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Abstract

Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to
unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One
of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are
domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem
for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the
protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with
promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-
domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been
proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship
between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and
enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-
pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and
is enhanced by the presence of proteins that comprise both promiscuous and rare domains.
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Introduction

Proteins comprise domains which are evolutionary conserved

sequence segments with the ability to fold and be functional. An

important class of domains mediates protein-protein interactions

(PPIs); although not all interactions between proteins can be

attributed to interactions between domains, and not all domains in

multi-domain proteins play a direct role in protein interaction.

Nonetheless, many computational methods which seek to predict

PPIs with high accuracy rely on computationally inferred domain-

domain interactions (DDIs), e.g. [1].

Ideally, the inferred DDIs used to support the predicted PPIs

are highly reliable themselves, that is there is a large overlap

between the set of inferred DDIs and the set of DDIs confirmed to

interact by 3D crystal structures of proteins. This latter set is

referred to in this paper as the gold standard domain-domain

interactions (GDDIs). This ideal is desirable not only to tease out

specific interactions in a protein complex, but also to give

predictive power to protein-protein interaction prediction methods

(more on this point later in this section).

However, using GDDIs to predict PPIs generates a large

number of false positives (non-interacting protein-pairs predicted

as interacting) and thus reduces the accuracy of the prediction

method. The large number of false positives stem from the fact

that GDDIs are enriched with promiscuous domains. Promiscuous

domains can occur in many domain architectures [2] and thus

appear in many proteins. But since the PPI network is sparse,

many of these protein-pairs will be non-interacting.

It is parsimonious to re-use domain-pairs that can interact to

facilitate PPIs. Indeed, many DDIs are conserved across organisms

by evolution [3] and there is a high degree of DDI re-use by PPIs

[4]. In theory, PPI prediction methods which depend on inferred

DDIs rely on the presence of this parsimony. The basic underlying

thinking is DDIs inferred from PPIs in the training set can then be

used to predict PPIs in the test set. Fundamental to the success of

this strategy is a commonality between the proteins in the training

and test sets, at least in the form of domain-pairs. When this

commonality is reduced, e.g. through the use of rare DDIs to

predict PPIs, the power (ability to generalize from sample to

population) of a prediction method weakens. This flaw in existing

computational PPI prediction methods was demonstrated in [5]

wherein the predictive performances of seven PPI prediction

methods deteriorated significantly as the intersection between the

training protein set and the test protein set decreased to null.

The ‘drift towards rare domain-pairs’ phenomenon in PPI

prediction methods has been noted [6]. Such rare domain-pairs

comprise domains which occur infrequently in a given protein

sample but occurs in interacting protein-pairs so that rare domain-

pairs appear to be highly reliable DDIs and good indicators of

putative PPIs (since they dampen the increase in false positives).

However, rare domain-pairs are often not GDDIs. Promiscuous

domains are observed to be heavily involved in PPI mediation [2].

Further, rare domain-pairs have weak predictive value since by

their nature, they are not commonly found in proteins and

therefore the information that they interact is less reusable for the
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purpose of predicting PPIs. I suggest that the ‘drift towards rare

domain-pairs’ phenomenon is partly a consequence of how

computational PPI prediction methods are evaluated. However,

the ‘drift towards rare domain-pairs’ is also because promiscuity

prevents GDDIs from being highly ranked in computational methods to

infer DDIs. Recognizing this domain promiscuity problem,

additional measures have been taken to counteract its effects

when inferring DDIs from PPIs, e.g. [6–8].

In this paper, I propose that Formal Concept Analysis (FCA) [9]

is a feasible way to overcome the promiscuity problem for

detecting GDDIs from a given set of PPIs. The proposed concept-

based scoring method is a more discrete approach than previous

methods, and I believe the first use of FCA in this manner. The

success of the concept-based scoring method lies with the piggy-

backing potential of promiscuous domain-pairs. Piggy-backing

occurs when a domain-pair improves its score because either

one or both of its domain partners happen to occupy the same

attribute-label set as one or more rarer domains. Piggy-backing

potential is possible only in concept lattices that are not attribute-

reduced, and is enhanced by the presence of many mixed

architecture proteins. One of the challenges of doing bioinfor-

matics research is the volatility and variety of bioinformatics

datasets which exerts a high validation cost for any new method.

