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Abstract Autosomal-dominant Schnyder corneal dystrophy (SCD) is characterized by corneal

opacification owing to overaccumulation of cholesterol. SCD is caused by mutations in UBIAD1,

which utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. Using cultured cells,

we previously showed that sterols trigger binding of UBIAD1 to the cholesterol biosynthetic

enzyme HMG CoA reductase (HMGCR), thereby inhibiting its endoplasmic reticulum (ER)-

associated degradation (ERAD) (Schumacher et al. 2015). GGpp triggers release of UBIAD1 from

HMGCR, allowing maximal ERAD and ER-to-Golgi transport of UBIAD1. SCD-associated UBIAD1

resists GGpp-induced release and is sequestered in ER to inhibit ERAD. We now report knockin

mice expressing SCD-associated UBIAD1 accumulate HMGCR in several tissues resulting from ER

sequestration of mutant UBIAD1 and inhibition of HMGCR ERAD. Corneas from aged knockin mice

exhibit signs of opacification and sterol overaccumulation. These results establish the physiological

significance of UBIAD1 in cholesterol homeostasis and indicate inhibition of HMGCR ERAD

contributes to SCD pathogenesis.

DOI: https://doi.org/10.7554/eLife.44396.001

Introduction
Mutations in the gene encoding UbiA prenyltransferase domain-containing protein-1 (UBIAD1) cause

Schnyder corneal dystrophy (SCD), a rare autosomal dominant eye disease characterized by opacifi-

cation of the cornea (Klintworth, 2009; Weiss, 2009; Orr et al., 2007; Weiss et al., 2007).

Although apparent early in life, corneal opacification associated with SCD progresses slowly with

age and ultimately leads to reduced visual acuity. The severity of visual impairment is underscored

by the frequency in which corneal transplant surgery is utilized for treatment of SCD, which rises

from 50% in SCD patients > 50 years of age to more than 70% for those 70 years and older

(Weiss, 2007). Biochemical analyses of corneas from SCD patients revealed a marked accumulation

of cholesterol (McCarthy et al., 1994; Gaynor et al., 1996; Yamada et al., 1998), suggesting that

dysregulation of cholesterol metabolism significantly contributes to the pathogenesis of SCD. Sys-

temic hypercholesterolemia has been reported to be associated with some, but not all cases of the

disease (Thiel et al., 1977; Brownstein et al., 1991; Crispin, 2002).
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UBIAD1 belongs to the UbiA superfamily of integral membrane prenyltransferases that catalyze

transfer of isoprenyl groups to aromatic acceptors, generating a wide variety of molecules ranging

from ubiquinones, chlorophylls, and hemes to vitamin E and vitamin K (Li, 2016). UBIAD1 mediates

transfer of the 20-carbon geranylgeranyl moiety from geranylgeranyl pyrophosphate (GGpp) to men-

adione (vitamin K3) released from plant-derived phylloquinone (vitamin K1), generating the vitamin

K2 subtype menaquinone-4 (MK-4) (Nakagawa et al., 2010; Hirota et al., 2013). To date, 25 mis-

sense mutations that alter 21 amino acids in the UBIAD1 protein have been identified in SCD fami-

lies. Structural analyses of archaeal UbiA prenyltransferases revealed that residues corresponding to

SCD-associated mutations in human UBIAD1 cluster around the active site of the enzyme

(Cheng and Li, 2014; Huang et al., 2014). Indeed, all SCD-associated variants of UBIAD1 are defec-

tive in mediating synthesis of MK-4 (Hirota et al., 2015; Jun, D.-J. and DeBose-Boyd, R.A., unpub-

lished observations) and for some variants, this defect likely results from reduced affinity for GGpp.

The first link between UBIAD1 and cholesterol metabolism was provided by the discovery of its

association with the endoplasmic reticulum (ER)-localized enzyme 3-hydroxy-3-methylglutaryl coen-

zyme A reductase (HMGCR) (Nickerson et al., 2013). HMGCR catalyzes reduction of HMG CoA to

mevalonate, a reaction that constitutes the rate-limiting step in synthesis of cholesterol and the

essential nonsterol isoprenoids GGpp and farnesyl pyrophosphate (Fpp) (Goldstein and Brown,

1990; Wang and Casey, 2016). Fpp and GGpp can become transferred to many cellular proteins

and are utilized in synthesis of other nonsterol isoprenoids including ubiquinone, heme, dolichol,

and MK-4. HMGCR is subjected to tight feedback control through transcriptional and post-transcrip-

tional mechanisms mediated by sterol and nonsterol isoprenoids (Brown and Goldstein, 1980).

Sterols mediate the transcriptional effects by inhibiting proteolytic activation of membrane-bound

transcription factors called sterol regulatory element-binding proteins (SREBPs). SREBPs enhance

transcription of genes encoding HMGCR and other cholesterol biosynthetic enzymes as well as the

low density lipoprotein (LDL) receptor that removes cholesterol-rich LDL from circulation

(Horton et al., 2003). Post-transcriptional regulation of HMGCR is mediated by sterol and nonsterol

isoprenoids, which combine to accelerate the ER-associated degradation (ERAD) of HMGCR through

a reaction that involves the 26S proteasome (Nakanishi et al., 1988; Ravid et al., 2000). Together,

these feedback regulatory mechanisms coordinate metabolism of mevalonate to assure cells main-

tain constant production of nonsterol isoprenoids but avoid overaccumulation of cholesterol and

other sterols.

Our group discovered that accumulation of sterols in ER membranes triggers binding of HMGCR

to ER membrane proteins called Insigs (Sever et al., 2003a; Sever et al., 2003b). Subsequent ubiq-

uitination of HMGCR by Insig-associated ubiquitin ligases (Song et al., 2005; Jo et al., 2011;

Jiang et al., 2018) mark the enzyme for extraction across ER membranes and release into the cyto-

sol for proteasome-mediated ERAD (Elsabrouty et al., 2013; Morris et al., 2014). GGpp augments

ERAD of ubiquitinated HMGCR by enhancing its membrane extraction (Elsabrouty et al., 2013).

Recently, we discovered that sterols also cause a subset of HMGCR molecules to bind to UBIAD1

(32). This binding protects HMGCR from accelerated ERAD, permitting continued synthesis of non-

sterol isoprenoids even when cellular sterols are abundant (Schumacher et al., 2018). GGpp triggers

release of UBIAD1 from HMGCR, which allows for maximal ERAD of HMGCR and ER-to-Golgi trans-

port of UBIAD1 (34). Eliminating expression of UBIAD1 relieves the GGpp requirement for HMGCR

ERAD, indicating the reaction is inhibited by UBIAD1. Further characterization revealed that despite

its steady-state Golgi localization in GGpp-replete cells, UBIAD1 continuously cycles between the ER

and Golgi. Upon sensing depletion of GGpp in membranes of the ER, UBIAD1 becomes trapped in

the organelle and inhibits ERAD of HMGCR to stimulate synthesis of mevalonate for replenishment

of GGpp. The physiologic relevance of UBIAD1-mediated sensing of GGpp is highlighted by the

observation that the reaction appears to be disrupted in SCD. SCD-associated UBIAD1 resists

GGpp-induced release from HMGCR and becomes sequestered in the ER of GGpp-replete cells

(Schumacher et al., 2015; Schumacher et al., 2016). The ensuing inhibition of HMGCR ERAD, which

occurs in a dominant-negative fashion, leads to a marked increase in synthesis and intracellular accu-

mulation of cholesterol (Schumacher et al., 2018).
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The current studies were designed to confirm the role of UBIAD1 in regulation of HMGCR ERAD

and cholesterol metabolism in living animals. For this purpose, we generated mice that harbor a

knockin mutation that changes asparagine-100 (N100) in UBIAD1 to a serine residue (N100S) (see

Figure 1A). The N100S mutation in mouse UBIAD1 corresponds to the SCD-associated UBIAD1

(N102S) mutation in the human enzyme. We show here that knockin mice homozygous for the

N100S mutation (designated as Ubiad1Ki/Ki mice) accumulate HMGCR protein in several tissues,

despite a reduction in the amount of Hmgcr mRNA owing to sterol accumulation and reduced acti-

vation of SREBPs. The accumulation of HMGCR protein resulted from sequestration of UBIAD1

(N100S) in the ER and inhibition of HMGCR ERAD at a post-ubiquitination step of the reaction.

Aged Ubiad1Ki/Ki mice exhibited signs of opacification of the cornea, which was accompanied by

hallmarks of sterol overaccumulation in the tissue. These findings not only indicate that UBIAD1

modulates ERAD of HMGCR in mice through similar mechanisms previously established in cultured

cells, but they also establish Ubiad1Ki/Ki mice as a model for human SCD.

