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Abstract: Falls are common in patients with neurological diseases and can be very problematic.
Recently, there has been an increase in fall prevention research in people with neurological diseases;
however, these studies are usually condition-specific (e.g., only MS, PD or stroke). Here, our aim
was to evaluate and compare the efficacy of an advanced and innovative dual-task, motor-cognitive
rehabilitation program in individuals with different neurological diseases who are at risk of falling.
We recruited 95 consecutive adults with neurological diseases who are at risk of falling and divided
them into four groups: 31 with cerebrovascular disease (CVD), 20 with Parkinson’s disease (PD),
23 with traumatic brain injury (TBI) and 21 with other neurological diseases (OND). Each patient
completed a dual-task, motor-cognitive training program and underwent two test evaluations to
assess balance, gait, fear of falling and walking performance at the pre-and post-intervention. We
found that our experimental motor-cognitive, dual-task rehabilitation program was an effective
method for improving walking balance, gait, walking endurance and speed, and fear of falling, and
that it reduced the risk of falls in patients with different neurological diseases. This study presents an
alternative approach for people with chronic neurological diseases and provides innovative data for
managing this population.

Keywords: fall; neurological disease; dual-task; motor; cognitive; gait; balance; fear of falling;
walking speed

1. Introduction

Falls are not only common in patients with neurological diseases, but are also very
problematic. It is estimated that fall incidence is 2–4 times higher in patients with neurolog-
ical disorders than in age-matched healthy subjects and that 46% of neurological patients
fall at least once a year [1–3].

Fall-related injuries can also entail substantial medical costs and determine patients’
mortality risk [4].

Though not all falls are serious enough to require medical attention, it is known that all
falls are predictors of future falls and can lead to a fear of falling. Falls and the fear of falling
often cause a “post-fall syndrome”, i.e., a psychomotor regression condition responsible for
psychological, postural and gait dysfunction [5–9].

The central nervous system oversees balance and gait control by integrating sensory
inputs from the peripheral nervous system (e.g., receptors and nerves) and motor outputs
to the musculoskeletal system [2,10–12]. Since cognitive-motor processes manage the
spatiotemporal relationship between the body’s centre of mass and base of support, they
are responsible for postural optimisation based on prior experience, current context and
learning through long-latency components of postural responses [2,13]. In patients with
impaired afferent sensory information, balance and gait control requires compensatory
strategies such as attentional resources and sensory reweighting [2,14,15].
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Patients with neurological disorders can manifest balance and gait dysfunction due
to the impairment of at least one physiological component responsible for them. This
significantly increases the risk of falls in this population compared to age-matched healthy
subjects [1,2,16].

Studies that examined the risk of falling in neurological balance and gait disorders
reported that the risk, frequency and consequences of falling in the presence of neurological
gait disorders depend on whether the underlying disease entity is most pronounced in
central rather than peripheral and functional etiologies [4,17]. Diseases for which an
increased risk of falling has been documented include cerebrovascular disease (CVD),
Parkinson’s disease (PD), multiple sclerosis (MS), dementia, cerebellar ataxia, traumatic
brain injury (TBI), Huntington’s disease and peripheral neuropathy [1–4,16,18].

Due to the high incidence of falls and the associated negative consequences, prevent-
ing falls in people with neurological diseases is an important topic for research and the
provision of healthcare services [19]. In recent years, there has been an increase in condition-
specific fall prevention research in people with neurological diseases such as MS, PD and
stroke. However, in the context of studies of the elderly, research concerning falls and
neurological disorders is limited [19]. Furthermore, the implementation of single-diagnosis
fall prevention interventions is challenging for the community and for primary care due
to insufficient numbers of participants and resources for running separate group-based
programmes [19]. Although there are differences in the underlying pathophysiology of
these neurological conditions, research has identified many common fall risk factors in
three conditions (i.e., MS, PD and stroke) [19]. The impairment of neurological functions
that involve an increased risk of falling, irrespective of diagnosis, include disorders of
balance and gait, lower extremity weakness or sensory loss, and loss of vision [2,3,18].
Given these similarities in fall risk factors across neurological diseases, the development of
mixed-diagnosis interventions for these conditions can be a practical solution to bridge the
intervention gap.

