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While current protein interaction data provides a rich resource for molecular biology, it mostly
lacks condition-specific details. Abundance of mRNA data for most diseases provides poten-
tial to model condition-specific transcriptional changes. Transcriptional data enables modeling
disease mechanisms, and in turn provide potential treatments. While approaches to compare
networks constructed from healthy and disease samples have been developed, they do not
provide the complete comparison, evaluations are performed on very small networks, or no
systematic network analyses are performed on differential network structures. We propose a
novel method for efficiently exploiting network structure information in the comparison be-
tween any graphs, and validate results in non-small cell lung cancer. We introduce the notion
of differential graphlet community to detect deregulated subgraphs between any graphs such
that the network structure information is exploited. The differential graphlet community ap-
proach systematically captures network structure differences between any graphs. Instead of
using connectivity of each protein or each edge, we used shortest path distributions on differ-
ential graphlet communities in order to exploit network structure information on identified
deregulated subgraphs. We validated the method by analyzing three non-small cell lung cancer
datasets and validated results on four independent datasets. We observed that the shortest
path lengths are significantly longer for normal graphs than for tumor graphs between genes
that are in differential graphlet communities, suggesting that tumor cells create "shortcuts"
between biological processes that may not be present in normal conditions.
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1 Introduction

Most cancers lack effective early disease markers, prog-
nostic, and predictive signatures, primarily due to tumor
heterogeneity. As a result, we fail treating cancer hetero-
geneity due to multiple ways cancer initiates and develops
treatment resistance. Models that represent these differences
and the underlying molecular mechanism in cancer enhance
the possibility in characterizing and in turn treating cancer
successfully.

Current protein–protein interaction (PPI) information is
a rich resource for molecular biology research, but it lacks
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the condition-specific context for PPIs. In order to under-
stand diseases, gene expression profiling can be used. Dif-
ferential expression studies that compare gene expression
levels between healthy and affected tissues have been de-
veloped [1]. Differential expression studies usually involve
detecting statistical significance changes to the mean ex-
pressions of individual genes [2]. Some studies associated
changes in mean expression levels in gene groups or path-
ways with disease phenotypes [1]. However, useful prognos-
tic signatures are not necessarily the most differentially ex-
pressed genes [3]. Differential coexpression approaches that
compare coexpression patterns between healthy and diseased
samples have been developed. Studies have identified sev-
eral highly differentially coexpressed transcriptional regula-
tors involved in cancer, but their mean expressions did not
change much [1].

Identification of differences between healthy and diseased
tissues is important, but the difference should not be limited
to gene groups. Difference in network structure is essential as
studies have shown that systematically analyzing structural
properties of biological networks can bring forth important
insights, for example, determining the relationship between
network topology and protein functions, or network topology
and the underlying disease mechanism (e.g. [4–6]). These re-
sults have to be interpreted carefully as trends can be due
to literature bias; however, they suggest that there is a rela-
tionship between structures and functions in networks that
needs to be explored further.

Importantly, network-based approaches have been suc-
cessful in identifying subnetworks for classification, for
recovering of known and uncovering of novel biological func-
tions. For example, Ideker et al. showed that top-scoring sub-
networks overlap well with known regulatory mechanisms
[7]. Chuang et al. showed that identified subgraphs were
more reproducible, and better predict breast cancer metas-
tasis than individual genes [8]. Subnetworks have also been
shown to be effective biomarkers in the prediction of ag-
ing [9]. Thus, identification of differences between healthy
and diseased tissues should include differences in network
structures.

Several approaches to compare coexpression networks
constructed from healthy and disease samples have been
developed, e.g. [10–12]. Other approaches use dependency
networks to compare healthy and disease networks, e.g.
[13, 14]. The most straightforward way for such network
comparison is to use the connectivity of each gene in the
healthy and disease network [1]. Previous methods used
diverse approaches to compare two networks: (1) simple
gene connectivity or its variations; (2) edge or the mean
edge weight between groups. Although network compari-
son provides important information about disease mech-
anism, it has not yet been used to its full potential.
Importantly, differential network structures need to be sys-
tematically analyzed and characterized. We propose a novel
method that uses network structure information to compare
any graphs.

