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Topological structures, 
spontaneous symmetry breaking 
and energy spectra in dipole 
hexagonal lattices
Josep Batle

The interplay between the special triangular/hexagonal two dimensional lattice and the long 
range dipole–dipole interaction gives rise to topological defects, specifically the vortex, formed 
by a particular arrangement of the interacting classic dipoles. The nature of such vortices has been 
traditionally explained on the basis of numerical evidence. Here we propose the emerging formation 
of vortices as the natural minimum energy configuration of interacting (in-plane) two-dimensional 
dipoles based on the mechanism of spontaneous symmetry breaking. As opposed to the quantal case, 
where spin textures such as skyrmions or bimerons occur due to non-linearities in their Hamiltonian, 
it is still possible to witness classic topological structures due only to the nature of the dipole–dipole 
force. We shall present other (new) topological structures for the in-plane honeycomb lattice, as 
well as for two-dimensional out-of-plane dipoles. These structures will prove to be essential in the 
minimum energy configurations for three-dimensional simple hexagonal and hexagonal-closed-
packed structures, whose energies in the bulk are obtained for the first time.

Considerable progress has occurred in recent years both experimentally and theoretically with regards to the 
description of dipolar systems with large dipole moments1–3. In the low-temperature regime, it is plausible to 
consider the formation of classical crystals of dipolar particles. Systems of dipoles whose orientation is perpen-
dicular to the plane of motion have been considered in the past, either classically4–7 or quantum mechanically8–13.

Depending on several quantum effects, dipolar interactions can describe unexpected properties in helium14, as 
well as accounting for particular effects observed in magnetic colloids15,16. It is well-known that in most realistic 
cases, the dipole–dipole interaction is weak compared to other interactions or thermal fluctuations. Its strength 
is usually measured by the parameter � = µ0µ

2

4πkBTa3
 , with a being the lattice constant and µ the magnetic dipole 

moment. Due to the typical length scales in ferrofluids at room temperatures, the value of � never exceeds 5. 
Thus, we have assumed throughout the present contribution that we can work in the regime of strong dipole 
moments, which in turn are responsible for the structural stability and ordering of matter.

Luttinger and Tisza17 treated in their seminal paper the formation of crystals composed solely by dipoles. In 
their work, they carried out an elegant method for finding the entire energy per dipole spectra in the thermo-
dynamic limit for several three-dimensional structures. This work paved the way for numerical and analytical 
studies of other systems that were amenable to a classical treatment, either in two or three dimensions.

In recent years, the numerous improvements of surface technology in ultra thin films have unveiled several 
magnetic patterns with different symmetries as a function of temperature and lattice structure18–20. The magneti-
zation distribution within such patterns describe topological defects such as vortices, domains, and walls18–20. 
Although real materials have to be addressed quantum mechanically, the previous topological effects can also 
be explained in classic terms by means of the long range dipole–dipole interaction.

Besides spintronics, topological matter is an aspiring research field concerned with non-collinear spin tex-
tures. The most prominent example is the magnetic skyrmion21, a whirl-like nano-object. Its topological protec-
tion gives it an enormous stability even at small sizes, which makes it a potential carrier of information in future 
data storage devices22–24. These topologically non-trivial spin textures appear in the quantum realm.

The exploration of topological patterns, specifically vortices, in classic systems is carried out in the present 
work. The existence of spin textures in quantum systems appeals to the exploration in full detail of the existence 
of their classical counterparts, based solely on dipole–dipole interactions. For these structures do not seem to 
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occur in any other lattice but the triangular/hexagonal one, we shall study this lattice extensively. The present 
contribution is divided as follows: in “Motivation”, we provide the tools that motivate our study. “Luttinger–Tisza 
and energy decomposion methods” deals with the basics of the Luttinger–Tisza method, alongside our method 
for finding minimum energies per dipole in arbitrary lattices and dimensions in the thermodynamic limit. The 
next section studies the energetics and topologies of hexagonal out-of-plane and in-plane dipoles. We invoke 
the notion of spontaneous symmetry breaking in order to explain the appearance of the vortex structure as 
the ground state of the in-plane hexagonal instance. Also, the configuration of dipoles and their concomitant 
minimum energy per particle for the honeycomb lattice is studied in full detail “Two‑dimensional structures”. 
“Three-dimensional structures” is devoted to obtaining the minimum energy configurations and the correspond-
ing energies for the three-dimensional cases of simple hexagonal and closed-packed lattices, even as function of 
the interlayer distance. Finally, some conclusions are drawn in “Discussion”.