In this regard, several dual-task trainings have been shown to improve gait perfor-
mance and to reduce the risk of falling in some neurological disorders, such as Parkinson’s
disease and stroke [20–24]. Furthermore, in a recent pilot study [24] we demonstrated
that our advanced and innovative dual-task, motor-cognitive training (DTT) is an effective
method for improving walking balance, gait and walking speed, as well as reducing the
fear of falling in patients with chronic CVD.

In light of these observations, the aim of this study was to explore and compare the
effect of our DTT program [24] in adult patients at risk of falling with CVD, PD, TBI and
other neurological conditions (OND).

2. Materials and Methods
2.1. Participants and Study Design

We recruited 95 adults with neurological diseases and at risk of falling who consec-
utively attended the Dual-Task Service at the IRCCS Santa Lucia Foundation. Patients
were assigned to four groups according to their neurological disease: the cerebrovascular
disease group (CVD, i.e., ischaemic and/or haemorrhagic stroke, n = 31), the Parkinson’s
disease group (PD, n = 20), the traumatic brain injury group (TBI, n = 23) and the other
neurological disease group (OND, i.e., multiple sclerosis, encephalitis, non-cancerous brain
tumour, n = 21).

Inclusion criteria were the following: age ≥ 18 years; at least 5 years of formal ed-
ucation; risk of falling (total POMA, Tinetti Performance Oriented Mobility Assessment,
score ≤ 20 and/or at least one fall in the previous year, in line with previous studies [24,25]).

Exclusion criteria were the following: presence of major cognitive and/or systemic
disturbances; history of behavioural and/or psychiatric disturbances; receiving any kind of
rehabilitative treatment.
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2.2. Motor-Cognitive, Dual-Task Training (DTT)

All patients were trained during fifteen sessions of an individual, experimental
dual-task rehabilitation program (i.e., simultaneous motor/cognitive tasks, 40 min/day,
3 days/week for 5 weeks). The intervention program was carried out in a dual-task
room [24], i.e., the same as that previously used and described in detail in Spanò et al.,
2022 [24]. Briefly, each DTT session consisted of the simultaneous administration of motor
and cognitive tasks and included: (1) the first part of the protocol (i.e., 1/3 of the time
of each training session) concerning the use of sensory carpets with different surfaces
(medium density smooth, sandy and cobbled) and a video projector; (2) a second part
of the protocol concerning the use of a walkable led floor and five video projectors (see
Spanò et al., 2022 [24] for a detailed description).

To prevent errors, verbal instructions were provided by the therapist to assist pa-
tients in carrying out the exercises (e.g., “correct head position”, “correct feet position”,
“correct balance”).

The DTT intervention was conducted in one-on-one training sessions that were ad-
justed daily according to the subject’s capability. Prior to the training, the therapists made a
simple and rapid assessment of the patients in order to select the personalised intervention
intensity suitable for them. Note that the programs can also be adjusted according to the
patients’ own preferences. The intensity of each session was patient-specific, with rest
breaks provided according to the therapist’s discretion and the patient’s tolerance of each
activity. Each exercise provided increasing levels of difficulty, which were adjusted by the
therapists based on the subject’s capability.

2.3. Outcomes

The outcome measure was the risk of falls evaluated with the following standard-
ised scales [24]: (1) the Tinetti Performance Oriented Mobility Assessment (POMA) for
balance (POMA-B) and gait (POMA-G) [26,27]; (2) the Falls Efficacy Scale-International
(FES-I) [28,29]; (3) the six-minute walking test (6-MWT) [30,31] and gait speed (calculated
as 6-MWT distance in metres divided by 360 s).

2.4. Data Analysis

Continuous variables are reported as median (interquartile range). Categorical vari-
ables are reported as frequency and percentage. At baseline, between-group differences in
age, sex and clinical performances were tested using either the Kruskal–Wallis test or the
χ2 test according to the level of measurement.