Results
Ubiad1WT/Ki heterozygous male and female mice (C57BL/6 � 129 genetic background) were crossed

to obtain wild type (WT) and Ubiad1Ki/Ki littermates. Mice homozygous for the N100S knockin muta-

tion were born at expected Mendelian ratios. WT and Ubiad1Ki/Ki littermates were externally indistin-

guishable and had similar body and liver weights (data not shown). Immunoblot analysis revealed

that livers of male Ubiad1WT/Ki and Ubiad1Ki/Ki mice consuming chow diet ad libitum exhibited a

noticeable increase (1.8- and 5.2-fold, respectively) in the amount of HMGCR protein compared to

that in WT littermates (Figure 1B, lanes 1–3). However, the amount of Hmgcr mRNA was reduced

approximately 40% in knockin mice (Figure 1—figure supplement 1A). UBIAD1 (N100S) protein

also accumulated in livers of heterozygous and homozygous Ubiad1 knockin mice (Figure 1B, lanes

1–3); however, this was not accompanied by an increase in hepatic Ubiad1 mRNA (Figure 1—figure

supplement 1A). Levels of nuclear SREBP-1 (Figure 1B, lanes 4–6) and SREBP-2 (lanes 7–9) were

reduced in livers of Ubiad1WT/Ki and Ubiad1Ki/Ki mice, which coincided with reduced expression of

mRNAs encoding SREBP target genes (Figure 1—figure supplement 1A). Cholesterol was slightly,

but significantly increased in Ubiad1Ki/Ki livers; however, plasma cholesterol, triglycerides, and non-

esterified fatty acids as well as liver triglycerides were not significantly changed between the groups

of animals (Figure 1—figure supplement 1B). Similar results were observed in the analysis of female

Ubiad1Ki/Ki mice (data not shown).

To ensure phenotypes associated with the N100S knockin mutation were not influenced by mixed

genetic background, we backcrossed BL6/129 Ubiad1Ki/Ki mice to C57BL/6J mice for at least six gen-

erations. For experiments described hereafter, Ubiad1WT/Ki heterozygous female and male mice on

the BL6 background were crossed to obtain WT and Ubiad1Ki/Ki littermates. The results shown in

Figure 2A reveal that male Ubiad1WT/Ki and Ubiad1Ki/Ki mice on the BL6 background accumulated

hepatic HMGCR and UBIAD1 proteins (lanes 1–3), whereas levels of nuclear SREBP-1 and SREBP-2

were either unchanged (nuclear SREBP-1, lanes 4–6) or reduced (nuclear SREBP-2, lanes 7–9).

HMGCR and UBIAD1 proteins accumulated and Hmgcr mRNA was down-regulated to varying

degrees in other tissues of the knockin mice (Figure 2B and C). HMGCR and UBIAD1 protein accu-

mulated to a similar extent in livers and eyes of female C57BL/6J Ubiad1Ki/Ki mice (Figure 2—figure

supplement 1).

Table 1 shows that WT and Ubiad1Ki/Ki mice had similar body and liver weights. Plasma levels of

triglycerides, cholesterol, and non-esterified fatty acids (NEFAs) were slightly reduced in Ubiad1Ki/Ki

mice; however, these reductions were not significant. The knockin mice exhibited a small but signifi-

cant increase in the amount of cholesterol in the liver (Table 1). We next used liquid chromatogra-

phy-tandem mass spectrometry (LC-MS/MS) to measure levels of MK-4 and other nonsterol

isoprenoids in livers of WT and Ubiad1Ki/Ki mice (Figure 3). The results show that levels of MK-4

were reduced 50% relative to those observed in WT animals, despite a 4.2-fold increase in the

amount of hepatic UBIAD1 protein. When normalized to the amount of UBIAD1 protein, we estimate

the relative level of MK-4 was reduced by more than 80% in livers of Ubiad1Ki/Ki mice. In contrast to

results with MK-4, levels of geranylgeraniol (GGOH; derived from GGpp) and ubiquinone-10, were

significantly increased in livers of Ubiad1Ki/Ki mice. This was accompanied by a small, but significant

decrease in plant-derived phylloquinone (vitamin K1); bacterial-derived vitamin K2 subtype
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Figure 1. Accumulation of HMGCR protein in livers of Ubiad1Ki/Ki mice with mixed C57BL/6 � 129 genetic background. (A) Amino acid sequence and

predicted topology of mouse UBIAD1 protein. Asparagine-100 (N100), which corresponds to the most frequently mutated amino acid residue in SCD, is

enlarged, shaded in red and indicated by an arrow. (B) Male WT, Ubiad1WT/Ki, and Ubiad1Ki/Ki littermates (8–9 weeks of age, eight mice/group) were

fed an ad libitum chow diet prior to sacrifice. Livers of the mice were harvested and subjected to subcellular fractionation as described in ‘Materials and

methods.’ Aliquots of resulting membrane (Memb.) and nuclear extract (N.E.) fractions (80–160 mg of total protein/lane) for each group were pooled

and subjected to SDS-PAGE, followed by immunoblot analysis using antibodies against endogenous HMGCR, SREBP-1, SREBP-2, UBIAD1, Insig-1,

Figure 1 continued on next page
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menaquinone-7 (MK-7) remained unchanged in the knockin livers. MK-4 was reduced, whereas levels

of GGOH and/or ubiquinone-10 were increased in kidneys, brains, spleens, and testes of Ubiad1Ki/Ki

mice (Figure 3—figure supplement 1).

To directly study the regulation of HMGCR in the presence of UBIAD1 (N100S), we established

lines of mouse embryonic fibroblasts (MEFs) from WT and Ubiad1Ki/Ki littermates. A low level of

HMGCR and UBIAD1 protein was detected in membrane fractions isolated from WT MEFs cultured

in sterol and nonsterol isoprenoid-replete medium containing fetal calf serum (Figure 4A, lane 1).

Both proteins markedly accumulated in MEFs derived from Ubiad1Ki/Ki mice (lane 2). In contrast, lev-

els of nuclear SREBP-1 and SREBP-2 were reduced in Ubiad1Ki/Ki MEFs (Figure 4A, compare lanes 3

and 4), which is consistent with reduced levels of Hmgcr mRNA and increased levels of intracellular

cholesterol (Figure 4B). We next compared sterol-accelerated ERAD of HMGCR in Ubiad1Ki/Ki MEFs

to that in MEFs derived from HmgcrKi/Ki mice, which harbor knockin mutations in HMGCR that pre-

vent its sterol-induced ubiquitination (Hwang et al., 2016). Cells were first depleted of isoprenoids

through incubation in medium containing lipoprotein-deficient serum and the HMGCR inhibitor com-

pactin to enhance expression of HMGCR. The cells were subsequently treated in the absence or

presence of the oxysterol 25-hydroxycholesterol (25-HC) prior to harvest, subcellular fractionation,

and immunoblot analysis. The results show that 25-HC caused the disappearance of HMGCR from

membranes of WT MEFs as expected (Figure 4C, lanes 1 and 2; 5 and 6). However, this disappear-

ance was blunted in membranes from either Ubiad1Ki/Ki or HmgcrKi/Ki MEFs (lanes 3 and 4; 7 and 8).

Despite resistance of HMGCR to sterol-accelerated ERAD, the experiment of Figure 4D shows that

sterols continued to stimulate HMGCR ubiquitination in Ubiad1Ki/Ki MEFs. Isoprenoid-depleted cells

were treated with the proteasome inhibitor MG-132 (to block degradation of ubiquitinated HMGCR)

in the absence or presence of 25-HC. Cells were then harvested for preparation of detergent lysates

that were immunoprecipitated with polyclonal anti-HMGCR. 25-HC caused HMGCR to become ubiq-

uitinated in WT and Ubiad1Ki/Ki MEFs, as indicated by smears of reactivity in anti-ubiquitin immuno-

blots of the HMGCR immunoprecipitates (Figure 4D, lanes 1–6). As expected, HMGCR resisted 25-

HC-induced ubiquitination in MEFs derived from HmgcrKi/Ki mice (compare lanes 7 and 8 with lanes

9–12).

Figure 5A compares expression of HMGCR in WT and Ubiad1Ki/Ki mice fed a chow diet supple-

mented with 1% cholesterol. The results show that cholesterol feeding led to reduced expression of

HMGCR protein in membranes isolated from livers of WT mice (Figure 5A, lane 2); however, a signif-

icant amount of HMGCR protein remained in hepatic membranes of cholesterol-fed Ubiad1Ki/Ki mice

(lane 4). The feeding regimen reduced the amount of Insig-1 protein (lanes 2 and 4) and nuclear

SREBP-2 (lanes 6 and 8) in both WT and Ubiad1Ki/Ki livers. Dietary cholesterol also reduced mRNAs

encoding HMGCR and other SREBP targets in livers of WT and Ubiad1Ki/Ki mice (Figure 5—figure

supplement 1). The membrane-bound precursor and nuclear forms of SREBP-1 were induced by

cholesterol feeding in livers of both lines of mice (lanes 6 and 8). This induction can be attributed to

sterol-mediated activation of liver x receptors (LXRs) that modulate expression of SREBP-1c, the

major SREBP-1 isoform in the mouse liver (Repa et al., 2000; Liang et al., 2002). The mRNAs

encoding SREBP-1c and two other LXR targets, ABCG5 and ABCG8, were enhanced in WT and

Ubiad1Ki/Ki mice fed cholesterol (Figure 5—figure supplement 1). In contrast to results in the liver,

cholesterol-feeding failed to down-regulate levels of HMGCR protein in eyes of Ubiad1Ki/Ki mice

(Figure 5B, lanes 3 and 4); mRNAs encoding both SREBPs and their targets were also unchanged in

eyes of cholesterol-fed knockin animals (data not shown).