Motivation
Two classic identical dipoles of magnitude of µ , �mu and �mv localized, respectively, at positions �ru and �rv , with 
dipole moments given as

interact with each other giving rise to the interaction energy

where �ruv is the vector between the two dipoles u and v, ruv = ||ruv|| is their separation distance (constant CE 
is either µ0

4π
 or 1

4πǫ0
 , magnetic or electric, respectively). Energy (2) will be given in units of CEµ2/a3 throughout 

the present work.
The terms in (2) possess a well-defined physical meaning. On the one hand, the first term is essentially the 

classical counterpart of the Heisenberg exchange interaction, which plays a paramount role in magnetism. On 
the other hand, the second term favors the alignment between the two dipoles. In a particular configuration of 
dipoles in equilibrium, there is a non-trivial interplay between the two contributions, which, depending on the 
particular lattice, does not resemble the usual Heisenberg interaction. Furthermore, the Heisenberg Hamiltonian 
is computed for nearest-neighbors. What will make our study specially challenging is that in the case of interac-
tion (2), one will consider all pairs, as opposed to just neighbors as in the usual Heisenberg case, and the coupling 
constant will not be a constant at all, but shall possess a long-range nature (going as 1/r3).

Emerging fields of research such as chiral magnetism and topological spintronics are developed through the 
study of topologically nontrivial spin textures. These structures are found in a variety of magnetic materials25–34, 
and are potentially interesting for information processing and data storage. As opposed to the classic interaction 
energy functional form (2), the Hamiltonian for quantum spins, running over nearest-neighbor, next-nearest-
neighbor, and next-next-nearest-neighbor sites, contains additional non-linear terms that are responsible for 
the appearance of magnetic skyrmions in 3D or magnetic bimerons in 2D35. Also, these topological magnetized 
spin textures carry integer topological charges Q. In essence, it is the existence of non-linearities in the quantum 
Hamiltonian that lead to well-defined topological structures.

In spite of the stark contrast existing between the nature and form of the interactions in quantum and clas-
sical systems, one may wonder if it is still possible to observe special topological structures in classic systems 
of interacting dipoles. The answer is affirmative in systems with hexagonal symmetry, either in two or three 
dimensions. To be more specific, we shall focus on the minimum energy configuration of systems of dipoles 
in the thermodynamic limit, as opposed to the quantum case. The classical extremal energy configurations of 
a magnetic dipole system (either minimum or maximum) is one of equilibrium in which no torque should act 
on any given dipole.

Now, the total energy of a system of dipoles in terms of (2) can also be cast in the form of the Hamiltonian

The quadratic form (3) will be particularly suitable in the next section.

Luttinger–Tisza and energy decomposion methods
We can obtain the spectrum of a system of identical dipoles using the Luttinger–Tisza method17 under the 
assumption that the minimum energy configuration exhibits translational symmetry. If T(i) denotes the points 
generated from i with discrete translations belonging to the T symmetry group the mentioned symmetry cor-
responds to mi = mi′ for all i′ ∈ T(i) . The system can be split into identical cells and thus limit the summation 
to one single cell. Therefore, the energy per dipole can be expressed as

(1)�m = µ

(

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

)

,

(2)Eu,v = CE

( �mu · �mv

r3uv
− 3
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r5uv

)

,
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where n is the number of dipoles per cell, and Aij are (symmetric) matrices defined by

The energy per dipole finally reads as

The method involves the sotution of an eigenvalue problem of the nd dimensional matrix Â (d is the dimen-
sion of the dipole), with �k being the eigenvalues and x̂k the corresponding (orthogonal) eigenvectors of the 
system, with �x̂k� = √

n . The final expression for the energy reads as

where ak denotes the components of m̂ in the base {x̂k}.
Two conditions must be satisfied for i = 1 . . . n , namely

Within the framework of the Luttinger–Tisza method, these two constraints are known as the strong and the 
weak conditions, respectively. We can thus obtain the minimum energy per dipole as Emin = 1/2 �min µ

2 , where 
�min denotes the smallest eigenvalue of Â.

There exists an alternative to the previous Luttinger–Tisza method, derived by us36–38. For a certain set of posi-
tions {r1, r2, . . . , rM} corresponding to M identical dipoles (all of them with the same magnitude µ ), one resorts 
to a minimization procedure for its total dipole–dipole interaction energy. We chose the well-known simulated 
annealing39 (SA) method. This Monte Carlo method is able to scape from local minima in the space of M(2M) 
variables corresponding to 2D(3D). We have checked that even for high values of the total dimensionality of the 
problem, it returns precise values for the optimal energy.