Change values for the outcome measures were calculated by subtracting the baseline
data from the post-intervention data. To analyse between-group improvement, the Kruskal–
Wallis test was used.

The within-group effects (i.e., the difference in the outcomes observed between T0
and T1) were examined by adopting the Wilcoxon signed-rank test. The Z-score is also
reported to represent the within-group effect size. For the outcomes, to avoid the type-I
error, Bonferroni’s correction was applied (p-value threshold α = 0.05/6 = 0.008).

Statistical analyses were carried out using IBM SPSS, version 21.0 (SPSS Inc., Chicago,
IL, USA).

3. Results

All recruited patients (31 CVD + 20 PD + 23 TBI + 21 OND) completed the DTT
program and two outcome evaluations (one within 1 week before and one within 1 week
after the intervention, i.e., 5 weeks later) and were included in the statistical analysis.
During the study, no adverse events were encountered. Patients’ demographic and clinical
results at baseline (T0) are summarised in Table 1.
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Table 1. Patients’ demographic and clinical results at baseline (T0).

CVD
(n = 31)

PD
(n = 20)

TBI
(n = 23)

OND
(n = 21)

Between-Group
Differences

Age (years) * 61.00 (23.00) 75.50 (15.50) 42.00 (32.00) 43.00 (25.50) H = 38.84, p < 0.001 #, a,b,c,d

Sex (male/female) ** 20/11 (65/35) 5/15 (25/75) 21/2 (91/9) 9/12 (43/57) χ2 = 21.92, p < 0.001 †, b,d

POMA tot * 21.00 (6.00) 16.00 (6.75) 21.00 (5.00) 17.00 (6.00) H = 17.17, p = 0.002 #, b,d

POMA-B * 11.00 (4.00) 8.00 (3.75) 12.00 (3.00) 9.00 (5.00) H = 16.62, p = 0.001 #, b,d,e

POMA-G * 9.00 (2.00) 8.00 (2.00) 9.00 (3.00) 8.00 (2.50) H = 7.80, p = 0.050 #

FES-I * 25.00 (14.00) 32.00 (18.50) 20.00 (12.00) 28.00 (16.00) H = 17.27, p = 0.001 #, e

6-MWT (m) * 315.10 (158.00) 245.05 (264.13) 368.30 (163.00) 348.90 (188.05) H = 6.17, p = 0.104 #

Gait speed (m/s) * 0.90 (0.40) 0.70 (0.70) 1.00 (0.40) 1.00 (0.45) H = 6.55, p = 0.088 #

Post hoc comparison: a CVD versus TBI, p-value < 0.05; b PD versus TBI, p-value < 0.05; c PD versus OND,
p-value < 0.05; d CVD versus PD, p-value < 0.05; e TBI versus OND, p-value < 0.05. CVD: cerebrovascular disease
group; PD: Parkinson’s disease group; TBI: traumatic brain injury group; OND: other neurological disease
group; POMA tot: Tinetti Performance Oriented Mobility Assessment total score; POMA-B: POMA balance score;
POMA-G: POMA gait score; FES-I: Falls Efficacy Scale-International score; 6-MWT: 6 min walk test; m = metres;
s = seconds. * Values are median (interquartile range); ** values are counts (percentage). # Kruskal–Wallis test.
† Pearson’s χ2. See text for more details.

As expected, age was significantly different across groups: TBI patients were signifi-
cantly younger than CVD and PD patients and OND patients were significantly younger
than PD patients. Groups were significantly different also for sex distribution. Significant
differences between groups were found for the POMA total score, POMA-B, and FES-I.
However, no difference was found for the POMA-G, 6-MWT or gait speed.

Table 2 shows the measured outcomes at pre- (T0) and post-DTT (T1) and the change in
values, expressed as a change between T0 and T1, and the between-group statistical results.

Table 2. Value changes of the outcome measures at pre- and post-dual-task training and between-
group statistical results.