In order to compare and characterize different complex
networks, we can use global or local network properties.
Global network properties examine the overall network, while
local network properties focus on local structures or patterns
of the network [15]. Commonly used global network proper-
ties include degree distribution, diameter and clustering co-
efficient; however, these measures do not sufficiently capture
the structural characteristics of biological networks [16]. Thus,
more sensitive local structure measurements have emerged.
Graphlets are all nonisomorphic connected induced graphs on
a specific number of vertices [17]. By definition, they have the
ability to capture all the local structures on a certain number
of vertices.

Relative graphlet frequency distance [18] and graphlet de-
gree distribution agreement [15] have been developed as
local network structure measures. Both measures return
a scalar for the difference between two graphs. Existing
graphlet-based measures are useful for comparing graphs
efficiently, since only scalars need to be evaluated. However,
our aim is to make the most of graphlet information, and
use it to further characterize network structure differences
between any graphs. We propose a novel method that not
only lists graphlets in graphs A and B, but identifies and an-
notates deregulated subgraphs that differ between the two
graphs. Furthermore, our approach circumvents the expo-
nential growth of computation required as the graphlet size
increases, and enables systematic characterization of protein
communities with larger size, which provide stronger bio-
logical context. Previous graphlet-based approaches consid-
ered two to five node graphlets, but the size of our detected
deregulated communities can be much larger than the size
of individual graphlets.

We introduce the notion of differential graphlet commu-
nity to detect deregulated subgraphs between any graphs such
that the network structure information is exploited. The dif-
ferential graphlet community approach overcomes a limita-
tion of existing approaches (e.g. [11, 12]), importantly, it has
the ability to include a gene into more than one deregulated
subgraph. The ability for overlapping differential graphlet
communities is important because genes can have multiple
functions under different biological contexts. While the dif-
ferential graphlet community approach is generic, we evalu-
ated it on three non-small cell lung cancer (NSCLC) datasets.
Our results show that the difference in network topology
between normal and tumor graphs provides insights to the
underlying molecular mechanism in NSCLC. In particular,
a trend that the shortest path lengths are longer for normal
graphs than for tumor graphs in differential graphlet com-
munities is observed, suggesting that tumor cells can cre-
ate shortcuts between biological processes that may not be
present in normal conditions. Examples of shortcuts that are
observed, and are in agreement with known mechanism in
literature include the cross-talk between the Jak-STAT and
NF-kappaB pathways or STAT3 signaling enabling cross-talk
among tumor and immune cells, resulting in an immuno-
suppressive network.
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2 Materials and methods

2.1 Graphlet approach

We have proposed a graphlet approach to systematically
extract network structure differences between normal and
NSCLC graphs [19]. We enumerate all n-node graphlets in
normal graphs and NSCLC graphs. This involves the sub-
graph isomorphism problem, which is NP-complete [20]. As
n increases, the number of different types of subgraphs in-
creases exponentially [18], and the time and memory needed
to determine isomorphic subgraphs increases exponentially
as well [21]. The use of differential graphlet communities can
help circumvent this exponential growth of computation and
space required. Importantly, the number of genes that func-
tion together is often more than a few. Previous approaches
considered 2−5 node graphlets [15, 18]. Since exploring pro-
tein communities with larger size provides stronger biologi-
cal context, the largest feasible graphlet size with respect to
previous graphlet-based measures is chosen; that is, n is 5.
Figure 1 shows all 5-node graphlets. The graphlet approach
is systematic because all 5-node graphlets from the normal
and NSCLC graphs are enumerated, and no subgraph of size
5 will be missed.

The graphlet approach provides us with the protein wiring
information that differentiates between normal and NSCLC
graphs, and thus may provide insights to the underly-
ing mechanisms and eventually lead to novel lung cancer
treatments.