For a finite sample of N dipoles it is then easy to infer the minimum energy configuration. Once it is known, 
one needs to “grow” the plaquette in the most symmetric way, that is, equally in all possible directions. In the 
same spirit of the liquid drop model40, which considers the total nuclear energy as a sum of different contribu-
tions, such as the volume or the surface term, we shall correspond each inferred total energy EN to a series of 
functionally different terms depending on N, which fixed coefficients to be obtained later on.

Therefore, the total energy is decomposed as

The term ∝ N is the volume contribution, in other words, the asymptotic energy per dipole in the thermody-
namic limit. That is, VE ≡ limN→∞ EN (N)/N . The second term in (9) corresponds to the surface contribution. 
Similarly, the third term in (9) takes into account those dipoles on the boundary ∂� . Finally there is an independ-
ent contribution. By adjusting the numerically obtained total dipole–dipole plaquette energy to the functional 
form (9), which employs the so-called Levenberg-Marquardt41 non-linear regression, we do obtain remarkable 
results. In this fashion, we are able to infer the value of limN→∞ EN (N)/N with great precision.

The previous overall optimal configuration − sample growing scheme, constitutes a easy-to-implement alterna-
tive to Luttinger’s because (1) no periodic boundary conditions are imposed, nor (2) the computation of Ewald 
sums (given in terms of involved lattice sums42) are required for obtaining the minimum energy per dipole in 
the limit N → ∞.

Also, as a general rule in any two-dimensional periodic configuration of dipoles (not necessarily optimal 
ones), we have discovered that every global rotation of all dipoles by a phase θ is followed by a linear dependency 
of the total interaction energy on the cosine of twice the phase. That is, E(θ) = a + b cos(2θ) . Heuristically, 
this relation can be obtained as a generalization of the 1D case. Suppose that all dipoles along an infinite straight 
line are rotated clockwise by an angle θ . The total (minimum) energy per dipole in the thermodynamic limit will 
be given by E(θ) = (1− 3 cos2 θ)ζ(3) , where ζ(3) is the so called Apéry constant. By using the relation between 
the cosine of an angle and half that angle, we obtain E(θ) = −1/2 ζ(3)− 3/2 ζ(3) cos(2θ).

Two‑dimensional structures
Hexagonal lattice: out‑of‑plane dipoles.  Let us first consider an infinite hexagonal layer where dipoles 
can freely rotate out-of-plane, yet always being fixed in space. The first state that one could think of is the maxi-
mum energy state, which corresponds to all dipoles either point upwards or downwards. This instance was first 
considered by Danilov et al.43, where a direct calculation of the total energy per particle in terms of lattice sums was 
mentioned to be divergent, which is not. In point of fact, we do obtain using our energy decomposition method 
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the following values in (9): VE = 5.51501± 2.87× 10−5, SE = −49.4838± 0.08977, LE = 110.935± 0.6583 
and C = −255.779± 5.44 . Since we are interested in limN→∞ EN/N = 5.51501 , this is the value obtained.

Interestingly, the minimum energy configuration when we grow the crystal of dipoles in hexagonal plaquettes 
corresponds to a special arrangement of dipoles as shown in Fig. 1. Crosses represent dipoles pointing inwards, 
whereas dots correspond to dipoles coming out of the plane. We call this configuration the “flag” state, due 
to its resemblance with the South African flag. Notice the special arrangement of the dipoles, that makes this 
state posses a point symmetry of 120◦ . This state is certainly unique from the topological point of view. Also, 
we notice that it is highly sensitive to the boundary ∂� . The transition from the flag state Fig. 1a to a new state 
whose boundary is square-like Fig. 1b is also shown. This configuration possesses a higher energy, namely, 
−0.883517± 1.852× 10−10 . When the lattice is further distorted to form a parallelogram, we recover 1/6th of 
the original state in Fig. 1c. It is obvious that the shape of the boundary affects the total energy per dipole all the 
way to the thermodynamic limit, a feature which is not blurred by finite-size effects. We currently can only offer 
energetic numeric arguments in order to explain the existence of the flag state, but no physical ones. Notice that 
the high sensitivity of the flag state to the boundary conditions is an inherently typical feature of topological 
states in the quantum sense. In other words, in the quantum realm, it is very difficult to rigorously prove how 
the boundary ∂� affects the robustness of the corresponding enclosed state, and that is no different classically.