Therefore, it is useful to understand why a bioinformatics method

works and under what conditions. Identifying such conditions also

automatically suggests the limits of a method. Towards this end,

effort is made to investigate conditions favourable to the proposed

concept-based domain-pair ranking method.

Materials

Basic Definitions
Let P be the set of proteins and D the set of domains. Every

protein in P comprises one or more domains in D. D(x) denotes the

finite set of domains for protein x. If | D(x) | = 1, x is a single-

domain protein; if | D(x) | . 1, x is a multi-domain protein. The

set of proteins which contains domain a is P(a) = { x M P | a M D(x) }.

The frequency of domain a in P is N(a) = | P(a) |. x = D(x) = {a, b, c}

where x M P and {a, b, c} , D denotes protein x is its set of domains

D(x) which in turn comprises domains a, b and c.

Figure 1. Breakdown of proteins by organism in the Riley dataset [8]. More than half of the organisms have only two proteins each. The top
four organisms with the largest number of proteins are Fruitfly, Yeast, Worm and Human.
doi:10.1371/journal.pone.0088943.g001

Table 1. A sample of organisms in the Riley dataset with their respective protein, domain and gold domain sizes.

Organism Number of proteins Number of unique domains Number of gold domains

All 11,403 12,455 642

Drosophila melanogaster 3,777 5,454 387

Saccharomyces cerevisiae 3,476 4,949 392

Caenorhabditis elegans 2,233 3,746 289

Homo sapiens 799 1,816 209

Schizosaccharomyces pombe 10 15 7

Bacillus subtilis 9 10 3

A gold domain is a domain that is involved in at least one GDDI. These GDDIs were obtained from [6], and are domain-pairs whose interaction has been confirmed in
iPfam [16] from PDB crystal structures.
doi:10.1371/journal.pone.0088943.t001

DDIs from PPIs with Formal Concept Analysis
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The set of PPIs is a relation on P. This relation is symmetric, i.e.

if (x, y) is an interacting protein-pair, then so is (y, x). It is possible

for proteins to self-interact. Let (x, y)1 denote (x, y) M the set of PPIs.

(x, y)1 implies proteins x and y come from the same organism, i.e.:

O(x) = O(y). The set of non-PPIs is also a symmetric relation on 3,

and a non-interacting protein-pair (x, y)0 also implies O(x) = O(y).

O(x) = O(y) implies either (x, y)1 or (x, y)0. There may be pairs in P6
P which are neither interacting nor non-interacting because they

do not satisfy the same organism condition.

The set of DDIs is a symmetric relation on D, and domain self-

interaction is possible. A protein-pair (x, y) generates domain-pairs,

each of which may or may not be reliable, through the cross-

product of their domains, i.e. D(x) 6 D(y). A domain-pair (a, b)

generates a set of protein-pairs, each of which may or may not be

interacting, through the cross-product of their respective protein

sets, i.e. P(a) 6P(b). For a domain-pair (a, b) to be a DDI, it must

generate at least one interacting protein-pair.

The Riley Dataset and its Characteristics
The Riley dataset [8] has been re-used in a number of studies,

e.g. [6,10]. This dataset comprises 11,403 proteins from 68

organisms. Figure 1 gives the breakdown of proteins by organism.

The organisms with the four largest numbers of proteins in the

Riley dataset are Fruitfly, Yeast, Worm and Human.

The proteins are associated with 12,455 Pfam-A and Pfam-B

domains. Amongst the set of proteins are 26,032 protein-protein

interactions (PPIs). Interactions and non-interactions between

protein-pairs are restricted to proteins from the same organism [8].