2.2 Differential graphlet community

Enumerating 5-node graphlets ensures that all nonisomor-
phic connected induced graphs on five nodes will be consid-
ered. However, the number of genes that function together is

often more than 5. Furthermore, any two graphlets, A and B
can potentially have four nodes that overlap. Thus, we extend
the approach to consider graphlet communities with a goal to
identify the difference in the properties of networks between
different graphs—in this paper, between normal and tumor
graphs.

Palla et al. [22] defines a community as the union of all
k-cliques such that one can reach to another by a chain of
adjacent k-cliques. A k-clique is a complete graph with k ver-
tices. Adjacent k-cliques are k-cliques that share k − 1 nodes.
A differential graphlet community is defined as the union of
all k-graphlets such that one can reach to another by a chain of
adjacent k-graphlets. Adjacent k-graphlets are graphlets that
share k − 1 nodes. Since all 5-node graphlets are enumerated,
k is 5 for the purpose of this paper.

The differential graphlet community approach detects
deregulated subgraphs that differ between two graphs. There
are several advantages to the differential graphlet community
approach. First, the proposed approach has the ability to in-
clude a gene into more than one deregulated subgraph. The
ability for overlapping differential graphlet communities is
important because genes can have multiple functions in bio-
logical systems. Second, the differential graphlet community
approach circumvents the exponential growth of computa-
tion required as the graphlet size increases, and enables the
systematically exploring of protein communities with larger
size that provide stronger biological context. Thus, although
the size of each graphlet is 5, the sizes of differential graphlet
communities can be much larger. Third, no predetermined
size or number of deregulated subgraphs are required as in-
put to the method, size, and the number of communities are
determined automatically.

We describe the differential graphlet approach in this sec-
tion. Further information on the construction of coexpression
graphs, graph theoretical terms, and the implementation are
in Supporting Information.

Figure 1. All twenty-one 5-node graphlets, all
nonisomorphic, connected, induced graphs
on five vertices.
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2.2.1 Construction of coexpression graphs

While the approach is generic, we evaluated it on three
NSCLC gene expression datasets. Two coexpression graphs
for each dataset, a normal, and a tumor graph, are generated
using normal and tumor samples, respectively (details are
provided in Supporting Information).

2.2.2 Enumeration of graphlets

For each dataset, given a normal and a tumor graph, all 5-node
graphlets are enumerated. We separate the enumeration of
5-node graphlets into three categories:

(1) NORMAL: graphlets that are only in the normal graph.
(2) BOTH: graphlets that are in the normal and tumor

graphs, but with structural differences.
(3) TUMOR: graphlets that are only in the tumor graph.

We focus on graphlets that are in the tumor category,
and those that have the same membership across all three
datasets. Differential graphlet communities are then com-
puted for the extracted graphlets. The differential graphlet
community analysis identifies interactions between proteins
that are deregulated in tumors. Deregulations are seen from
the difference in network structures between the normal and
tumor graph.

2.3 Datasets

We applied our approach to three NSCLC datasets [23–25],
referred to as Hou, Su, and Landi in this paper. Datasets
have been selected based on the number of normal and tu-
mor samples they contain, and were downloaded from Gene
Expression Omnibus database [26].

We used four independent NSCLC gene expression
datasets [27–30] to validate our results (referred to as Lu,
Sanchez, Okayama, and Girard, respectively).

Supporting Information Tables 1 and 2 provide additional
details on the seven datasets.

2.4 Notations

Let HouN, SuN, LandiN denote the normal graphs for Hou,
Su, and Landi, respectively. Similarly, let HouT, SuT, LandiT

denote the tumor graphs for Hou, Su, and Landi, respectively.
Let gT−Hou, gT−Su, gT−Landi denote the set of graphlets that

are in the tumor category for datasets Hou, Su, and Landi,
respectively. Let MTALL denote the set containing sets of five
vertices such that V(h) = V(s) = V(l) for some h � gT−Hou,
s � gT−Su, l � gT−Landi. |MTALL| is the number of graphlets that
have the same membership across all three datasets in the
tumor category.