All that is known to happen is that the flag state is not topologically equivalent to the other two configura-
tions. There is a clear symmetry reduction from going to the flag state to the others, an effect that has energetic 
consequences only in the square-like confined one, the one in Fig. 1b. It is likely that first and second configura-
tions (a) and (b) in Fig. 1 tend to the last one (c) there in the bulk.

Hexagonal lattice: in‑plane dipoles.  The Luttinger–Tisza method was applied to a system of two-
dimensional dipole moments with identical scalar strength located at the sites of an infinite rhombic lattice with 
an arbitrary rhombicity angle by Brankov and Danchev44. This two-dimensional cell choice allowed to study the 
simple square lattice and the hexagonal one in a very compact way. Their study was an extension of two previous 
works by Belobrov et al.45,46 that considered finite clusters of dipoles, highlighting the existence in the hexagonal 
case of a “macro-vortex”. Brankov and Danchev44 extended their original work and provided a better numeri-
cal accuracy to the computation of configuration energies. Although further work on dipole–dipole interacting 
systems followed47–55 inspired by the Luttinger and Tisza seminal work17, Refs.44–46 constitute the first consist-
ent treatment of simple square lattice of dipoles and, specifically, the hexagonal lattice one. We shall provide an 
extended description of the hexagonal case in the present work, with an increased precision of the energy per 
dipole in the thermodynamic limit by several orders of magnitude.

Figure 2 depicts the set of possible states obtained by either employing the Luttinger–Tisza method, or using 
numerical computations based on symmetry arguments. Each configuration is shown, along with their energy per 
dipole energies, given with exact decimal digits. Incidentally, the antiferromagnetic states of energies − 2.04746 
and 2.96697 are connected by a global rotation in the sense of the E(θ) = a + b cos(2θ).

Let us consider the case of the minimum possible energy configuration given by the vortex. The Lut-
tinger–Tisza method provides an energy given by the lattice sum

where L2 stands for the points in the hexagonal lattice. There are means to speed-up the computation of lattice 
sums such as (10) by using Ewald sums.

What we would like to stress out is that we shall compute the very same value for (10) without the 
burden of even considering the Luttinger–Tisza method at all, with all the corresponding formal-
ism. We shall, then, show how our energy decomposition method works. Incidentally, we consider a 

(10)E0 = −1

2

∑

r∈L2,r �=0

1

r3
,

Figure 1.   Depiction of the minimum energy configuration for perpendicular dipoles in a single layer, as we 
distort the lattice on which we grow the dipole crystal. From an hexagonal shape (a), whose ground state is 
the flag state with energy -0.919515, we obtain another minimum energy configuration where the shape is 
square-like, as shown in (b), with energy − 0.883517. Distorting the previous shape into a parallelogram (c), we 
basically obtain the first configuration (1/6th of it), with the same energy − 0.919515. Crosses represent dipoles 
pointing inwards, whereas dots correspond to dipoles coming out of the plane. See text for details.
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slight deviation of (9) of the form N VE + N1/2 SE + C , where the boundary term is not accounted. 
Recall that we are only interested in the bulk value VE , and this omission shall not imply any variation in 
the final result whatsoever. Once we have obtained several hexagonal clusters of increasing size N their 
corresponding energies (according to Fig.  2a or  2b), the concomitant non-linear fit returns the values 
VE = −2.758545± 8.223 · 10−9, S = 1.22402± 7.662× 10−6,C = 3.30666± 0.001497 . Extraordinary precise 
values for E0 (10) as well as for the other energies are thus obtained in the same fashion without employing the 
tools required for the Luttinger–Tisza method.

Let us focus on the description of the vortex state. First of all, it is not expected to have a peculiar configura-
tion of in-plane dipoles as the minimum energy state, having a considerable energy of − 2.758545. As opposed 
to the flag state, the vortex state is very much robust and, as far as our numerical computations are concerned, 
does not depend on the boundary ∂� of the system. The vortex state is depicted in Fig. 3b in great detail. Let us 
analyze the vortex state from the symmetry point of view. The union of three spirals (red, green and blue) has a 
third-order axis (rotation on 120◦ ) perpendicular to the plane of the lattice. This is a point group of symmetry 
3. The symmetry group of the hexagonal lattice contains identical transformation, 2-, 3- and 6th order rotations 
and six reflections. The identical transformation leads to one spiral, shown in the inset of Fig. 3, and rotations 
lead to the spiral configuration that forms the vortex state.

