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Biomechanical rupture risk prediction with abdominal

aortic aneurysm growth
April J. Boyd, MD, PhD, Winnipeg, Manitoba, Canada
Abdominal aortic aneurysms (AAA) are repaired when
they meet diameter criteria or when they become symp-
tomatic or rupture. The use of aortic diameter as the pri-
mary criterion in the decision to repair fails address the
considerable numbers of AAA that rupture below this
operative threshold,1 particularly in women.2 Improved
prediction of AAA behavior is required to prevent signifi-
cant morbidity and mortality.
AAA are thought to rupture when aortic wall mechani-

cal stress exceeds wall strength.3,4 Finite element analysis
has been used to model the physical characteristics of
the AAA wall from computed tomography reconstruc-
tions, allowing the determination of peak wall stress
(PWS) and the peak wall rupture index (PWRI). PWS is
a measure of maximal tensile stress, whereas PWRI is a
ratio of maximal wall stress to strength. The PWRI serves
as a predictor of AAA rupture risk; however, to date it has
yet to consistently predict the outcome for specific AAA
geometries.5,6 This lack of predictability likely reflects
the multifactorial involvement of hemodynamics, intra-
luminal thrombus (ILT), and inflammatory effects of cyto-
kines and proteases (7) and may also reflect constant
aortic remodeling associated with growth.3

The current article examined the biomechanical and
morphological changes associated with AAA growth using
a finite element analysis linear transformation-based com-
parison. The authors hypothesized that AAA growthwould
accompanied by significant changes in biomechanical
and geometrical characteristics. It was also hypothesized
that the PWRI, PWS, and ILT would change location with
AAA growth. AAA diameter and volume, neck configura-
tion, a and b angulation, vessel tortuosity, ILT volume,
PWS, and PWRI were determined at two time points.
There was a significant increase in AAA and ILT volume,

maximal ILT thickness, neck angulation, and iliac tortuos-
ity with AAA growth. The change in PWRI was most
correlated with an increase in AAA volume, whereas
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the change in PWS was best correlated with neck angu-
lation. These findings suggest that AAA wall stresses vary
with growth and that AAA volume may be a better pre-
dictor of AAA rupture risk than diameter.
The observation that maximum ILT thickness, in com-

parison with the positions of maximum PWS and PWRI,
was the most pronounced with AAA growth suggests
that ILT volume may play an important role in predicting
AAA behavior. Using a computational fluid dynamics
approach, Lasheras et al7,8 have previously shown that al-
terations in aortic length and tortuosity with AAA growth
have been associated with the development of turbulent
flow vortexes, with changes in wall shear stress. A low
wall shear stress is thought to play a role in initiating
and propagating ILT deposition in AAA, which may play
a role in promoting aortic wall degeneration and
rupture.9 Future studies aimed at improving understand-
ing of AAA rupture risk will require both hemodynamic
and finite element analyses in a large cohort with
patient-specific physiologic and anatomic data.
The opinions or views expressed in this commentary are

those of the authors and do not necessarily reflect the
opinions or recommendations of JVS: Vascular Science
or the Society for Vascular Surgery.
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