Differential graphlet communities are then computed on
gT−Hou for all h � gT−Hou, gT−Su for all s � gT−Su, gT−Landi for all
l � gT−Landi such that V(h), V(s), V(l) � MTALL.

We have identified three differential graphlet communi-
ties for each dataset, referred to as: dGCHoui, i � {1, 2, 3} for
Hou, dGCSui, i � {1, 2, 3} for Su and dGCLandii, i � {1, 2, 3}
for Landi. Importantly, note that V(dGCHoui) = V(dGCSui) =
V(dGCLandii), i � {1, 2, 3}, respectively, and thus the com-
putation returns the same number of differential graphlet
communities for each dataset.

All shortest paths are computed between all vertex pairs in
V(dGCHoui), i � {1, 2, 3} for HouN and for HouT. All shortest
paths are computed between all vertex pairs in V(dGCSui), i
� {1, 2, 3} for SuN and for SuT. Finally, all shortest paths are
computed between all vertex pairs in V(dGCLandi i), i � {1, 2, 3}
for LandiN and for LandiT.

Let dGCspHouNi, i � {1, 2, 3} denote the shortest path graph
for differential graphlet community i for dataset Hou in Hou’s
normal graph. dGCspHouNi, i � {1, 2, 3} contains all shortest
paths in HouN between all vertex pairs in V(dGCHoui), i � {1,
2, 3}. Let dGCspHouTi, i � {1, 2, 3} denote the shortest path
graph for differential graphlet community i for dataset Hou
in Hou’s tumor graph.

2.5 Shortest path distribution

After obtaining deregulated subgraphs, comparing network
structures is important for the understanding of disease
mechanisms. In order to better utilize network structure
information obtained from the deregulated subgraphs, we
computed shortest path distributions on differential graphlet
communities.

Visualization of differential graphlet communities in Net-
work Analysis, Visualization and GrAphing, TORonto [31]
shows that there are fewer vertex pairs xy such that x is adja-
cent to y among vertices in V(dGCHoui), i � {1, 2, 3} for HouN

than in dGCHoui, i � {1, 2, 3}, respectively. Similar results
are observed for Su and Landi datasets. To quantify these ob-
servations, we performed a systematic shortest path distribu-
tion analysis. All shortest paths are computed in the normal
and tumor graphs for all vertex pairs in differential graphlet
communities.

Shortest path distributions are computed for:

(1) dGCspHouNi, i � {1, 2, 3} and dGCspHouTi, i � {1, 2, 3};
(2) dGCspSuNi, i � {1, 2, 3} and dGCspSuTi, i � {1, 2, 3};
(3) dGCspLandiNi, i � {1, 2, 3} and dGCspLandiTi, i � {1, 2, 3}.

Significance of shortest path distribution differences be-
tween normal and tumor graphs is determined by the
Mann–Whitney test. A constant C is used to replace infinity
distance (i.e. nonreachable vertices). By the nature of the
Mann–Whitney test, results from different Cs will be
the same if C is greater than all noninfinity lengths in the
compared shortest path distributions. Thus, without loss of
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generality, C is set to be 100 as the maximum shortest path
length is 12.

2.6 Pathway and GO analysis

In order to gain biological insights from network structures
of the differential graphlet communities, and to test whether
edges in differential graphlet communities are within a path-
way or across pathways, nodes were overlapped with path-
ways and GO. Pathway databases used include Encyclopedia
of Homo Sapiens Genes and Metabolism [32], Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [33], National Cancer
Institute-Pathway Interaction Database [34], Reactome [35],
and The Cancer Cell Map [36]. KEGG was downloaded on Feb
2011; remaining databases were downloaded from Pathway
Commons [37] on Aug, 2012. Annotations for GO ontology—
biological process were downloaded from Quick GO from
European Bioinformatics Institute [38] on August, 2012.