What is remarkable about the vortex state from the symmetry perspective alone, is that the partition of the 
hexagonal lattice into spirals is not unique. One can construct the partition on two spirals with the second-order 
axis (the point group of symmetry 2, rotation of 180◦ as in Fig. 3b. Furthermore, one can also obtain the parti-
tion of the hexagonal lattice on the central point with 6 spirals with the six-order axis (rotation on 60◦ , the point 
group 6), which constitutes the vortex in Fig. 3a. Of course, all these groups are subgroups of the symmetry 
group of the hexagonal lattice.

Figure 2.   Depiction of all configurations as obtained by the Luttinger–Tisza method, or employing symmetry 
arguments. Configurations (a) and (b) correspond to the minimum energy, the vortex, which is − 2.758545. All 
dipoles in (a) point clockwise, and counter-clockwise in (b). Configurations (c–e) all (antiferro) have the same 
energy, − 2.04746. They are six-fold degenerate (the other three corresponding to all dipoles being flipped). 
Finally, configurations (f–h) (also six fold-degenerate, remaining three not shown) all possess (also antiferro) 
the maximum energy, namely, 2.96697. See text for details.
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From the symmetry point of view, all spirals in Fig. 3 (except the one in the inset) are equivalent. In point of 
fact, the energy per dipole in the bulk is the same for the three cases. Thus, we are left with the question of why 
the only one that occurs is the vortex state with 120◦-symmetry.

The vortex structure and the onset of spontaneous symmetry breaking.  Despite the previous description, the 
question still remains: why a (macro)vortex? The works45,46 managed to answer the question for finite clusters of 
dipoles, based on surface magnetic charge arguments. However, when dealing with the corresponding N → ∞ , 
a more intuitive reason arises: “The structure of a dipole system should be sensitive to the symmetry of the 
nearest-neighbor environment”. However, this claim is rather vague.

One possible explanation could be the following. Let us assume that the minimum energy configuration for 
low temperatures is the (in-plane) ferromagnetic one in the bulk. The original Hamiltonian (3) has an O(2) dipole 
rotation symmetry, whilst the direction of the ferromagnetic order is not fixed for N → ∞ . Things, however, 
change near the edges in finite systems. There there is a clear ferromagnetic direction, and different regions or 
domains merge from the boundary to the interior, in a sort of inwards dipole “freezing”.

The previous argument somehow implicitly assumes the six-fold symmetry of the vortex state as inferred 
from the lattice. There is no reason why ferromagnetic domains should not merge forming a triangular shape, 
for instance. Again, it is not quite convincing. In essence, the existence of vortices formed by magnetic dipoles 
have been suggested mainly by numerical simulations. Analytic Taylor expansion of the dipole–dipole interaction 
has shown56 that it is able to obtain a local representation in the plane such that the lattice symmetry induces 
a magnetic anisotropy. This approximation, although purely mathematical in essence, is somehow capable of 
predicting the existence of vortices in the ground state magnetization.

Based on the previous facts, we shall pursue an explanation solely based on physical and symmetry argu-
ments. To such an end, we shall first define the chirality of a set of N dipoles {mi} with respect to an arbitrary, 
perpendicular axis o as

where ri denotes the position of the dipole mi with respect to an axis o. The chirality is obviously a quantity 
independent of the position of the axis. In the case of the vortex state, we obtain the following result

with V1 = 1.73205± 1.833× 10−7 , V2 = 7.79359± 2.491× 10−4 , and V3 = 11.4368± 0.08078 . Therefore, we 
shall define the chirality of the system of dipoles in the thermodynamic limit as ξ ≡ lim

N→∞
ξN/N

3 , which is equal 
to ±1.73205 , depending on the vortex pointing clockwise or counter-clockwise.

The magnetization of the vortex state is per se rather intriguing. The three embedded spirals conform an 
overall state with a nonzero total dipole moment M. Since the number of dipoles N goes as 1+ 3n(n− 1) (for-
mula for hexagonal centered numbers) for each added layer n, and M is easily found to be (2n− 1)µ , we thus 
have the explicit dependence

Therefore the magnetization per dipole of this state goes as 1/
√
N  , as opposed to the expected 1/N behav-

ior in the thermodynamic limit. Notice that in the rest of states depicted in Fig. 2, M is either 0 or o(1/N). The 
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Figure 3.   Plot of the different sets of spirals equivalent from the symmetry point of view (except the one in 
the inset) to the vortex state, which is (b). Only the central one occurs. All dipoles point clockwise. See text for 
details.
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magnetization per dipole could be a potential physical magnitude to be used in order to link the minimum 
energy configuration of the hexagonal lattice, that is, the vortex, with the rest of the spectrum. However, it does 
not change continuously and remains practically zero for all practical purposes. That is why we shall consider 
the aforementioned chirality ξ . In the language of phase transitions, this is going to be our order parameter in 
the Landau sense, although at zero temperature.