In Figure 5C, we compared cholesterol-mediated regulation of hepatic HMGCR in Ubiad1Ki/Ki

and HmgcrKi/Ki mice. As little as 0.1% cholesterol caused a significant decrease in the amount of

Figure 1 continued

Insig-2, calnexin, and LSD-1. Although shown in a separate panel, LSD-1 serves as a loading control for the nuclear SREBP immunoblots. The amount of

hepatic HMGCR protein in Ubiad1Ki/Ki mice was determined by quantifying the band corresponding to HMGCR using ImageJ software.

DOI: https://doi.org/10.7554/eLife.44396.002

The following figure supplement is available for figure 1:

Figure supplement 1. Relative amounts of hepatic mRNAs encoding components of the Scap-SREBP pathway and lipid analysis in WT and Ubiad1Ki/Ki

mice.

DOI: https://doi.org/10.7554/eLife.44396.003
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HMGCR in hepatic membranes from WT controls (Figure 5C, lanes b and j). HMGCR was partially

resistant to 0.1% cholesterol in livers of HmgcrKi/Ki mice (compare lanes e and f); however, higher

concentrations of cholesterol (0.3% and 1%) caused complete disappearance of HMGCR from mem-

branes (lanes g and h). The resistance of HMGCR to cholesterol feeding was more pronounced in

Ubiad1Ki/Ki mice; levels of the protein persisted when the animals were fed 0.1–1% cholesterol

(Figure 5C, compare lane m with lanes n-p). Importantly, cholesterol-feeding continued to suppress

levels of nuclear SREBP-2 in livers of HmgcrKi/Ki and Ubiad1Ki/Ki mice as well their WT littermates
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Figure 2. Accumulation of HMGCR protein in tissues of WT and Ubiad1Ki/Ki mice with C57BL/6 genetic background. (A and B) Eight to nine-week old

male WT, Ubiad1WT/Ki, and Ubiad1Ki/Ki littermates (six mice/group) were fed an ad libitum chow diet prior to study. Aliquots of membrane (Memb.) and

nuclear extract (N.E.) fractions from homogenized livers, enucleated eyes, kidneys, brains, testes, and spleens (23–50 mg of total protein/lane) were

analyzed by immunoblot using antibodies against the indicated proteins. The asterisk indicates a non-specific cross-reactive band observed in the anti-

HMGCR immunoblot from brain and pancreas. Although shown in separate panels, LSD-1 serves as a loading control for the nuclear SREBP-1 and

SREBP-2 immunoblots. In (B), the amount of HMGCR protein in the indicated tissues from Ubiad1Ki/Ki mice was determined by quantifying the band

corresponding to HMGCR using Image J software. (C) For mRNA analysis, equal amounts of RNA from the indicated tissue of individual mice were

subjected to quantitative real-time RT-PCR using primers against the Hmgcr mRNA and cyclophilin mRNA as an invariant control. Error bars, S.E.

DOI: https://doi.org/10.7554/eLife.44396.004

The following figure supplement is available for figure 2:

Figure supplement 1. Accumulation of HMGCR protein in eyes and livers of WT and Ubiad1Ki/Ki mice.

DOI: https://doi.org/10.7554/eLife.44396.005
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(compare lanes a-d with e-h and i-l with m-p). The mRNAs encoding SREBP-2 target genes were also

reduced in livers of the cholesterol-fed mice (Figure 5D).

We next evaluated the effect of cholesterol depletion on HMGCR levels in WT and Ubiad1Ki/Ki

mice. Cholesterol depletion using lovastatin, a competitive inhibitor of HMGCR, led to the dose-

dependent accumulation of HMGCR protein in livers of WT animals (Figure 6A, lanes a-d). Lova-

statin also caused HMGCR to accumulate in livers of Ubiad1Ki/Ki mice (lanes e-h) (see Figure 6B for

quantification). The precursor and nuclear forms of SREBP-2 were induced by lovastatin, whereas

those of SREBP-1 were reduced by the treatment in both WT and Ubiad1Ki/Ki mice (lanes i-p). The

mRNAs for SREBP-2 and its target genes (including HMGCR) were elevated in livers of lovastatin-

treated animals; mRNA for SREBP-1c was reduced by the inhibitor (Figure 6—figure supplement

1). HMGCR protein was also increased in the eyes of lovastatin-treated WT mice; however, this

increase required the highest concentration (0.2%) of the drug (Figure 6C, lanes a-d).

In the experiment of Figure 6D, we analyzed the subcellular localization of UBIAD1 in WT and

Ubiad1Ki/Ki mice using a fractionation scheme previously utilized to isolate ER membranes from Chi-

nese hamster ovary-K1 cells (Radhakrishnan et al., 2008). Liver homogenates (lysates) were first

subjected to centrifugation at 3,000 X g to eliminate unbroken cells and nuclei. The resulting post-

nuclear supernatants (PNS) were then applied to discontinuous sucrose gradients and centrifuged at

100,000 X g, generating two distinct membrane layers: a light membrane fraction enriched in Golgi

and a heavy membrane fraction enriched in ER. Immunoblot analysis revealed the presence of

UBIAD1 and the Golgi membrane protein GM-130 in the light, Golgi-enriched membrane fraction

obtained from livers of WT mice fed a chow diet (Figure 6D, lane 4). ER-localized calnexin was

observed in the ER-enriched fraction as expected (lane 5). When the mice were fed the chow diet

supplemented with lovastatin (0.2%), we observed a shift in the localization of UBIAD1 from the

Golgi-enriched fraction to the ER (Figure 6D, compare lanes 9 and 10). GM-130 remained in the

Golgi-enriched fraction (lane 9) and calnexin continued to localize to the ER (lane 10) of livers from

lovastatin-treated mice. In contrast to results with WT mice, UBIAD1 was concentrated in ER-

enriched hepatic membranes of chow-fed Ubiad1Ki/Ki mice (Figure 6D, compare lanes 4 and 5 with

lanes 14 and 15). The ER localization of UBIAD1 did not change when the knockin mice were chal-

lenged with lovastatin (lanes 19 and 20). Importantly, calnexin and GM-130 were localized to ER-

and Golgi-enriched membranes, respectively, regardless of feeding regimen (compare lanes 14 and

15 with lanes 19 and 20).

Stereomicroscopic examinations revealed that 8–12 week-old Ubiad1Ki/Ki mice similar to those

analyzed in Figures 2, 3, 5 and 6 failed to exhibit significant corneal opacification that characterizes

human SCD (data not shown). However, 46% (11/24) of the knockin mice exhibited signs of corneal

opacification at 50 weeks of age (Figure 7—figure supplement 1). One of these animals manifested

signs of bilateral opacification of the cornea (Figure 7A). None of the aged WT mice developed cor-

neal opacification; heterozygous knockin mice were not examined (data not shown). Immunohisto-

chemical staining with anti-HMGCR revealed a marked increase in the amount of HMGCR protein in

corneas of Ubiad1Ki/Ki mice compared to their WT littermates (Figure 7B). The accumulation of

Table 1. Comparison of wild type (WT) and ubiad1ki/ki mice.

Male WT and Ubiad1Ki/Ki littermates (8–9 weeks of age, eight mice/group) were fed an ad libitum

chow diet prior to study. WT mice were littermates of Ubiad1Ki/Ki mice. Each value represents the

mean ±S.E. of 8 values. The p value was calculated using Student’s t test: *, p�0.05.

