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Background: Multiple cases of Candida auris infection have been reported with high mortality rates owing to its
MDR nature. Rezafungin (previously CD101) is a novel echinocandin with enhanced stability and pharmacokinet-
ics that achieves high plasma drug exposure and allows for once weekly dose administration.

Objectives: Evaluate the efficacy of rezafungin in the treatment of disseminated C. auris infection using a mouse
model of disseminated candidiasis.

Methods: Mice were immunosuppressed 3 days prior to infection and 1 day post-infection. On the day of infec-
tion, mice were inoculated with 3%107 C. auris blastospores via the tail vein. Mice were randomized into four
groups (n"20): rezafungin at 20 mg/kg, amphotericin B at 0.3 mg/kg, micafungin at 5 mg/kg and a vehicle con-
trol. Treatments were administered 2 h post-infection. Rezafungin was given additionally on days 3 and 6 for a
total of three doses, while the remaining groups were treated every day for a total of seven doses. Five mice
from each group were sacrificed on days 1, 4, 7 and 10 of the study. Kidneys were removed from each mouse to
determine the number of cfu for each respective day.

Results: Rezafungin had significantly lower average log10 cfu/g of tissue compared with amphotericin B- and
vehicle-treated mice on all days when kidneys were harvested. Additionally, rezafungin-treated mice had signifi-
cantly lower average log10 cfu/g of tissue compared with micafungin-treated mice on day 10.

Conclusions: Our findings show that rezafungin possesses potent antifungal activity against C. auris in a disse-
minated model of candidiasis.

Introduction

The emergence of drug-resistant pathogens is an ever-growing
concern. Originally reported in 2009,1 Candida auris causes serious
invasive infections with mortality rates approaching �60%.2

Reports of invasive infections caused by C. auris have emerged glo-
bally, including in Japan, South Korea, India, Kuwait, South Africa,
Pakistan, the UK and, more recently, in Venezuela, Colombia and
the USA.3–6 The majority of C. auris infections have been reported
as secondary nosocomial infections.3,6,7 A high percentage of clin-
ical strains of C. auris exhibit resistance to fluconazole and there
are varying levels of resistance to the three major classes of cur-
rently available antifungals (azoles, polyenes and echinocandins),
thus limiting treatment options.1,3–10

Given the MDR nature of C. auris, development of new antifun-
gal drugs that can combat this resistance issue is critical.

The echinocandin class of drugs is used to treat serious invasive
fungal infections and they are recommended for the first-line
treatment of suspected or confirmed invasive Candida infec-
tions.11 Three echinocandins (caspofungin, micafungin and
anidulafungin) are currently approved for the treatment of candi-
daemia, as well as other types of invasive candidiasis, by the US
FDA. Although resistance to fluconazole and amphotericin B have
been widely reported for different isolates of C. auris, only a limited
number of strains of this emerging species have shown elevated
MICs to currently available echinocandins. Rezafungin (previously
CD101), a novel echinocandin with an extended t1=2 and high
plasma drug exposure that may help counter resistance,12,13 is in
development as a once weekly intravenous formulation for the
treatment and prevention of systemic fungal infections.14 Although
its pharmacokinetic profile is a major distinguishing characteristic,
rezafungin was designed to first be chemically and metabolically
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stable to avoid hepatotoxicity while retaining the antifungal
activity of an echinocandin.15 In our recent evaluation of antifungal
susceptibility of a panel of C. auris isolates, in which 8 out of 16 iso-
lates possessed susceptibility profiles that for other Candida spp.
would be characterized as resistant to at least three of the antifun-
gal agents tested, rezafungin demonstrated potent in vitro
activity against both echinocandin-resistant and -susceptible
C. auris isolates.16,17

Herein, we evaluated the efficacy of rezafungin in the treat-
ment of C. auris infection, utilizing a mouse model of disseminated
candidiasis. Specifically, the temporal effect of rezafungin on kid-
ney tissue fungal burden was evaluated.