The intersection of dGCspHouTi, dGCspSuTi, and
dGCspLandiTi is taken for i � {1, 2, 3}, and is denoted
as dGCspALLi, i � {1, 2, 3}. V(dGCspALLi), i � {1, 2, 3} were
intersected with individual pathways and GO biological
processes.

3 Results and discussion

We identified three differential graphlet communities for
each dataset; for all three differential graphlet communities,
for all seven datasets, we observed a trend that the short-
est path lengths are shorter for tumor graphs compared to
normal graphs. All nodes and edges of differential graphlet
communities dGCHoui, dGCSui, and dGCLandii, i � {1, 2, 3} are
presented in Fig. 2 and Supporting Information Figs. 1 and
2. Note that the difference in wiring in individual datasets
could be due to the difference in disease stage as well as the
difference in histology.

Figure 2. dGCHou1, dGCSu1, and dGCLandi1 are shown. Edges connect coexpressed genes. Nodes are sorted and colored based on GO
biological function.
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Figure 3. Shortest path distributions for dGC1 for Landi, Hou, and Su datasets. Inf represents shortest path between unreachable nodes.
A is the number of node pairs that have infinity as the distance due to the absence of nodes in the graph.

We also present the comparisons of shortest path distribu-
tions for:

(1) dGCspHouNi versus dGCspHouTi for i � {1, 2, 3};
(2) dGCspSuNi versus dGCspSuTi for i � {1, 2, 3};
(3) dGCspLandiNi versus dGCspLandiTi for i � {1, 2, 3}.

For readability, simpler terms are used in the Figures. For
example, shortest path distribution for Landi for dGC1 refers
to the comparison of the shortest path distributions between
dGCspLandiN1 and dGCspLandiT1.

Figures 3, 4 and Supporting Information Fig. 3 show that
for all three datasets, for all three differential graphlet com-
munities, tumor graphs have shorter shortest paths than nor-
mal graphs; the median of shortest path lengths in normal
is significantly larger compared to tumor graphs (adjusted
p values � 1.13E – 20; one-sided Mann–Whitney test). This
suggests that tumor cells may cause cross-talk between bi-
ological processes that usually does not exist under normal
conditions.

To further validate the observed trend, we used four in-
dependent NSCLC datasets—Lu, Sanchez, Okayama, and

Figure 4. Shortest path distributions for dGC2 for Landi, Hou, and Su datasets. Inf represents shortest path between unreachable nodes.
A is the number of node pairs that have infinity as the distance due to the absence of nodes in the graph.
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Girard [27–30]. In all four datasets, for all three differen-
tial graphlet communities, the observed trend is confirmed:
tumor graphs have shorter shortest paths compared to nor-
mal graphs; the median of shortest path lengths in normal is
significantly larger than tumor graphs (adjusted p values �
2.61E – 13; one-sided Mann–Whitney test). Supporting Infor-
mation Figs. 4, 5, and 6 show the observed trend for different
datasets for differential graphlet community 1, 2, and 3, re-
spectively.

Thus, for all seven datasets, for all three differential
graphlet communities, we observed a trend that the short-
est path lengths are shorter for tumor graphs compared to
normal graphs; the median of shortest path lengths in nor-
mal is larger than that of tumor graphs, as determined us-
ing the one-sided Mann–Whitney test (adjusted p values �
2.61E – 13).

3.1 Biological meaning of differential graphlet

communities

From the shortest path distributions across all seven datasets
and all three differential graphlet communities, we observed
a trend that the shortest path lengths are longer for normal
graphs than for tumor graphs. The observed trend suggests
that tumor cells create shortcuts between biological processes
that are usually not connected under normal conditions.

In order to test whether edges in differential graphlet com-
munities are within a pathway or across pathways, nodes
in differential graphlet communities were overlapped with
pathways and GO biological processes, and are presented in

Supporting Information Tables M 1−9 in Supporting Infor-
mation Additional file 2.