Parameter WT Ubiad1Ki/Ki

Body Weight (g) 19.8 ± 0.4 20.1 ± 0.6

Liver Weight (g) 1.0 ± 0.05 0.9 ± 0.03

Plasma Triglycerides (mg/dL) 123.6 ± 31.2 94.5 ± 5.7

Plasma Cholesterol (mg/dL) 100.4 ± 8.4 90.3 ± 9.0

Plasma Nonesterified Fatty Acids (mEq/L) 1.3 ± 0.2 1.1 ± 0.03

Liver Triglycerides (mg/g) 9.61 ± 1.8 16.3 ± 5.0

Liver Cholesterol (mg/g) 1.17 ± 0.06 1.65 ± 0.24*

DOI: https://doi.org/10.7554/eLife.44396.006
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HMGCR protein in Ubiad1Ki/Ki corneas was accompanied by reduced levels of mRNAs encoding

SREBP-2, HMGCR, and other cholesterol biosynthetic enzymes (Figure 7C). In contrast, expression

of mRNAs encoding the LXR targets ABCG5, ABCG8, and ABCA1 was enhanced in Ubiad1Ki/Ki cor-

neas. Although the amount of total cholesterol remained unchanged in corneas of WT and Ubiad1Ki/

Ki mice, we measured a small, but significant increase in free cholesterol in the knockin mice

(Figure 7D). Moreover, significant increases in the amount of several sterol intermediates of choles-

terol synthesis including lanosterol, follicular fluid meiosis-activating sterol (FFMAS), 7- and 8-dehy-

drocholesterol, desmosterol, and 7-dehydrodesmosterol were observed in corneas from Ubiad1Ki/Ki

mice (Figure 7E).

Discussion
The current studies provide evidence that inhibition of HMGCR ERAD directly contributes to corneal

sterol accumulation and opacification that characterizes the human eye disease SCD. This conclusion

was drawn from the analysis of Ubiad1Ki/Ki mice harboring a knockin mutation (N100S) that corre-

sponds to the SCD-associated N102S mutation in human UBIAD1 (Figure 1A). Consistent with our
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Figure 3. Analysis of nonsterol isoprenoids in WT and Ubiad1Ki/Ki mice. Male mice (10–12 weeks of age, five mice/group) were fed ad libitum a chow

diet prior to study. Livers were collected for subcellular fractionation and immunoblot analysis of resulting membrane fractions (80 mg total protein/lane)

using antibodies against the indicated proteins or to determine the amount of menaquinone-4 (MK-4), geranylgeraniol, ubiquinone-10, phylloquinone,

and menaquinone-7 (MK-7) by LC-MS/MS as described in ‘Materials and methods.’ The relative amount of hepatic MK-4 in Ubiad1Ki/Ki mice was

determined by normalizing the amount of the vitamin K2 subtype to the amount of UBIAD1 protein, which was quantified using ImageJ software. Error

bars, S.E. The p value was calculated using Student’s t test: *, p < 0.05; **, p < 0.01.

DOI: https://doi.org/10.7554/eLife.44396.007

The following figure supplement is available for figure 3:

Figure supplement 1. Analysis of nonsterol isoprenoids in various tissues of WT and Ubiad1Ki/Ki mice.

DOI: https://doi.org/10.7554/eLife.44396.008
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studies of human UBIAD1 (N102S) in cultured cells (Schumacher et al., 2015; Schumacher et al.,

2018), mouse UBIAD1 (N100S) inhibited ERAD of HMGCR in vivo as indicated by accumulation of

the protein in livers and other tissues of Ubiad1Ki/Ki mice (Figures 1B, 2 and 3, and Figure 2—figure

supplement 1). These increases in HMGCR protein occurred despite reduced levels of its mRNA

(Figures 1 and 2), which was attributable to reduced proteolytic activation of SREBP-2 (Figures 1B

and 2A) resulting from accumulation of hepatic cholesterol (Figure 1—figure supplement 1B and

Table 1). Corneas from 8 to 12 week-old Ubiad1Ki/Ki mice failed to exhibit opacification of the
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Figure 4. Sterol-mediated regulation of HMGCR in mouse embryonic fibroblasts (MEFs) from WT and Ubiad1Ki/Ki mice. MEFs from WT and Ubiad1Ki/Ki

mice were set up for experiments on day 0 at 2 � 105 cells per 10 cm dish in MEF medium supplemented with 10% fetal calf serum (FCS). (A) On day 3,

cells were harvested for subcellular fractionation. Aliquots of resulting membrane and nuclear extract fractions (35–50 mg total protein/lane) were

subjected to SDS-PAGE, followed by immunoblot analysis using antibodies against the indicated proteins. (B) On day 3, cells were harvested for

measurement of Hmgcr mRNA levels by quantitative RT-PCR and total cholesterol levels using a colorimetric assay as described in ‘Materials and

methods.’ (C and D) On day 2, cells were depleted of isoprenoids through incubation for 16 hr at 37˚C in MEF medium containing 10% lipoprotein-

deficient serum, 10 mM sodium compactin, and 50 mM sodium mevalonate. The cells were subsequently treated with 1 mg/ml 25-HC as indicated; in (D),

the cells also received 10 mM MG-132. (C) After 4 hr at 37˚C, cells were harvested for preparation of membrane and nuclear extract fractions (35–50 mg

total protein/lane) that were analyzed by immunoblot with antibodies against the indicated protein. (D) Following incubation for 1 hr at 37˚C, cells were
harvested, lysed in detergent-containing buffer, and immunoprecipitated with 30 mg polyclonal anti-HMGCR antibodies. Immunoprecipitated material

was subjected to SDS-PAGE and immunoblot analysis with IgG-A9 (against HMGCR) and IgG-P4D1 (against ubiquitin).
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cornea (data not shown), despite the marked accumulation of HMGCR protein in the eye (Figure 2B

and C and Figure 2—figure supplement 1). Conversely, corneal opacification was observed in aged

Ubiad1Ki/Ki mice (50 weeks) (Figure 7A) that was accompanied by a buildup of HMGCR protein in

the tissue (Figure 7B). This opacification occurred in the absence of an increase in total cholesterol

(Figure 7D and E). However, Ubiad1Ki/Ki corneas displayed other hallmarks of sterol overaccumula-

tion including an increase in levels of free cholesterol and sterol intermediates of cholesterol biosyn-

thesis (Figure 7D and E), reduced levels of mRNAs for HMGCR and other cholesterol biosynthetic

enzymes, and enhanced expression of mRNAs encoding ABCG5, ABCG8, and ABCA1 (Figure 7C).
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Figure 5. Regulation of HMGCR in livers of cholesterol-fed WT, Ubiad1Ki/Ki, and HmgcrKi/Ki mice. Male mice (12–13 weeks of age, five mice/group) were

fed an ad libitum chow diet supplemented with the indicated amount of cholesterol for 5 days. Aliquots of membrane (Memb.) and nuclear extract (N.

E.) fractions from homogenized livers (A and C) or enucleated eyes (B) (70 mg protein/lane) were analyzed by immunoblot analysis with antibodies

against the indicated proteins as described in the legend to Figure 1. The asterisk denotes a nonspecific band observed in the nuclear SREBP-2

immunoblot. (D) For mRNA analysis, equal amounts of RNA from livers of mice were subjected to quantitative real-time RT-PCR using primers against

the indicated mRNAs and cyclophilin mRNA as an invariant control. Error bars, S.E. Pcsk9, proprotein convertase subtilisin/kexin type 9.

DOI: https://doi.org/10.7554/eLife.44396.010

The following figure supplement is available for figure 5:

Figure supplement 1. Effect of dietary cholesterol on expression of mRNAs encoding components of the Scap-SREBP pathway in livers of WT and

Ubiad1 knock-in mice.

DOI: https://doi.org/10.7554/eLife.44396.011

Jo et al. eLife 2019;8:e44396. DOI: https://doi.org/10.7554/eLife.44396 10 of 24

Research advance Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.44396.010
https://doi.org/10.7554/eLife.44396.011
https://doi.org/10.7554/eLife.44396


25

100

20

20

100

MW

(kDa)

UBIAD1

HMGCR

Insig-1

Insig-2

Calnexin

M
e

m
b

ra
n

e
s

a b c d e f g h
0 .01 .05 .2 0 .01 .05 .2

WT Ubiad1Ki

Lovastatin (%)

Ubiad1

Genotype

A - Liver

100
LSD1

100

100

SREBP-1

SREBP-2

N
u

c
le

a
r 

E
x

tr
a

c
ts 75

75

SREBP-1

SREBP-2

C- Eye

25

100

100

MW

(kDa)

a b c d e f g h
0 .01 .05 .2 0 .01 .05 .2

WT Ubiad1Ki

Lovastatin (%)

Ubiad1

Genotype

UBIAD1

HMGCR

Calnexin

25

150

100

MW

(kDa)

Ly
sa

te

N
.E

.

P
N
S
G
olg

i

E
R

Ly
sa

te

N
.E

.

P
N
S
G
olg

i

E
R

Ly
sa

te

N
.E

.

P
N
S
G
olg

i

E
R

Ly
sa

te

N
.E

.