CVD
(n = 31)

PD
(n = 20)

TBI
(n = 23)

OND
(n = 21)

Between-Group
Differences #

T0 T1 T0 T1 T0 T1 T0 T1

POMA-tot 21.00 (6.00) 26.00 (4.00) 16.00 (6.75) 20.00 (5.75) 21.00 (5.00) 25.00 (5.00) 17.00 (6.00) 24.00 (5.50)
T1–T0 change values 5.00 (3.00) 3.50 (3.00) 4.00 (3.00) 5.00 (3.50) H = 3.90,

p = 0.272

POMA-B 11.00 (4.00) 15.00 (3.00) 8.00 (3.75) 11.50 (3.75) 12.00 (3.00) 15.00 (3.00) 9.00 (5.00) 14.00 (3.00)
T1–T0 change values 3.00 (3.00) 2.00 (2.75) 2.00 (2.00) 3.00 (2.50) H = 8.22,

p = 0.042

POMA-G 9.00 (2.00) 11.00 (3.00) 8.00 (2.00) 9.00 (2.75) 9.00 (3.00) 11.00 (3.00) 8.00 (2.50) 10.00 (3.50)
T1–T0 change values 1.00 (1.00) 1.00 (2.00) 1.00 (1.00) 2.00 (2.00) H = 0.91,

p = 0.824

FES-I 25.00 (14.00) 20.00 (11.00) 32.00 (18.50) 31.45 (15.75) 20.00 (12.00) 22.00 (6.10) 28.00 (16.00) 24.00 (11.00)
T1–T0 change values −2.00 (7.00) −3.50 (6.18) 0.00 (4.10) −3.00 (6.50) H = 11.32,

p= 0.010

6-MWT (m) 315.10
(158.00)

358.30
(158.50)

245.05
(264.13)

259.55
(186.00)

368.30
(163.00)

408.00
(158.00)

348.90
(188.05)

390.00
(119.60)

T1–T0 change values 32.00 (57.20) 43.75 (78.63) 42.30 (77.50) 20.00 (60.30) H = 1.44,
p = 0.696

Gait speed (m/s) 0.90 (0.40) 1.00 (0.50) 0.70 (0.70) 0.80 (0.55) 1.00 (0.40) 1.10 (0.50) 1.00 (0.45) 1.10 (0.35)

T1–T0 change values 0.10 (0.20) 0.10 (0.20) 0.10 (0.20) 0.10 (0.15) H = 1.54,
p = 0.673

CVD: cerebrovascular disease group; PD: Parkinson’s disease group; TBI: traumatic brain injury group; OND: other
neurological disease group; # Kruskal–Wallis test; POMA tot: Tinetti Performance Oriented Mobility Assessment
total score; POMA-B: POMA balance score; POMA-G: POMA gait score; FES-I: Falls Efficacy Scale-International
score; 6-MWT: 6 min walk test; m = metres; s = seconds. Values are expressed as medians (interquartile range).
Change values were calculated by subtracting the pre-training (T0) data from the post-training (T1) data. See text
for more details.

No significant between-group differences were found for any measured outcomes in
the post-training change.
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In addition, post-DTT, the 6-MWT and gait speed were generally maintained in the
TBI group, whereas improvements of 30 m or more and of 0.10 m/s or more, respectively,
were found in the CVD, PD and OND groups (see Table 2).

Table 3 shows outcome results at pre- (T0) and post-DTT (T1) as well as the within-
group differences. A significant improvement was found in all measures in both CVD and
PD groups. In the TBI group, a significant improvement was found in the POMA total
score, the POMA-B and POMA-G, but not in the FES-I and 6-MWT performance or in
gait speed compared to pre-training. Then, in the OND group a significant improvement
was observed post-DTT (T1) in the POMA total score, POMA-B and FES-I, but not in the
POMA-G, the 6-MWT or gait speed.

Table 3. Outcome results at pre- and post-dual-task training and within-group statistical results.