3.1.1 A proof-of-concept

We use an example from dGCspALL2 as a proof-of-concept
to demonstrate that the differential graphlet community ap-
proach provides insights into the underlying mechanism,
and potential novel treatments for NSCLC. Figure 5 presents
dGCspALL2 labeled with pathway information, and it shows
that many edges in dGCspALL2 are across different pathways
suggesting cross-talk between them.

In dGCspALL2, there are many edges crossing between
members of the chemokine signaling pathway, Jak-STAT
signaling pathway, Canonical NF-kappaB pathway, and the
B-cell receptor signaling pathway. It has been reported that
Jak-STAT signaling pathway and Canonical NF-kappaB path-
way have STAT3 and NF-kappaB “collaborating” in cancer
[39]. The activation of STAT3 and NF-kappaB as well as the
interaction between them are important for controlling the
communication between a malignant cell and its microenvi-
ronment. Often, STAT3 and NF-kappaB are basally active in
neoplastic cells. A global profiling of mouse lung cells showed
that STAT3 controlled the expression of a large number of
genes, and some NF-kappaB target genes were among them
[40]. Genes that are controlled by STAT3 and NF-kappaB in-
clude chemokines, PAI-1, Bcl3, Bcl2, GADD45β, and SOCS3.
This suggests that STAT3 and NF-kappaB pathways work to-
gether for the induction of specific groups of genes [39].

Figure 5. An example from dGCspALL2. Edges link coexpressed genes. Nodes are colored based on GO biological function. IL7R belongs
to the Jak-STAT signaling pathway and the hematopoietic cell lineage. LCK belongs to the canonical NF-kappaB pathway and the natural
killer cell mediated cytotoxicity.
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CCR2 and CCR7 are chemokine receptors in the
chemokine signaling pathway identified in dGCspALL2. Genes
that encode chemokines are among targets for STAT3 and
NF-kappaB [39]. Chemoattractants are crucial for recruit-
ing and renewing various cells in the tumor microenvi-
ronment. In particular, CCL2, a CCR2 ligand, controls the
enrollment of myeloid cells, which induce tumor-associated
macrophage or myeloid-derived suppressor cells (MDSC)
[39]. In the tumor microenvironment, tumor-associated
macrophage can promote tumor and MDSC can suppress
T cells [41]. Another chemokine receptor in dGCspALL2 is
CCR7. CCL19 /CCL21 /CCR7 play a role in attracting im-
munosuppressive T-regulatory cells [42]. Therefore, STAT3
and NF-kappaB, through the regulation of chemokine synthe-
sis, can determine which groups of immune cells are active
in the tumor microenvironment.

Not only is STAT3 observed to have cross-talk with NF-
kappaB, STAT3 signaling also enables cross-talk among tu-
mor and immune cells, resulting in an immunosuppressive
network [43]. This cross-talk via STAT3 signaling involves
hematopoietic progenitor cells, and hematopoietic cell lin-
eage is also present in dGCspALL2 (IL7R, MS4A1). Further-
more, pathways related to immune cells are also present in
dGCspALL2. Increase in STAT3 activity in hematopoietic pro-
genitor cells encourages the production of immature myeloid
cells, and increases the amount of plasmacytoid dendritic
cells. The amount of immature dendritic cell is also increased.
Both immature dendritic cells and plasmacytoid dendritic
cells encourage and accumulate regulatory T cells in the tu-
mor microenvironment. STAT3 activity prevents immature
dendritic cells from maturing. However, mature dendritic
cells are able to stimulate CD8+ T cell’s and natural killer
cell’s anti-tumor effects. IL7R and MS4A1 belong to the lym-
phoid stem cell branch, and the lymphoid stem cell branch
is responsible for the maturing of T and B cell, as seen from
the hematopoietic cell lineage in KEGG [33]. From the pri-
mary immunodeficiency pathway in KEGG, LCK can affect
the maturing of T cell, and BTK can affect the maturing of B
cell. Although IL7R and MS4A1 are involved in the lymphoid
stem cell branch, and not the myeloid stem cell, other cross-
talk among tumor and immune cells is possible. Note that
the plasmacytoid dendritic cells also belong to the lymphoid
stem cell branch.