P
N
S
G
olg

i

E
R

UBIAD1

GM130

Calnexin

Lovastatin (    ) Lovastatin (    ) Lovastatin (    ) Lovastatin (    )

Wild Type Ubiad1Ki

D- Liver

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 .01 .05 .2 0 .01 .05 .2
0

1000

2000

3000

4000

5000

R
e
la

ti
v
e
 A

m
o

u
n

t 
o

f 
H

M
G

C
R

 P
ro

te
in

(N
o

rm
a
li
z
e
d

 t
o

 U
n

tr
e
a
te

d
, 
W
T

 C
o

n
tr

o
l)

% Lovastatin

WT
Ubiad1Ki

B - Quantification

Figure 6. Statin-mediated regulation of HMGCR and UBIAD1 in WT and Ubiad1Ki/Ki mice. Male mice (6–8 weeks of age, five mice/group) were fed an

ad libitum chow diet supplemented with the indicated amount (A and C) or 0.2% (D) lovastatin for 5 days. (A and C) Aliquots of membrane and nuclear

extract fractions from homogenized livers (A) or enucleated eyes (C) (70 mg protein/lane) were analyzed by immunoblot analysis with antibodies against

the indicated proteins. In (B), the amount of HMGCR protein in livers of Ubiad1Ki/Ki mice shown in (A) was determined by quantifying the band

Figure 6 continued on next page

Jo et al. eLife 2019;8:e44396. DOI: https://doi.org/10.7554/eLife.44396 11 of 24

Research advance Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.44396


Based on these observations, we conclude that UBIAD1 (N100S)-mediated inhibition of HMGCR

ERAD enhances flux through the cholesterol biosynthetic pathway, thereby initiating sterol accumu-

lation and development of corneal opacification. Our current findings suggest the slow progression

of corneal opacification in Ubiad1Ki/Ki mice results from reduced activation of SREBP-2, which leads

to reduced expression of genes encoding cholesterol biosynthetic enzymes. Studies are now under-

way to monitor progression of corneal opacification in Ubiad1Ki/Ki mice > 50 weeks of age. We antic-

ipate that as the disorder progresses, free cholesterol will continue to accumulate, initiating

formation and accumulation of cholesterol esters, which will further exacerbate opacification of the

cornea. Additionally, Ubiad1Ki/Ki mice will be challenged with high cholesterol/Western diets to

determine whether dietary cholesterol contributes to progression of corneal opacification in SCD.

A preliminary analysis of UBIAD1 (N100S) knockin mice has been recently described (Dong et al.,

2018). However, this study lacks the molecular characterization of HMGCR and documentation of

age-dependent corneal opacification in the knockin animals. Instead, the authors report evidence for

mitochondrial damage and accumulation of mitochondrial-localized glycerophosphoglycerols in

knockin corneas. The authors conclude that mitochondrial dysfunction is linked to the abnormal

deposition of cholesterol in corneas of SCD patients, constrasting our conclusion the response

results from inhibition of HMGCR ERAD. The possibility exists that this mitochondrial dysfunction is

secondary to cholesterol accumulation and/or impairment of MK-4 synthesis (see Figure 3) in

Ubiad1Ki/Ki mice. Further investigation is required to resolve this discrepancy.

Examination of Ubiad1Ki/Ki-derived MEFs cultured under isoprenoid-replete conditions yielded

results remarkably similar to those obtained with whole mouse tissues – marked accumulation of

HMGCR protein, overproduction of cholesterol, reduced levels of Hmgcr mRNA, and reduced acti-

vation of SREBPs (Figure 4A and B). HMGCR was also refractory to accelerated ERAD stimulated by

the oxysterol 25-HC in Ubiad1Ki/Ki MEFs and HmgcrKi/Ki MEFs, which were derived from mice

expressing ubiquitination-resistant HMGCR (Hwang et al., 2016) (Figure 4C). However, 25-HC con-

tinued to stimulate ubiquitination of HMGCR in Ubiad1Ki/Ki MEFs, but not in those derived from

HmgcrKi/Ki mice (Figure 4D). In addition to providing direct evidence that SCD-associated UBIAD1

inhibits ERAD of HMGCR, these results indicate that the inhibition results from a block in a post-

ubiquitination step of the reaction (Schumacher et al., 2015).

Our previous characterization of HmgcrKi/Ki mice indicated that dietary cholesterol reduces levels

of HMGCR protein primarily by inhibiting activation of SREBP-2 (35); similar results were obtained in

the current study (Figure 5C). In contrast, levels of HMGCR protein persisted in livers of Ubiad1Ki/Ki

mice fed cholesterol, even though the feeding regimen continued to block proteolytic activation of

SREBP-2 (Figure 5A and C) and reduce levels of mRNAs for HMGCR and other SREBP-2 targets

(Figure 5—figure supplement 1). Previous studies found that HMGCR is subjected to sterol-inde-

pendent ubiquitination and ERAD in cultured cells (Doolman et al., 2004). Thus, we speculate that

in livers of HmgcrKi/Ki mice, ubiquitination-resistant HMGCR continues to become degraded through

this sterol-independent ERAD pathway. However, both sterol-independent and sterol-dependent

pathways for HMGCR ERAD are blocked in Ubiad1Ki/Ki mice, owing to the ability of UBIAD1 (N100S)

to inhibit post-ubiquitination steps of the reaction (see Figure 4D). As a result of this inhibition, lev-

els of HMGCR protein persist in livers of cholesterol-fed Ubiad1Ki/Ki mice.

Okano and co-workers previously attempted to generate mice lacking Ubiad1; however, Ubiad1-

deficient embryos failed to survive past embryonic day 7.5 (40). Ubiad1-/- embryonic stem cells failed

Figure 6 continued

corresponding to HMGCR using Image J software and normalizing to the amount of the protein in untreated WT controls. (D) Post nuclear

supernatants (PNS) obtained from liver homogenates were fractionated on a discontinuous sucrose gradient (7.5–45%) that yielded a light membrane

fraction enriched in Golgi and a heavy membrane fraction enriched in ER. Aliquots of the homogenates (lysate), nuclear extracts (N.E.), PNS, Golgi-

enriched membranes, and ER-enriched membranes were subjected to SDS-PAGE, followed by immunoblot analysis with antibodies against the

indicated proteins.

DOI: https://doi.org/10.7554/eLife.44396.012

The following figure supplement is available for figure 6:

Figure supplement 1. Effect of lovastatin on expression of mRNAs encoding components of the Scap-SREBP pathway in livers of WT and Ubiad1

knock-in mice.

DOI: https://doi.org/10.7554/eLife.44396.013
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to synthesize MK-4, suggesting the compound plays a pivotal role in development. Taking this and

the observation that human UBIAD1 (N102S) is defective in MK-4 synthetic activity (Hirota et al.,

2015), we were somewhat surprised that Ubiad1Ki/Ki mice were born at normal Mendelian ratios and

appear grossly normal. Throughout our studies, we noticed that UBIAD1 (N100S) protein accumu-

lated in all tissues of Ubiad1Ki/Ki mice (see Figures 1–3). Similar results have been observed for SCD-

associated variants of human UBIAD1 in transfected cells; stabilization of SCD-associated UBIAD1

has been attributed to ER sequestration and protection from autophagic degradation from the Golgi
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Figure 7. Ubiad1Ki/Ki mice exhibit signs of corneal opacification upon aging. (A) Male and female mice (15 WT, 24 Ubiad1Ki/Ki, 50 weeks of age)

consuming an ad libitum chow diet were analyzed by stereomicroscopic examination. Corneal opacification is indicated by white arrows. (B–E) Mice

analyzed in (A) were sacrificed, corneas were then harvested and analyzed by immunohistochemical staining with anti-HMGCR polyclonal antibodies (B),

quantitative RT-PCR (C), and LC-MS/MS (D and E) as described in the legend to Figure 1 and ‘Materials and methods.’ Error bars, S.E. The p value was

calculated using Student’s t test: *, p < 0.05; **, p < 0.01; ***, p 0.005. Dhcr7, 7-dehydrocholesterol reductase; Dhcr24, 24-dehydrocholesterol

reductase; 7-DehyDes., 7-dehydrodesmosterol; 8-Dehydrochol., 8-dehydrocholesterol; 7-Dehydrochol., 7-dehydrocholesterol.

DOI: https://doi.org/10.7554/eLife.44396.014

The following figure supplement is available for figure 7:

Figure supplement 1. Ubiad1Ki/Ki mice exhibit signs of corneal opacification upon aging.

DOI: https://doi.org/10.7554/eLife.44396.015
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(Jun, D.-J. and DeBose-Boyd, R.A., unpublished observations). The level of MK-4 was significantly

reduced, but not absent, in various tissues of Ubiad1Ki/Ki mice (Figure 3 and Figure 3—figure sup-

plement 1). We speculate that despite reduced enzymatic activity, accumulated UBIAD1 (N100S)

produces sufficient amounts of MK-4 to support development and survival of Ubiad1Ki/Ki mice. Accu-

mulation of SCD-associated UBIAD1 in the ER has important implications for the pathology of the

disease. SCD is an autosomal dominant disorder and our previous studies revealed that SCD-associ-

ated variants of UBIAD1 inhibit HMGCR ERAD in a dominant-negative fashion (Schumacher et al.,

2015; Schumacher et al., 2016). Enhanced stability of SCD-associated UBIAD1 owing to its ER

sequestration helps to explain how cholesterol accumulation occurs in corneas of SCD patients har-

boring heterozygous UBIAD1 mutations.