In order to explain the appearance of a vortex structure as the minimum energy configuration of interacting 
dipoles in the hexagonal lattice we shall invoke here a mechanism of spontaneous symmetry breaking. Phases 
of matter, such as crystals, magnets, and conventional superconductors, as well as simple phase transitions can 
be described by spontaneous symmetry breaking (See58,59 and references therein). In the case of crystals as peri-
odic arrays of dipoles, for instance, they are not invariant under all translations (only under a small subset of 
translations by a lattice vector). The Hamiltonian of our system (3), for in-plane dipoles, has a finite rotational 
symmetry defined by the symmetry group of the hexagonal lattice plus Z2 , as well as all the corresponding states 
depicted in Fig. 2, a symmetry that is further reduced for the ground states, the vortex states. The vortex clearly 
breaks this rotational symmetry. For out-of-plane dipoles, the Hamiltonian is invariant under O(2) rotations 
around any perpendicular axis. Although the flag state has 120◦ degrees symmetry, it is indeed invariant under 
O(2), as well as the other out-of-plane states. Plus, the vortex configuration possesses a Z2 symmetry, that con-
nects configurations with opposite chiralities. Notice that Z2 commutes with the Hamiltonian (3). Numerically, 
the vortex structure is rather robust, and already occurs for finite instances. It is extremely difficult to prove that 
the vortex state does not depend on the boundary conditions as we go to the thermodynamic limit, as opposed 
to the flag state. As previously mentioned, they easily appear in all sort of simulations. This fact does not prove 
anything by itself. We can only rely on numerical calculations to assert the robustness of the vortex state (recall 
that this procedure is also the case in the quantum realm).

All the previous states, either out-of- or in-plane dipole configurations, has exactly zero chirality except the 
vortex structure. Thus, we can consider different routes to the spontaneous symmetry breaking that lead to the 
formation of vortex states. They are shown in detail in Fig. 4. Path III connects the maximum and minimum 
energies, by a continuously development of the chirality. The same situation happens for path I, linking two 
states energetically close in relative terms. Path II is rather special for it brings together the flag state and the 

Figure 4.   Plot of the different paths that can lead to the appearance of the vortex ground state by virtue a 
spontaneous symmetry breaking mechanism. The role of the order parameter is played by the chirality. All 
states shown except the vortex can be topologically connected by the same transformation shown next to the 
corresponding energy landscape. Remarkably, the energy of the flag state is exactly one-third of the energy of 
the vortex one. See text for details.
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vortex state, the latter being already a special state. Remarkably, the energy of the vortex state is exactly three 
times that of the flag state.

All states except the vortex one can be topologically connected by the transformation shown in the upper 
figure, where all dipoles follow the direction of vector d in spherical coordinates. The corresponding energy 
landscape is also shown. Notice how the two configurations belonging to the in-plane hexagonal case reduce to 
1/6th of the flag state when θ → 0.

The spontaneous symmetry breaking mechanism that we propose here use the chirality as the order param-
eter, which induces the appearance of a special configuration of dipoles having the minimum possible energy. It 
does not necessarily imply that the shape has to be that of a (macro)vortex, but at least a different one from the 
set of possible states possessing a clear, differentiated symmetry.

The honeycomb lattice: topology of the ground state.  In the honeycomb lattice, and following our 
procedure, a sufficiently big sample of dipoles unveils the disposition of the dipoles for the minimum energy 
configuration. This structure is shown in Fig. 5, along with the lattice. The minimum energy per dipole in the 
thermodynamic limit is found to be −2.22691 ± 6.322× 10−6 , higher than the one corresponding to the hex-
agonal lattice.

We do not observe a single dipole structure, as in the case of the vortex in the hexagonal lattice, with fer-
romagnetic domains. Antiferromagnetism is not present either. Instead, the system is formed by an array of 
local sinks and vortices. For every sink, we have six local vortices that surrounds it. As in all classical ground 
states with no geometric frustration57, it is not highly degenerate (only two) and the total magnetization is zero.

Certainly, we cannot possibly have the topology present in skyrmion/bimeron spin textures, yet we can obtain 
a periodic arrangement of interesting structures such as sinks and vortices.

Three‑dimensional structures
Hexagonal simple lattice.  The problem of obtaining the minimum energy per particle in the bulk of a 
system of interacting dipoles is interesting per se, regardless of the peculiarities of the corresponding dipole 
topology. Also, to the best of our recollection, it has not been studied previously in the literature.