The interaction of two proteins x and y implies interactions

between the domains of x and the domains of y. The Riley set of

proteins, domains and PPIs generate 177,233 putative domain-

domain interactions (DDIs). Amongst these possible DDIs are 783

gold standard domain-domain interactions (GDDIs). These GDDIs

were obtained from [6], and are domain-pairs whose interaction has

been confirmed in iPfam [16] from PDB crystal structures. Over half

(403/783 = 51.57%) of the GDDIs are self-interacting (homotypic),

Figure 2. Domains do not occur with the same frequency. There are rare and promiscuous domains (left). Rare domains are domains which
appear infrequently in the set of proteins. The rare domains outnumber the promiscuous domains several fold. The rare domains occur less
frequently in the set of gold domains than in the set of all domains. In general, the more frequently a domain occurs, the more likely it is to be a gold
domain (right). The same patterns are observed when proteins are confined to single organisms (Figure S1 in File S1).
doi:10.1371/journal.pone.0088943.g002

Figure 3. Ratio of promiscuous to rare domains. At rare domain threshold x, domains which occur at most x times in a protein set, i.e. N(d) # x,
are classified as rare. When the rare domain threshold is 1, 58.5% of all domains are rare, and the remaining 41.5% are promiscuous, i.e. occurs 2 or
more times in the set of proteins. When the rare domain threshold is 2, 80.4% of all domains are rare. The percentage of domains that are
promiscuous drops to 6.1% when the rare domain threshold is 5.
doi:10.1371/journal.pone.0088943.g003

DDIs from PPIs with Formal Concept Analysis
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but less than 1% (1262/176450) of the non-GDDIs are self-

interacting. DDIs which mediate PPIs are enriched with homotypic

domain-pairs [3,11]. A PPI with at least one GDDI is a gold-PPI

(GPPI). There are 2,326 GPPIs in the Riley dataset, 546 of which

have a single domain-pair. Table 1 gives a sample of organisms

found in the Riley dataset with their respective protein, domain and

gold domain sizes. A gold domain is a domain that is involved in at

least one GDDI.

In the following sub-sections, the Riley dataset is examined to

support assertions made in this paper. Specifically, the data

characteristics of interest are:

i. Highly reliable domain-domain interactions (GDDIs) are

enriched with promiscuous domains.

ii. GDDIs generate significantly more true positive PPIs and

also more false positive PPIs than non-GDDIS. More true

positive PPIs agrees with the parsimony or the re-use

principle for GDDIs, and more false positive PPIs accords

with the promiscuity of gold domains.

iii. Protein domain architectures are mostly a mix of rare and

promiscuous domains.

GDDIs are significantly enriched with promiscuous

domains. All domains that participate in at least one GDDI

were pooled and their frequencies were compared against the

frequency of occurrence of all 12,455 domains. In agreement with

previous observation in [4], few domains occur much more

frequently and most domains occur infrequently. The log-log plot

in Figure 2 shows the right-skewed distribution of domain

occurrence which is exhibited more clearly by the set of all

domains than the set of gold domains (even though the set of all

domains is much larger than the set of gold domains). The

difference in frequency distributions is significant. Analysis with

R’s Wilcox.test confirms that the set of gold domains is

significantly more promiscuous than the set of all domains. Hence,

GDDIs are significantly enriched with promiscuous domains. A

gold domain is a domain that participates in at least one gold

standard domain-domain interaction (GDDI). There are 642 gold

domains in the Riley dataset. A domain is more promiscuous if it

occurs more frequently in a given set of proteins, i.e. given P and

{a, b} , D, N(a).N(b) implies a is more promiscuous than b.

The bar chart in Figure 2 gives the ratio of gold domains against

all domains for every domain occurrence value. Gold/All = y for a

domain occurrence value of x means y fraction of all domains that

occurs x times are gold domains. The tendency is for Gold/All to

equal 1 as domain occurrence increases. This supports the notion

that GDDIs are significantly enriched with promiscuous domains.