The significance of the HMGCR regulatory system is evidenced by the widespread use of statins

to lower plasma LDL-cholesterol and reduce the incidence of atherosclerotic cardiovascular disease

(Stossel, 2008). However, statins block synthesis of sterol and nonsterol isoprenoids that mediate

feedback regulation of HMGCR, causing the enzyme’s accumulation in livers of humans and animals

(Kita et al., 1980; Reihnér et al., 1990) (Figure 6). This accumulation partially overcomes inhibitory

effects of statins, which allows for continued synthesis of cholesterol that limits cholesterol-lowering

(Schonewille et al., 2016; Goldberg et al., 1990; Engelking et al., 2006). We showed previously

that the statin-induced increase in HMGCR was blunted 5-fold in HmgcrKi/Ki versus WT mice, sug-

gesting inhibition of ERAD significantly contributes to the response (Hwang et al., 2016). Our cur-

rent findings argue that statin-induced accumulation of HMGCR results in part, from depletion of

GGpp from ER membranes. This was indicated by accumulation and ER sequestration of UBIAD1 in

livers of lovastatin-treated mice, which coincided with accumulation of HMGCR (Figure 6A and C).

UBIAD1 (N100S), which resists GGpp-induced release from HMGCR, accumulated and remained

sequestered in the ER, regardless of whether Ubiad1Ki/Ki mice were treated in the absence or pres-

ence of lovastatin (Figure 6A and C). The resultant inhibition of HMGCR ERAD led to accumulation

of the protein and overproduction of sterol and nonsterol isoprenoids in various tissues of Ubiad1Ki/

Ki mice (see Figures 3 and 7, and Figure 3—figure supplement 1). Thus, GGpp-regulated, ER-to-

Golgi transport of UBIAD1 regulates HMGCR ERAD to coordinate synthesis of sterol and nonsterol

isoprenoids in mice through similar mechanisms previously described in cultured cells

(Schumacher et al., 2018). The current results indicate that modulating ER-to-Golgi transport of

UBIAD1 may have therapeutic value. For example, agents that mimic GGpp in stimulating ER-to-

Golgi transport of UBIAD1 should relieve inhibition of ERAD and prevent accumulation of HMGCR

that limits the effectiveness of statins in lowering plasma levels of LDL-cholesterol. Agents that

restore Golgi localization of SCD-associated UBIAD1 or block its interaction with HMGCR may pre-

vent or retard cholesterol accumulation and corneal opacification associated with SCD. The estab-

lishment of a mouse model for SCD described here will prove instrumental in the identification and

characterization of such molecules.

Materials and methods

Key resources table

Reagent
type (species)
or resource Designation

Source
or reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

Mouse/Ubiad1Ki/Ki

(UBIAD1 (N100S)):
C57BL/6J

This paper N/A Heterozygous
knockin mice
harboring mutations
in the endogenous
Ubiad1 gene that
change Asparagine-
100 to a Serine
residue

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source
or reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

Mouse/Ubiad1Ki/Ki

(UBIAD1 (N100S)):
C57BL/6

This paper Homozygous knockin
mice harboring
mutations in the
endogenous Ubiad1
gene that change
Asparagine-100 to
a Serine residue

Genetic
reagent
(M. musculus)

Mouse/HmgcrKi/Ki

(HMGCR K89R/
K248R):C57BL/6

PMID:
27129778

N/A

Cell line Mouse Embryonic
Fibroblast-
Ubiad1WT/WT

This paper N/A Mouse embryonic
fibroblasts from
wild type C57BL/
6 mice

Cell line Mouse Embryonic
Fibroblast-
Ubiad1Ki/Ki

This paper N/A Mouse embryonic
fibroblasts from
Ubiad1Ki/Ki
C57BL/6 mice

Cell line Mouse Embryonic
Fibroblast-
HmgcrWT/WT

This paper N/A Mouse embryonic
fibroblasts from
wild type C57BL/
6 mice

Cell line Mouse Embryonic
Fibroblast-
Hmgcr Ki/Ki

This paper N/A Mouse embryonic
fibroblasts from
HmgcrKi/Ki
C57BL/6 mice

Antibody Rabbit
monoclonal
anti-SREBP-1

PMID:
28244871

IgG-20B12

Antibody Rabbit
monoclonal
anti-SREBP-2

PMID:
25896350

IgG-22D5

Antibody Rabbit
polyclonal
anti-UBIAD1

This paper IgG-205 Rabbit polyclonal
antibody raised
against amino
acids 2–21 of
mouse UBIAD1;
used at 1–5 mg/ml for
immunoblots

Antibody Rabbit
polyclonal anti-
HMGCR

PMID:
27129778

IgG-839c used at 1–5 mg/ml for
immunoblots

Antibody Mouse
monoclonal anti-
HMGCR

PMID:
22143767

IgG-A9 used at 1–5 mg/ml for
immunoblots

Antibody Rabbit
polyclonal anti-
Insig-1

PMID:
27129778

anti-Insig-1 used at 1:1000
dilution for
immunoblots

Antibody Rabbit
polyclonal anti-
Insig-2

This paper IgG-492 Rabbit polyclonal
antibody raised
against a C-terminal
peptide (CKVIPEKSHQE)
of hamster Insig-2;
used at 5 mg/ml for
immunoblots

Antibody Rabbit
polyclonal
anti-UBXD8

PMID:
27129778

IgG-819 used at 1–5 mg/ml for
immunoblots

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source
or reference Identifiers

Additional
information

Antibody Rabbit
polyclonal
anti-Calnexin

Novus
Biologicals

Cat#NB100-
1965;
RRID:AB_
10002123

used at 1–5 mg/ml for
immunoblots

Antibody Rabbit
polyclonal
anti-GM130

Abcam Cat#ab
30637; RRID:AB_
732675

used at 1–5 mg/ml for
immunoblots

Antibody Rabbit
polyclonal
anti-LSD-1

Cell Signaling
Technology

Cat#2139;
RRID:AB_
2070135

used at 1–5 mg/ml for
immunoblots

Antibody Mouse
monoclonal
anti-ubiquitin
(IgG-P4D1)

Santa Cruz Cat#SC8017;
RRID:AB_628423

used at 1–5 mg/ml for
immunoblots

Recombinant
DNA reagent

Sequence-
based reagent

Ubiad1Ki/Ki genotyping primers:
Forward, GGAACACTTGGCTCTCATCT;
Reverse, GGGAGCAGTGTTCATAATCC

This paper N/A Genotyping was
determined by
PCR analysis of
genomic DNA
prepared from
tails of mice.

Sequence-
based reagent

HmgcrKi/Ki genotyping primers:
K89R- Forward, GTCCATGAACATGTTCACCG;
Reverse, CAGCACGTCCTATTGGCAGA
K248R – Forward, TCGGTGATGTTCCAGTCTTC;
Reverse, GGTGGCAAACACCTTGTATC

PMID:
27129778

N/A

Sequence-
based reagent
(qRT-PCR)

UBIAD1 Forward,
GACAGAACTTTGGTGGACAGAATTC;
Reverse, CAGCCCAAGGTGTAGAGGAAGA

Integrated
DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SREBP-1a Forward,
GGCCGAGATGTGCGAACT;
Reverse, TTGTTGATGAGCTGGAGCATGT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SREBP-1c Forward,
GGAGCCATGGATTGCACATT;
Reverse, GGCCCGGGAAGTCACTGT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SREBP-2 Forward,
GCGTTCTGGAGACCATGGA;
Reverse, ACAAAGTTGCTCTGAAAACAAATCA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

HMGCR Forward, CTTGTGGAATGCCTTGTGATTG;
Reverse, AGCCGAAGCAGCACATGAT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

Insig-1 Forward, TCACAGTGACTGAGCTTCAGCA;
Reverse, TCATCTTCATCACACCCAGGAC

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

Insig-2a Forward, CCCTCAATGAATGTACTGAAGGATT;
Reverse, TGTGAAGTGAAGCAGACCAATGT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

Insig-2b Forward, CCGGGCAGAGCTCAGGAT;
Reverse, GAAGCAGACCAATGTTTCAATGG

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SCAP Forward, ATTTGCTCACCGTGGAGATGTT;
Reverse, GAAGTCATCCAGGCCACTACTAATG

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

HMGCS Forward, GCCGTGAACTGGGTCGAA;
Reverse, GCATATATAGCAATGTCTCCTGCAA

Integrated DNA
Technologies

N/A

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source
or reference Identifiers

Additional
information

Sequence-
based reagent
(qRT-PCR)