Again, in order to tackle the problem, we use our methodology. After placing Nz ∈ [1, 100] layers of hex-
agonal lattices in parallel, each one of which with side Nx = Ny = 20 , we conclude that no dipole projection 
onto the x–y plane occurs. Of course, there are finite-size effects that account for dipoles than can be found not 
being perfectly perpendicular, but these effects are blurred in the thermodynamic limit. In point of fact, if the 

Figure 5.   The honeycomb lattice and the corresponding dipole configuration of minimum energy. Notice that 
every dipole sink coordinates with six local vortices. See text for details.
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2D layer retains its hexagonal shape, the final state of the entire column corresponds to layers of flag states one 
on top of the other. On the contrary, if the 2D layers possess some other shape, such as a parallelogram, the 
crystal will look like a 1/6-prism of the latter. As in the 2D case, we know that the two vertical arrangements will 
possess the same energy, the same zero magnetization, but the flag hexagonal lattice dipole crystal will display 
a particular topology, not present in the 1/6-prism. In both cases, either flag layers or a 1/6-prism, we shall have 
multi-ferromagnetic-domain structures of dipoles pointing up or down along the z-axis.

This is the case for any d value in the rhombic cell. Thus, d shall correspond to the interlayer distance, meas-
ured in units of the hexagonal lattice constant a. Of course, there is no preferred value d. Therefore, it is manda-
tory to perform an exhaustive numerical exploration in order to obtain the minimum energy per dipole in the 
bulk and for every different d value. The results of the computations are depicted in Fig. 6. The small spheres 
in Fig. 6 and 7 denote the position of each dipole in the crystal, which could easily be regarded as the position 
of the nuclear magnetic moment corresponding to the nucleus of a certain species. The representation using 
spheres also helps to better understand the later comparison between different three-dimensional structures in 
terms of hard spheres.

The total interaction energy monotonically decreases as d decreases, which implies that the system is bounded. 
The first computed point is for d = √

2/3a , which corresponds (for later comparison) to the minimum interlayer 
distance in the case of the hexagonal closed packed lattice, for a = b = 1 . As the interlayer separation increases, 
the interaction between layers becomes negligible, and we recover asymptotically the expected value for one 
single layer, namely, − 0.919515. Here we list the computed values for several distances d.

Figure 6.   Plot of the evolution of the energy per particle in the thermodynamic limit as a function of the 
vertical cell distance d, for both the flag-state crystal and the 1/6-prism. The horizontal line corresponds to the 
asymptotic d → ∞ energy per particle value of the flag state. See text for details.

Figure 7.   Plot of the evolution of the energy per particle in the thermodynamic limit as a function of the 
vertical cell distance d, for the hcp lattice. The horizontal line corresponds to the asymptotic d → ∞ energy per 
particle value of the vortex state. See text for details.
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d Emin
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√

2

3
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2

3
+ 0.3 =1.11649658 − 1.94183

√

2

3
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√

2

3
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√

2

3
+ 0.6 =1.41649658 − 1.24296

√

2

3
+ 0.7 =1.51649658 − 1.14203

√

2

3
+ 0.8 =1.61649658 − 1.07302

√

2

3
+ 0.9 =1.71649658 − 1.02563

√

2

3
+ 1.0 =1.81649658 − 0.992991

√

2

3
+ 1.1 =1.91649658 − 0.970449

All values for the energy are given with exact decimal digits. The most reasonable value is around d = 1 , for 
the 

√

2
3

-one is relatively too close in the case of the simple hexagonal 3D lattice. Of course, one could have also 
tackled the problem by employing the Luttinger–Tisza method, but as explained earlier, our method is much 
faster, and avoids computing typically involved lattice sums.

The present case shows that the results obtained for dipoles pointing off-plane, either in the form of flag states 
of alternating rows of dipoles pointing up and down, are exactly reproduced in the extension to 3D where the 
layers are simply piled up, forming the simple hexagonal lattice. In this case, the dipole crystal displays a null 
chirality as well.

Hexagonal closed packed lattice.  The problem of finding the minimum energy configuration of identi-
cal dipoles interacting in the hexagonal closed packed lattice (hcp) is arguably the most difficult case considered. 
By employing a similar numerical approach as in the case of the simple hexagonal lattice in 3D, the first aspect 
which is readily found is that all dipoles lie on the x–y axis. Again, and due to the optimization of finite samples, 
finite-size effects appear, where dipoles on the boundaries may have spurious vertical projections. However, in 
the thermodynamic limit, there is no vertical component for the magnetization. Furthermore, and this is what 
is more remarkable, all layers are formed by vortex states, which provide a rather intricate image of how dipoles 
are arranged inside the crystal. The corresponding image is depicted in the inset of Fig. 7.