CVD
(n = 31)

PD
(n = 20)

TBI
(n = 23)

OND
(n = 21)

T0 T1 T0 T1 T0 T1 T0 T1

POMA-tot 21.00 (6.00) 26.00 (4.00) 16.00 (6.75) 20.00 (5.75) 21.00 (5.00) 25.00 (5.00) 17.00 (6.00) 24.00 (5.50)
Within-group differences # Z = −4.80, p < 0.001 * Z = −3.76, p < 0.001 * Z = −4.03, p < 0.001 * Z = −3.93, p < 0.001 *

POMA-B 11.00 (4.00) 15.00 (3.00) 8.00 (3.75) 11.50 (3.75) 12.00 (3.00) 15.00 (3.00) 9.00 (5.00) 14.00 (3.00)
Within-group differences # Z = −4.56, p < 0.001 * Z = −3.67, p < 0.001 * Z = −3.86, p < 0.001 * Z = −3.94, p < 0.001 *

POMA-G 9.00 (2.00) 11.00 (3.00) 8.00 (2.00) 9.00 (2.75) 9.00 (3.00) 11.00 (3.00) 8.00 (2.50) 10.00 (3.50)
Within-group differences # Z = −4.28, p < 0.001 * Z = −3.37, p = 0.001 * Z = −3.88, p < 0.001 * Z = −2.61, p = 0.009

FES-I 25.00 (14.00) 20.00 (11.00) 32.00 (18.50) 31.45 (15.75) 20.00 (12.00) 22.00 (6.10) 28.00 (16.00) 24.00 (11.00)
Within-group differences # Z = −3.26, p = 0.001 * Z = −2.99, p = 0.003 * Z = −0.10, p = 0.917 Z = −3.01, p = 0.003 *

6-MWT (m) 315.10 (158.00) 358.30 (158.50) 245.05 (264.13) 259.55 (186.00) 368.30 (163.00) 408.00 (158.00) 348.90 (188.05) 390.00 (119.60)
Within-group differences # Z = −3.93, p < 0.001 * Z = −3.06, p = 0.002 * Z = −1.66, p = 0.10 Z = −2.05, p = 0.04

Gait speed (m/s) 0.90 (0.40) 1.00 (0.50) 0.70 (0.70) 0.80 (0.55) 1.00 (0.40) 1.10 (0.50) 1.00 (0.45) 1.10 (0.35)

Within-group differences # Z = −3.45, p = 0.001 * Z = −3.15, p = 0.002 * Z = −1.45, p = 0.15 Z = −2.46, p = 0.01

CVD: cerebrovascular disease group; PD: Parkinson’s disease group; TBI: traumatic brain injury group; OND:
other neurological disease group; # Wilcoxon signed-rank test; * significant between-group difference at p < 0.008;
POMA tot: Tinetti Performance Oriented Mobility Assessment total score; POMA-B: POMA balance score;
POMA-G: POMA gait score; FES-I: Falls Efficacy Scale-International score; 6-MWT: 6 min walk test; m = metres;
s = seconds. Outcome values are expressed as medians (interquartile range). See text for more details.

4. Discussion

The aim of the present study was to evaluate and compare the effectiveness of an ex-
perimental motor-cognitive DTT program in groups of patients with different neurological
disorders (i.e., CVD, PD, TBI, OND) at risk of falls.

In a previous pilot study [24], we found that this DTT was a valid method for im-
proving balance, gait and walking speed, as well as for reducing the fear of falling in
elderly cerebrovascular patients, and that it is more effective than a sequential (mixed)
motor-cognitive training. Here, we demonstrated that the same DTT is also feasible and
effective in improving the physical performance of other neurological patients.

The results of this study show that all groups (i.e., CVD, PD, TBI, OND) improved,
but that the dual-task intervention was effective in all outcome measures (i.e., mobility and
its balance and gait components, fear of falling, physical performance and gait speed) only
in the CVD and PD groups.

As previously discussed in our pilot study [24], the slight superiority of the CVD and
PD groups in terms of the outcomes obtained seems to be related to the specificity of the
DTT because it simultaneously involves dual-task cognitive and motor aspects that are
very important for these populations [23,32].