FPPS Forward, ATGGAGATGGGCGAGTTCTTC;
Reverse, CCGACCTTTCCCGTCACA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SqS Forward, CCAACTCAATGGGTCTGTTCCT;
Reverse, TGGCTTAGCAAAGTCTTCCAACT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

LDLR Forward, AGGCTGTGGGCTCCATAGG;
Reverse, TGCGGTCCAGGGTCATCT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

PCSK9 Forward, CAGGCGGCCAGTGTCTATG;
Reverse, GCTCCTTGATTTTGCATTCCA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

ACS Forward, GCTGCCGACGGGATCAG;
Reverse, TCCAGACACATTGAGCATGTCAT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

ACC1 Forward, TGGACAGACTGATCGCAGAGAAAG;
Reverse, TGGAGAGCCCCACACACA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

FAS Forward, GCTGCGGAAACTTCAGGAAAT;
Reverse, AGAGACGTGTCACTCCTGGACTT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

SCD1 Forward, CCGGAGACCCCTTAGATCGA;
Reverse, TAGCCTGTAAAAGATTTCTGCAAACC

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

GPAT Forward, CAACACCATCCCCGACATC;
Reverse, GTGACCTTCGATTATGCGATCA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

LXRa Forward, TCTGGAGACGTCACGGAGGTA;
Reverse, CCCGGTTGTAACTGAAGTCCTT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

ABCG5 Forward, TGGATCCAACACCTCTATGCTAAA;
Reverse, GGCAGGTTTTCTCGATGAACTG

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

ABCG8 Forward, TGCCCACCTTCCACATGTC;
Reverse, ATGAAGCCGGCAGTAAGGTAGA

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

GGPS Forward, CGTCTACTTCCTTGGACTGGAAA;
Reverse, AGCTGGCGTGTGAAAAGCTT

Integrated DNA
Technologies

N/A

Sequence-
based reagent
(qRT-PCR)

Cyclophilin Forward, TGGAGAGCACCAAGACAGACA;
Reverse, TGCCGGAGTCGACAATGAT

Integrated DNA
Technologies

N/A

Commercial
assay or kit

TaqMan
Reverse
Transcription

Applied
Biosystems

Cat#N8080234

Commercial
assay or kit

Power
SYBR Green
PCR Master Mix

Applied
Biosystems

Cat#4367659

Commercial
assay or kit

Cholesterol/
Cholesterol Ester
Assay Kit -
Quantitation

Abcam Cat#ab65359

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source
or reference Identifiers

Additional
information

Chemical
compound,
drug

Cholesterol Bio-Serv; Cat#5180;

Chemical
compound,
drug

Sigma-Aldrich Cat#C8667

Chemical
compound,
drug

Coenzyme Q-10 Cerilliant Cat#V-060

Chemical
compound,
drug

Geranylgeraniol Sigma-Aldrich Cat#G3278

Chemical
compound,
drug

Geranylgeranyl
pyrophosphate

Cayman
Chemical
Company

Cat#63330

Chemical
compound,
drug

Lovastatin Abblis Chemicals
LLC, Houston, TX

Cat#AB1004848

Chemical
compound,
drug

Menaquinone-4 Sigma-Aldrich Cat#809896

Chemical
compound,
drug

Cerilliant Cat#V-031

Chemical
compound,
drug

Menaquinone-7 Cerilliant Cat#V-044

Chemical
compound,
drug

Phylloquinone
(Vitamin K1)

Cerilliant Cat#V-030

Chemical
compound,
drug

25-Hydroxy
cholesterol

Avanti Polar
Lipids

Cat#700019P

Software,
algorithm

Image
Studio v5.0

LiCor
Biosciences

Software,
algorithm

Image J (Fiji) NIH

Animals
Ubiad1Ki/Ki mice, which harbor a nucleotide substitution in the Ubiad1 gene that changes aspara-

gine-100 to a serine residue (N100S), were generated by the Gene Targeting and Transgenic Facility

at the Howard Hughes Medical Institute Janelia Research Campus (Ashburn, VA). Ubiad1WT/WT and

Ubiad1Ki/Ki littermates were obtained for experiments from intercrosses of Ubiad1WT/Ki male and

female mice that were hybrids of C57BL/6J and 129Sv/Ev strains. Ubiad1Ki/Ki mice on the mixed

BL6/129 background were backcrossed to C57BL/6J mice for at least six generations. Intercrosses of

Ubiad1WT/Ki male and female mice on the BL6 background were conducted to obtain Ubiad1WT/WT

and Ubiad1Ki/Ki littermates for experiments. HmgcrKi/Ki mice harbor homozygous knockin mutations

in which lysine residues 89 and 248 are replaced with arginines (Hwang et al., 2016). All mice were

housed in colony cages with a 12 hr light/12 hr dark cycle and fed Teklad Mouse/Rat diet 2018 from

Harlan Teklad (Madison, WI). Genomic DNA was extracted from tails of Ubiad1Ki/Ki and HmgcrKi/Ki

mice using DNeasy Blood and Tissue kit (Qiagen, Venlo, Netherlands) according to the manufac-

turer’s protocol. To genotype Ubiad1Ki/Ki mice, genomic DNA from tails was used for PCR with the

following primers: Forward, GGAACACTTGGCTCTCATCT; Reverse, GGGAGCAGTGTTCATAATCC.

HmgcrKi/Ki mice were genotyped as described previously (Hwang et al., 2016). The levels of plasma

and liver cholesterol and triglycerides were measured by the Metabolic Phenotyping Core at the

Jo et al. eLife 2019;8:e44396. DOI: https://doi.org/10.7554/eLife.44396 18 of 24

Research advance Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.44396


University of Texas Southwestern Medical Center (UTSWMC) in blood drawn from the vena cava

after mice were anesthetized in a bell-jar atmosphere containing isoflurane. For the cholesterol feed-

ing studies, mice were fed a chow diet (Teklad Mouse/Rat 2018, 0% cholesterol) or chow diet sup-

plemented with 0.1, 0.3, or 1% cholesterol for 5 days prior to study. For lovastatin feeding studies,

mice were fed Teklad Mouse/Rat diet (Harlan Teklad Premier Laboratory Diets, Madison, WI) or the

identical diet supplemented with 0.01, 0.05, or 0.2% lovastatin (Abblis Chemicals LLC, Houston, TX).

All animal experiments were performed with the approval of the Institutional Animal Care and Use

Committee at UTSWMC.

Quantitative Real-Time PCR
Total RNA was prepared from mouse tissues using the RNA STAT-60 kit (TEL-TEST ‘B’, Friendswood,

TX). Equal amounts of RNA from individual mice were treated with DNase I (DNA-free, Ambion/Life

Technologies, Grand Island, NY). First strand cDNA was synthesized from 10 mg of DNase I-treated

total RNA with random hexamer primers using TaqMan Reverse Transcription Reagents (Applied

Biosystems/Roche, Branchburg, NJ). Specific primers for each gene were designed using Primer

Express software (Life Technologies). The real-time RT-PCR reaction was set up in a final volume of

20 ml containing 20 ng of reverse-transcribed total RNA, 167 nM of the forward and reverse primers,

and 10 ml of 2X SYBR Green PCR Master Mix (Life Technologies). The relative amount of all mRNAs

was calculated using the comparative threshold cycle (CT) method. Mouse cyclophilin mRNA was

used as the invariant control.

Generation of Mouse Embryonic Fibroblasts (MEFs)
The protocol for establishing MEFs from Ubiad1Ki/Ki and HmgcrKi/Ki mice was adapted from that

described previously (Jozefczuk et al., 2012; Cautivo et al., 2016). Briefly, pregnant Ubiad1+/Ki and

Hmgcr+/Ki female mice were sacrificed 13.5 days post coitum and uterine horns were harvested in

cold PBS. In a tissue culture hood under aseptic conditions, the uterine horns were placed into a

Petri dish and each embryo was separated from its placenta and embryonic sac. The head of embryo

was removed and saved for genotyping. The remainder of the embryo was washed with PBS and

minced. The minced tissues were incubated in the presence of 0.05% Trypsin/EDTA and DNase I for

30 min at 37˚C with intermittent agitation. The reaction was stopped by adding MEF media contain-

ing DMEM 4.5 g/L glucose, 10% FCS, and 1% Penicillin/streptomycin (10,000 U/ml). Cells were pel-

leted at 300 X g for 5 min and plated onto 0.2% gelatin coated dishes; these cells were designated

passage 0 and frozen. All MEFs tested negative for mycoplasma contamination. Passages 2–5 were

used for experiments. The level of intracellular cholesterol in Ubiad1WT/WT and Ubiad1Ki/Ki MEFs was

determined using Cholesterol/Cholesterol Ester Assay Kit (Abcam).