Materials and methods

Ethics

All procedures in this study were in compliance with the Animal Welfare
Act, the Guide for the Care and Use of Laboratory Animals, and the Office of
Laboratory Animal Welfare.

Test compounds
The following antifungals were evaluated: rezafungin, micafungin and ampho-
tericin B. Rezafungin and micafungin were provided by Cidara Therapeutics,
Inc. Amphotericin B was purchased from Sigma–Aldrich (St Louis, MO, USA).

Organism and inoculum preparation
A clinical isolate of C. auris (MRL 35368) was obtained from the Center for
Medical Mycology Culture Collection and used as the infecting fungus. The
MIC values (determined using the CLSI broth microdilution method, as
described in the M27-A3 document) of rezafungin, amphotericin B and
micafungin were 0.063, 4 and 1 mg/L, respectively. C. auris inoculum was
prepared by plating onto potato dextrose agar (PDA) (Becton Dickinson,
Sparks, MD, USA) and incubating at 35�C for 2 days. Next, C. auris blasto-
spores were harvested by centrifugation followed by three washes with PBS.
A challenge inoculum of 3%107 was prepared using a haemocytometer.

Immunosuppression
Female, 6–8-week-old, CD-1 mice received cyclophosphamide (Sigma–
Aldrich), 200 mg/kg administered by intraperitoneal injection 3 days prior to
challenge and 150 mg/kg 1 day after challenge. On the day of infection,
blood was collected (20 lL) from one mouse from each group for a white
blood cell count to verify immunosuppression.

Infection and evaluation of treatment efficacy
To evaluate the temporal effect of rezafungin on tissue fungal burden, im-
munocompromised mice (n"20 mice per group) were infected with
3%107 C. auris blastospores in 100 lL of PBS via the lateral tail vein.
Beginning 2 h post-infection, mice in the rezafungin group were given one
dose (day 1) then subsequently treated on days 3 and 6 for a total of three
doses. Additionally, mice in the remaining treatment groups (amphotericin
B, micafungin and vehicle) were given one dose 2 h post-infection (day 1),
then treated every day for a total of seven doses. Five mice from each group
were sacrificed on days 1, 4, 7 and 10 of the study to determine the tissue
fungal burden in the kidneys. Briefly, both kidneys from each animal were
aseptically removed and weighed. Tissues were then homogenized in 1 mL
of PBS and serially diluted. The dilutions were plated onto PDA and cultured
at 35�C for 48 h to determine the number of cfu. Efficacy of rezafungin was
evaluated as a reduction in log10 cfu compared with all other groups.

Statistical analysis
Differences in the mean cfu in the kidneys were compared with the control
and different treatment groups using a one-way ANOVA with a post-hoc
Tukey test. A P value of ,0.05 was considered statistically significant.

Results

Figure 1 shows the average log10 cfu/g of tissue for mice by treat-
ment group on the respective sacrifice day (days 1, 4, 7 and
10 post-infection). As shown in Figure 1, mice treated with rezafun-
gin had significantly lower average log10 cfu compared with
amphotericin B- and vehicle-treated mice on all days when kid-
neys were harvested (Table 1). Additionally, rezafungin-treated
mice had significantly lower average log10 cfu compared with the
micafungin-treated group on day 10 only.

