JS, Lasota AN, et al. Aortic Dissections in the Population-Based Danish National Patient Registry from 1996-2016: a Validation Study. Clin Epidemiol. 2022;14:51–58. doi:10.2147/clep.S341806
- 54. Schmidt M, Cannegieter SC, Johannesdottir SA, Dekkers OM, Horváth-Puhó E, Sørensen HT. Statin use and venous thromboembolism recurrence: a combined nationwide cohort and nested case-control study. *J Thromb Haemost*. 2014;12(8):1207–1215. doi:10.1111/jth.12604
- 55. Lidegaard Ø, Nielsen LH, Skovlund CW, Skjeldestad FE, Løkkegaard E. Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001-9. *BMJ*. 2011;343:d6423. doi:10.1136/bmj.d6423
- 56. Drljevic A, Borre M, Høyer M, Ehrenstein V, Nguyen-Nielsen M. Quality of venous thromboembolism diagnoses among prostate cancer patients in the Danish National Registry of Patients. *Clin Epidemiol*. 2014;6:351–357. doi:10.2147/clep.S65681
- 57. Borg IH, Bendtsen MD, Bøgsted M, Madsen J, Severinsen MT. Incidence of venous thromboembolism in patients with diffuse large B-cell lymphoma. *Leuk Lymphoma*. 2016;57(12):2771–2776. doi:10.1080/10428194.2016.1185782
- Kristensen J, Langhoff-Roos J, Skovgaard LT, Kristensen FB. Validation of the Danish Birth Registration. J Clin Epidemiol. 1996;49(8):893–897. doi:10.1016/0895-4356(96)00018-2
- Luef BM, Andersen LB, Renäult KM, Nohr EA, Jørgensen JS, Christesen HT. Validation of hospital discharge diagnoses for hypertensive disorders of pregnancy. Acta Obstet Gynecol Scand. 2016;95(11):1288–1294. doi:10.1111/aogs.13006
- 60. Klemmensen AK, Olsen SF, Osterdal ML, Tabor A. Validity of preeclampsia-related diagnoses recorded in a national hospital registry and in a postpartum interview of the women. *Am J Epidemiol.* 2007;166(2):117–124. doi:10.1093/aje/kwm139
- 61. Larsen H, Nielsen GL, Bendsen J, Flint C, Olsen J, Sørensen HT. Predictive value and completeness of the registration of congenital abnormalities in three Danish population-based registries. Scand J Public Health. 2003;31(1):12–16. doi:10.1080/14034940210134194
- Jepsen B, Jepsen P, Johnsen SP, Espersen GT, Sørensen HT. Validity of diagnoses of cardiac malformations in a Danish population-based hospitaldischarge registry. Int Risk Saf Med. 2006;18(2):77–81.
- 63. Agergaard P, Hebert A, Bjerre J, Sørensen KM, Olesen C, Ostergaard JR. Children diagnosed with congenital cardiac malformations at the national university departments of pediatric cardiology: positive predictive values of data in the Danish National Patient Registry. *Clin Epidemiol.* 2011;3:61–66. doi:10.2147/clep.S15627
- 64. Ruwald MH, Hansen ML, Lamberts M, et al. Accuracy of the ICD-10 discharge diagnosis for syncope. Europace. 2013;15(4):595-600. doi:10.1093/europace/eus359
- 65. Lauridsen MD, Gammelager H, Schmidt M, Nielsen H, Christiansen CF. Positive predictive value of International Classification of Diseases, 10th revision, diagnosis codes for cardiogenic, hypovolemic, and septic shock in the Danish National Patient Registry. *BMC Med Res Methodol*. 2015;15 (1):23. doi:10.1186/s12874-015-0013-2
- 66. Galsklint J, Kold S, Kristensen SR, Severinsen MT, Gade IL. Validation of Postsurgical Venous Thromboembolism Diagnoses of Patients Undergoing Lower Limb Orthopedic Surgery in the Danish National Patient Registry. *Clin Epidemiol*. 2022;14:191–199. doi:10.2147/clep.S345293
- 67. Adelborg K, Sundbøll J, Munch T, et al. Positive predictive value of cardiac examination, procedure and surgery codes in the Danish National Patient Registry: a population-based validation study. BMJ open. 2016;6(12):e012817. doi:10.1136/bmjopen-2016-012817
- Nielsen LH, Nørgaard BL, Tilsted HH, et al. The Western Denmark Cardiac Computed Tomography Registry: a review and validation study. *Clin Epidemiol.* 2015;7:53–64. doi:10.2147/clep.S73728

- 69. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). *Eur Heart J*. 2019;40(3):237–269. doi:10.1093/ eurheartj/ehy462
- 70. Schmidt M, Jacobsen JB, Lash TL, Bøtker HE, Sørensen HT. 25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. *BMJ*. 2012;344(e356):e356–e356. doi:10.1136/bmj.e356

Clinical Epidemiology

Dovepress

Publish your work in this journal

Clinical Epidemiology is an international, peer-reviewed, open access, online journal focusing on disease and drug epidemiology, identification of risk factors and screening procedures to develop optimal preventative initiatives and programs. Specific topics include: diagnosis, prognosis, treatment, screening, prevention, risk factor modification, systematic reviews, risk & safety of medical interventions, epidemiology & biostatistical methods, and evaluation of guidelines, translational medicine, health policies & economic evaluations. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use.

Submit your manuscript here: https://www.dovepress.com/clinical-epidemiology-journal

Clinical Epidemiology 2024:16