Subcellular Fractionation, Immunoblot Analysis, and
Immunohistochemistry
Approximately 50 mg of frozen liver was homogenized in 350 ml buffer (10 mM HEPES-KOH, pH 7.6,

1.5 mM MgCl2, 10 mM KCl, 5 mM EDTA, 5 mM EGTA, and 250 mM sucrose) supplemented with a

protease inhibitor cocktail consisting of 0.1 mM leupeptin, 5 mM dithiothreitol, 1 mM PMSF, 0.5 mM

Pefabloc, 5 mg/ml pepstatin A, 25 mg/ml N-acetyl-leu-leu-norleucinal, and 10 mg/ml aprotinin. The

homogenates were then passed through a 22-gauge needle 10–15 times and subjected to centrifu-

gation at 1000 X g for 5 min at 4˚C. The 1000 X g pellet was resuspended in 500 ml of buffer (20 mM

HEPES-KOH, pH 7.6, 2.5% (v/v) glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA)

supplemented with the protease inhibitor cocktail, rotated for 30 min at 4˚C, and centrifuged at

100,000 X g for 30 min at 4˚C. The supernatant from this spin was precipitated with 1.5 ml cold ace-

tone at �20˚C for at least 30 min; the precipitated material was collected by centrifugation, resus-

pended in SDS-lysis buffer (10 mM Tris-HCl, pH 6.8, 1% (w/v) SDS, 100 mM NaCl, 1 mM EDTA, and

1 mM EGTA), and designated the nuclear extract fraction. The post-nuclear supernatant from the

original spin was used to prepare the membrane fraction by centrifugation at 100,000 X g for 30 min

at 4˚C. Each membrane fraction was resuspended in 100 ml SDS-lysis buffer.

Protein concentration of nuclear extract and membrane fractions were measured using the BCA

Kit (ThermoFisher Scientific). Prior to SDS-PAGE, aliquots of the nuclear extract fractions were mixed

with 5X SDS-PAGE loading buffer to achieve a final concentration of 1X. Aliquots of the membrane
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fractions were mixed with an equal volume of buffer containing 62.5 mM Tris-HCl, pH 6.8, 15% (w/v)

SDS, 8 M urea, 10% (v/v) glycerol, and 100 mM DTT, after which 5X SDS loading buffer was added

to a final concentration of 1X. Nuclear extract fractions were boiled for 5 min, and membrane frac-

tions were incubated for 20 min at 37˚C prior to SDS-PAGE. After SDS-PAGE, proteins were trans-

ferred to Hybond C-Extra nitrocellulose filters (GE Healthcare, Piscataway, NJ). The filters were

incubated with the antibodies described below and in the figure legends. Bound antibodies were

visualized with peroxidase-conjugated, affinity-purified donkey anti-mouse or anti-rabbit IgG (Jack-

son ImmunoResearch Laboratories, Inc, West Grove, PA) using the SuperSignal CL-HRP substrate

system (ThermoFisher Scientific) according to the manufacturer’s instructions. Gels were calibrated

with prestained molecular mass markers (Bio-Rad, Hercules, CA). Filters were exposed to film at

room temperature. Antibodies used for immunoblotting to detect mouse SREBP-1 (rabbit polyclonal

IgG-20B12), SREBP-2 (rabbit monoclonal IgG-22D5), Insig-1 (rabbit polyclonal anti-Insig-1 antise-

rum), HMGCR (rabbit polyclonal IgG-839c and mouse monoclonal IgG-A9), UBXD8 (rabbit polyclonal

IgG-819), and Scap (IgG-R139) were previously described (Jo et al., 2011; Engelking et al., 2005;

McFarlane et al., 2014). Rabbit polyclonal IgG-205 was raised against amino acids 2–21 of mouse

UBIAD1. Rabbit polyclonal IgG-492 was raised against a C-terminal sequence (CKVIPEKSHQE) of

hamster Insig-2. Rabbit polyclonal anti-calnexin IgG was purchased from Novus Biologicals (Littleton,

CO). Rabbit polyclonal anti-LSD1 IgG was obtained from Cell Signaling (Beverly, MA). Rabbit poly-

clonal anti-GM130 was obtained from Abcam (Cambridge, MA). All antibodies were used at a final

concentration of 1–5 mg/ml; the anti-Insig-1 antiserum was used at a dilution of 1:1000.

To obtain hepatic Golgi- and ER-enriched membrane fractions, approximately 150 mg of frozen liv-

ers were homogenized in buffer containing 50 mM Tris-HCl (pH 7.5), 150 mMNaCl, the protease inhib-

itor cocktail, and 15% (w/v) sucrose. Following homogenization using a ball-bearing homogenizer with

a 10 mm clearance, the samples were centrifuged at 3000 X g for 10 min. The resulting post nuclear

supernatants (PNS) were then applied to a discontinuos sucrose gradient that was generated and cen-

trifuged at 110,000 X g as described previously (Radhakrishnan et al., 2008). Golgi- and ER-enriched

fractions were collected and subjected to immunoblot analysis as described in figure legends.

Corneas from Ubiad1WT/WT and Ubiad1Ki/Ki mice were collected and fixed in 10% neutral-buffered

formalin, followed by paraffin embedding and sectioning. The sections were analyzed by immunohis-

tochemistry with polyclonal IgG-839c (against HMGCR) as described previously (Evers et al., 2010).

Lipid Analysis
Cholesterol and sterol biosynthetic intermediates were measured using LC-MS/MS according to the

method of McDonald et al. (McDonald et al., 2012; Mitsche et al., 2015). Briefly, sterols were iso-

lated on an LC gradient (Shimadzu LC-20) and detected using the MRM pair on a triple quadrapole

MS (ABSciex 4000 q-TRAP) and quantified against authentic sterol standards (Avanti Polar Lipids, Ala-

baster, AL).

Nonsterol isoprenoids were measured as follows. Approximately 100 mg of tissue was homoge-

nized using a BeadRuptor (Omni International, Kennesaw, GA). Samples were placed in a mixture of

1 mL 1:1 MeOH:IPA containing 2 ng each of d5-GGOH and d8-MK-4 using 2 mL beadruptor tubes.

The slurry was transferred to glass 16 � 100 mm glass tubes with PTFE-lined screw-caps. The result-

ing tissue slurry was sonicated for 5 min. A 5 mL aliquot of acetone was added, and samples were

vortexed for three minutes followed by incubation at room temperature for 5 min. The vortex and

incubation steps were repeated twice for a total of three cycles. Samples were then centrifuged at

3500 rpm for 5 min at 4˚C. Supernatant was removed to a new 16 � 100 mm tube. The pellet was

washed with 1 mL of acetone, centrifuged at 3500 rpm for 5 min at 4˚C, and the resultant superna-

tant was pooled with the first extract. The sample was dried under nitrogen at a temperature of

approximately 35˚C. The dried extract was dissolved in 5 mL hexane, after which 2 mL of water was

added and the sample was placed in a freezer at �20˚C until the lower layer was frozen. The hexane

layer was removed from the frozen aqueous phase using a Pasteur pipette. When the aqueous phase

thawed, 2 mL hexane was added, and the process was repeated with the two hexane extracts being

pooled. The sample was dried under nitrogen at ~35˚C. The dried extract was dissolved in 400 mL

hexane, transferred to a 2 mL autosampler vial with low-volume insert and dried again. The final

sample was dissolved in 400 mL 90% methanol that had been warmed to ~37˚C.
Analytes were measured using Shimadzu LC-20XR high-performance liquid-chromatography

(HPLC) coupled to a SCIX API 5000 triple quadrupole mass spectrometer (Shimadzu, Columbia
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Maryland; SCIEX, Framingham, MA). A 10 mL sample was injected onto an Agilent Poroshel EC-C18

(Agilent, Santa Clara, CA; 150 � 2.1 mm, 2.7 mm) and resolved with a ternary gradient using A 90%

methanol, B methanol, and C dichloromethane (DCM). A and B also contained 0.1% acetic acid. The

gradient began at 100% A, increased to 100% B over 2 min, held at 100% B for 0.25 min, then

increased to 3:7 (B:C) over 6.75 min. The column was re-equilibrated first with 100% B for 2 min,

then 100% A for 1 min. Flow rate was 0.5 mL/min and the column was maintained at 35˚C. Analytes
were ionized using atmospheric pressure chemical ionization (APCI) at 400˚C and detected using

multiple reaction monitoring (MRM).

Masses and other MS parameters are given below :

Q1 Q3 DP CE Source

GGOH 273 71 77 48 Sigma

MK-4 445.5 187 59 40 Cerilliant

PK 451.3 187 59 40 Cerilliant

d8-MK4 452.4 94 59 50 Sigma (catalog #737836)

MK7 649.5 187 59 40 Cerilliant

CoQ-10 863.7 197 59 44 Cerilliant

d5-GGOH 278.3 81 77 48 Avanti Polar Lipids
(custom-synthesized)

Reproducibility of data – All results were confirmed in at least two independent experiments con-

ducted on different days using different animals and batches of cells.
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