Discussion

In this study, we examined the temporal effect of rezafungin com-
pared with amphotericin B and micafungin dosed daily for 7 days,
while rezafungin was administered three times (days 1, 3 and 6).
Although dosed less frequently than amphotericin B and micafun-
gin, rezafungin was significantly more efficacious in reducing fun-
gal burden. The demonstrated superior activity of rezafungin
compared with the other agents, even with less frequent dosing,
reflects the clinical potential of rezafungin over current daily dos-
ing regimens of approved echinocandins and can be attributed to
its pharmacokinetic/pharmacodynamic profile. As seen with other
antimicrobials that exhibit concentration-dependent killing and a
prolonged t1=2 (e.g. oritavancin), front-loaded dosing benefits reza-
fungin efficacy. Lakota et al.18 (2017) demonstrated that a single
dose of rezafungin achieved efficacious drug exposures and
greater efficacy than once daily and twice weekly regimens in a
neutropenic mouse model of disseminated candidiasis. The time
course of rezafungin concentrations (i.e. the shape of the AUC)
was shown to be a determinant of its efficacy, which relates to the
importance of achieving therapeutic drug exposure early in the
course of therapy. The pharmacokinetics/pharmacodynamics of
rezafungin may also play a role against resistance development,
as suggested by the mutant prevention concentration (MPC) con-
cept which calls for antifungal dosing above the MPC to inhibit
growth of potentially resistant isolates.15

In our recent evaluation of the antifungal susceptibility of
C. auris, 16 clinical isolates were tested against rezafungin and
comparators, including currently available echinocandins, azole
antifungals and amphotericin B. Eight of the 16 isolates possessed
susceptibility profiles that for other Candida spp. would be charac-
terized as resistant to at least three of the antifungal agents
tested. These in vitro data showed that rezafungin possesses po-
tent antifungal activity against a large panel of C. auris strains,
including isolates that are resistant to other antifungal drugs, such
as fluconazole and amphotericin B.17 Moreover, this study demon-
strates that rezafungin possesses potent in vivo efficacy against
C. auris. Further studies evaluating the efficacy of this novel anti-
fungal against different strains of C. auris is recommended to rule
out strain-specific findings.

Our findings are in agreement with recent studies that showed
rezafungin possesses potent in vivo activity against Candida
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Figure 1. Average log cfu/g (+SD) in kidney tissue on days 1, 4, 7 and 10. ip, intraperitoneally.

Table 1. Statistical summary of between-group comparisonsa of average log cfu/g of tissue

Comparison

Mean difference 95% CI Adjusted P valuegroup A group B

1 day post-infection

rezafungin 20 mg/kg ip micafungin 5 mg/kg ip #0.20 #0.99 to 0.59 0.8801

rezafungin 20 mg/kg ip amphotericin B 0.3 mg/kg ip #0.85 #1.59 to #0.10 0.0231b

rezafungin 20 mg/kg ip vehicle ip #1.04 #1.79 to #0.30 0.0052b

4 days post-infection

rezafungin 20 mg/kg ip micafungin 5 mg/kg ip #0.72 #1.75 to 0.32 0.2339

rezafungin 20 mg/kg ip amphotericin B 0.3 mg/kg ip #3.30 #4.34 to #2.27 ,0.0001b

rezafungin 20 mg/kg ip vehicle ip #3.21 #4.24 to #2.17 ,0.0001b

7 days post-infection

rezafungin 20 mg/kg ip micafungin 5 mg/kg ip #0.78 #1.83 to 0.27 0.1836

rezafungin 20 mg/kg ip amphotericin B 0.3 mg/kg ip #3.99 #5.04 to #2.94 ,0.0001b

rezafungin 20 mg/kg ip vehicle ip #3.85 #4.90 to #2.80 ,0.0001b

10 days post-infection

rezafungin 20 mg/kg ip micafungin 5 mg/kg ip #1.34 #2.41 to #0.26 0.0128b

rezafungin 20 mg/kg ip amphotericin B 0.3 mg/kg ip #3.69 #4.76 to #2.61 ,0.0001b

rezafungin 20 mg/kg ip vehicle ip #2.89 #3.96 to #1.81 ,0.0001b

ip, intraperitoneally.
aTukey’s multiple comparisons test.
bStatistically significant results.
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albicans and Aspergillus fumigatus in neutropenic mouse models
of disseminated infection.15,19,20 These results collectively indicate
the broad-spectrum in vivo activity of rezafungin against multiple
fungal species and support further development of rezafungin for
the treatment of C. auris infections.
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