BTK also has edges across different pathways. BTK can
relate to the cross-talk between STAT3 and NF-kappaB, as
BTK is crucial in the survival of B cell as well as the activation
of NF-kappaB [44]. BTK can also relate to the cross-talk among
tumor and immune cells involving hematopoietic progenitor
cells since BTK plays an important role in the maturation of
B cell as mentioned above.

PTPRCAP, protein tyrosine phosphatase receptor type
C-associated protein, is another vertex that has edges across
different pathways. Several protein tyrosine phosphotases,
PTPs, have been associated with the regulation of JAKs
[45], and the JAK-STAT pathway is important for controlling

immune responses [45]. Furthermore, T-cell protein tyrosine
phosphatase is identified to be a crucial regulator in the signal-
ing of immune cells [46]. PTPRCAP is particularly associated
with CD45, an important controller of B and T lymphocyte
activation [47]. In dGCspALL2, edges are present between
PTPRCAP and the chemokine receptors, as well as between
PTPRCAP and the Jak-STAT signaling pathway.

The example from dGCspALL2 highlights different cross-
talk between pathways or among tumor and immune
cells. There can be other cross-talk and interpretations to
dGCspALL2, yet this proof-of-concept demonstrates that the
differential graphlet community approach provides insights
to the underlying mechanism and potential treatments for
NSCLC. Importantly, the differential graphlet community
approach does not only return gene groups, but the edges
between them as well. Systematically comparing network
structure enables the identification and characterization of
differences between tumor and normal samples, and enables
the formalization of functional hypotheses and prioritization
of biological experiments.

4 Concluding remarks

We have developed a graph-based approach that systemat-
ically characterizes network structure differences between
any graphs, and used it for identifying lung cancer-specific
differences between normal and tumor graphs. We proposed
using differential graphlet communities for detecting deregu-
lated subgraphs between any graphs. The differential graphlet
community approach reveals gene group and wiring differ-
ences between compared graphs—in this paper, between nor-
mal lung and lung cancer. Going beyond using connectivity
of each gene or each edge to compare the identified deregu-
lated subgraphs, we used shortest path distributions on dif-
ferential graphlet communities in order to exploit network
structure information on identified deregulated subgraphs.
Importantly, the differential graphlet community approach
enables a gene to participate in more than one deregulated
subgraph. The ability for overlapping differential graphlet
communities is important because genes can have multiple
functions in different context. Interestingly, this approach
identified difference in network topology between normal
and tumor graphs that provided insights to the underly-
ing molecular mechanism in NSCLC. In particular, across
all three NSCLC datasets and all three identified differen-
tial graphlet communities, a trend that the shortest path
lengths are shorter for tumor graphs than for normal graphs
is observed; the median of shortest path lengths in normal
is significantly larger compared to tumor graphs (adjusted
p values � 1.13E –20; one-sided Mann–Whitney test). This
suggests that tumor cells can create shortcuts between bi-
ological processes that may not be present under normal
conditions. We have further validated these results on
four independent NSCLC datasets. As a proof-of-concept to
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demonstrate that the differential graphlet community ap-
proach provides insights to the underlying mechanism for
NSCLC, we highlighted cross-talk between pathways and
among tumor and immune cells that are revealed through the
systematic graph-based analysis. Examples of cross-talk that
are observed include the cross-talk between the Jak-STAT and
NF-kappaB pathways or STAT3 signaling enabling cross-talk
among tumor and immune cells, resulting in an immuno-
suppressive network. The systematic network structure com-
parison enables the identification of network structure dif-
ferences between tumor and normal samples. The approach
can also be extended to compare results across simulated
network perturbations, which can be studied in condition-
specific manner, and used for predicting effects of altered
signaling cascades. Ultimately, this may lead to systems
level analysis of drug mechanism of action, and condition-
specific prediction of treatment response in precision
medicine.
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