Although the DTT intervention did not statistically improve walking performance
(6-MWT and/or gait speed) in the OND group, it is noteworthy that in this group walk-
ing endurance (6-MWT distance) and gait speed were improved by 33 m and 0.1 m/s,
respectively; thus, the change was clinically meaningful [33]. Conversely, in the TBI group
walking performance did not statistically improve after DTT, and walking endurance
(6-MWT distance) and gait speed improved only by 18 m and 0.04 m/s.

There are many factors that might explain these results.
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First, the TBI group in the 6-MWT had a better performance at baseline than other
groups, and thus, they may have had less room for improvement.

Second, the gait and balance deficits that characterise individuals with TBI vary
considerably in terms of presentation pathophysiology [34] and severity [35,36]. This
results in substantial variability in walking patterns among subjects, which may interfere
with the average walking performance improvement.

Third, as recently shown by Acuña et al. [35], individuals who have experienced a
prior TBI exhibit a decrease in neuromuscular complexity during gait. These data contribute
to a growing body of evidence which suggests that brain injury reduces the complexity of
the muscle activation patterns that underlie gait, and hence, may be due to a change in the
use of cortical activity to modulate the rhythmic muscle activation patterns that underlie
walking [35,37,38].

Finally, these results might reflect the characteristics of the specific population, which
could have very different mechanisms underlying their impaired gait and motor control.
Indeed, in TBI populations a relationship between complexity and walking performance or
clinical assessments can also depend on the specific type of brain injury (e.g., a localised
lesion within the brain) [39] or diffuse axonal injury [40].

Regarding the FES-I results, the DTT intervention was ineffective in reducing the fear of
falling only in the TBI group. TBI survivors might present with low self-awareness [40–42]
and a dysexecutive syndrome, which might also compromise the fear of falling estimate.
Consistently with this speculation, it is also relevant that the patients with TBI obtained
an initial average FES-I score of 23, which is considered an adequate score for classifying
non-fallers [28].

Overall, the findings of this study show that the motor-cognitive, dual-task rehabilita-
tion program we proposed is an effective and transversal treatment that is able to improve
balance, gait and walking speed and to reduce the fear of falling in patients with different
neurological conditions, such as CVD, PD, TBI and others who are at risk of falling.

It is known that dual-task interference affecting walking performance has been ob-
served in subjects with different neurological disorders. In recent years, there has been
an increase in fall prevention research in people with neurological diseases; however,
these studies are usually condition-specific (e.g., only MS, PD or stroke). To the best of
our knowledge, no previous study has examined and compared the effects of a single
dual-task, motor-cognitive training program in reducing the risk of falling in individuals
with different neurological disorders (i.e., CVD, PD, TBI and OND). Thus, considering that
falls and their prevention risk interventions are a major clinical problem in neurological
patients, this study provides experimental support for future studies on implementing
non-single-diagnosis fall prevention management. Moreover, this study demonstrates
the importance of a motor-cognitive, dual-task intervention program to reduce the risk of
falling in these patients.

This study has some important limitations. First, the age and sex between-group
differences, the relatively small sample size of each group and the high clinical heterogeneity
limit confidence in the effects that were observed and make it difficult to generalise the
results. A larger, randomised, controlled clinical trial is needed to validate the benefits
of the dual-task training protocols reported in the current study and to emphasise its
neurological specificity. Second, as we did not perform a follow-up test, we are unable
to evaluate the possible maintenance of the results over time. Third, as we did not make
a neuropsychological assessment, we are unable to evaluate the effects of treatment on
cognitive performance. Indeed, future research should consider this issue.

5. Conclusions

This study presents fall prevention management in patients with different neurological
diseases who are at risk of falling. It demonstrates the importance of a motor-cognitive,
dual-task intervention program to reduce the risk of falling in this population. The re-
sults suggest that our DTT has an adequate influence on the improvement of balance,
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gait, walking endurance and speed, and fear of falling in patients with different neuro-
logical diseases. Future studies should replicate this study so that its effects can be more
confidently evaluated.
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