Once the optimal configuration is found, we shall use our energy decomposition method to find the energy 
per dipole in the bulk. Since different values for the d-value are possible, we provide several ones starting from 
the closest one d = √

2/3 (hard spheres touching). The corresponding values are listed in the following:
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√
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√

2
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√

2

3
+ 1.0 =1.81649658 − 2.75881

√

2

3
+ 1.1 =1.91649658 − 2.75872

Again, the energy values are given with exact decimal digits. As expected, when the interlayer separation is 
high enough, the energy per particle reduces to the value in the vortex state, that is − 2.758545.

In the case of hexagonal closed packed structures, dipoles follow in each layer the configuration of mini-
mum possible energy for in-plane dipoles, displaying defined regions of ferromagnetic domains. The chirality, 
as opposed to the previous hexagonal lattice, is clearly present here. Also, as opposed to the hexagonal lattice, 
there is a unique minimum configuration possible which, as opposed to the flag state, is not altered by the shape 
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of the crystal sample. For the same d-value (greater or equal to a), the hcp lattice is energetically more bounded, 
a feature which is somehow intuitively expected.

Our results for the hcp lattice, with vortex layers, are not to be confused with helical spin configurations in 
hexagonal crystals60. On the one hand, the former occur in simple hexagonal lattices, and on the other, their 
explanation is due to the a positive interaction between nearest neighbors and a negative interaction with second-
nearest neighbors. Therefore, rotations in planar layers occur only if spins are treated classically as dipoles in the 
Heisenberg exchange Hamiltonian −|J1| cosα + |J2| cos(2α) , where α is the angle of rotation of the dipoles in 
the layers forming an helix.

Discussion
We have described the emergence of the robust vortex state as the minimum energy configuration possible 
mediated by a mechanism of spontaneous symmetry breaking. In a way, since T = 0 , we are describing a classic 
topological transition driven by the continuous chirality ξ parameter.

The real arena where the symmetry breaking should be considered is at finite temperature, and not to employ 
the internal energy E or U, but the (Helmholtz) free energy F = E − T · S instead (a collection of particles will 
always seek to minimize its free energy). There, one should take into account that the entropy S clearly scales 
differently as opposed to the total energy E. Scaling here is referred to the size of the system. In other words, 
depending on the density of states of the system, the entropy may have a scaling with system size different than 
the internal energy. Therefore, the ensuing study should become more involved.

However, all the present contribution is described at zero temperature. It the temperature was finite, as it 
was lowered, the entropy would provide a decreasing contribution to the free energy, and the system would at 
some point fall into another state. This usual temperature-driven analysis has not been implemented here, for 
again we are treating the system at zero temperature. However, the Landau approach for finite T may not to be 
much different from what has been presented here. We are confident that, in a finite temperature analysis, our 
conclusions about the feasibility of the spontaneous symmetry breaking explanation for the existence of vortex 
would still hold.

Energies and configurations have been computed either by recourse to the Luttinger–Tisza method, or by 
employing our energy decomposition approach, which has been proved successful in other scenarios involving 
the computation of energies based on the dipole–dipole energy interaction of periodic systems in the thermo-
dynamic limit.

The topology of the equilibrium configurations for out-of-plane dipoles has provided a new state, the flag state. 
We have noticed that it is very sensitive to the boundary conditions (as opposed to the vortex case), much like 
topological phases in the quantum case. Besides the usual states in the in-plane case for the hexagonal lattices, 
we have computed the exact minimum energies per dipole for the three-dimensional cases as a function of the 
interlayer distance. Remarkably, in the simple hexagonal case the layers are formed by flag states, whereas in the 
hexagonal closed packed configuration, the layers are the vortices themselves. Also, an energy analysis shows 
that the hexagonal closed packed system is more bound.

Summing up, we have presented that, within the limits of the classic dipole–dipole interaction, one can 
observe non-trivial topological structures that have special interest, in particular the minimum energy vortex 
configuration. Thus, we showed that particular configurations of dipoles are not exclusive to quantum spin 
textures such as skyrmions or bimerons, but also occur in the special case of triangular or hexagonal lattices.

Data availability
The data are available upon reasonable request at jbv276@uib.es.
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