This conclusion is not surprising given that the GDDIs are sourced

from the iPfam database [6] and a significant positive correlation

between domain promiscuity and the number of structural

interactions in iPfam was observed in [2].

Because the dataset comprises multi-organisms, there is a

possibility that the heavy imbalance between rare and promiscu-

ous domains in the set of all domains may be due to the many

organisms with only a handful of proteins (Figure 1) in the dataset.

To address this concern, the analysis is repeated on the set of

domains specific to the four organisms with the most proteins in

the Riley dataset, i.e. Fruitfly, Yeast, Worm and Human (Table 1).

The results (Figure S1 in File S1) exhibit the same pattern as in

Figure 2 and the differences between corresponding frequency

distributions are significant. Thus the larger frequency of rare

domains in the set of all domains is not an artifact of the multi-

organism dataset. This does not mean that all gold domains are

promiscuous or that none of the non-gold domains are promis-

cuous. Also for organisms with very few proteins, the sample size is

not large enough to produce a significant difference, e.g. S. pombe.

The previous test examined the promiscuity of single domains.

In the following test, the promiscuity of domain-pairs are

examined by quantifying the promiscuity of a domain pair (a, b)

as [N(a)+N(b)]/2. The promiscuity of GDDIs is then compared

against the promiscuity of all non-GDDIs. R’s Wilcox.test

confirms that GDDIs have significantly larger promiscuity scores

than non-GDDIs.

Figure 4. Breakdown of proteins by architecture (domain composition). As more domains are classified rare, the proportion of proteins
comprising only-rare domains increases, while the proportion of proteins comprising only-promiscuous domains decreases. Mixed architecture
proteins comprise both rare and promiscuous domains. They make up the largest percentage (at least a third) of the protein population when the
rare domain threshold is between 2 and 16. The peak occurs at rare domain threshold 4 where 37.8% of the proteins have mixed architecture. Note
that the concept-based scoring method proposed in this paper does not require or depend on the specification of a rare domain threshold. The
purpose of the analysis is this figure is to provide prima facie evidence for the feasibility of the concept-based scoring method which relies on a
strong presence by mixed architecture proteins for a successful outcome.
doi:10.1371/journal.pone.0088943.g004

DDIs from PPIs with Formal Concept Analysis
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GDDIs generate significantly more true positive and

more false positive PPIs than non-GDDIs. The set of all

interacting protein-pairs (PPIs) and the set of all non-interacting

protein-pairs (non-PPIs) were generated for each of the 177,233

putative domain-domain interactions (DDIs). A domain-pair (a, b)

generates a set of protein-pairs, each of which may or may not be

interacting, through the cross-product of their protein sets, i.e. P(a)

6P(b). A DDI is either a GDDI or a non-GDDI. The set of DDIs

comprise 783 GDDIs and 176,450 non-GDDIs. A PPI prediction

for a protein-pair (x, y) predicts that protein x interacts with protein

y. This prediction is a true positive if (x, y)1 can be found in the

given set of PPIs and a false positive otherwise.

R’s t.test (non-homogeneous variance) and Wilcox.test were

used to compare the sizes of the PPI sets generated by GDDIs and

by non-GDDIs, and the sizes of the non-PPIs sets produced by

GDDIs and by non-GDDIs. The statistical tests confirm that

GDDIs generate significantly larger sets of PPIs than non-GDDIs

and that GDDIs generate significantly larger sets of non-PPIs than

non-GDDIs. Thus, GDDIs generate significantly more true

positive and more false positive PPIs than non-GDDIs. More

true positive PPIs agrees with the parsimony or the re-use principle

for GDDIs, and more false positive PPIs accords with the

promiscuity of gold domains.

Protein domain architectures are mostly a mixture of

rare and promiscuous domains. Promiscuous domains are

those which occur frequently in proteins. Rare domains are those

which occur infrequently in proteins. The ratio of promiscuous to

rare domains varies with the rare domain threshold (Figure 3). At

rare domain threshold x, domains which occur # x times in the protein

set are classified as rare. While a rare domain may occur in only a

handful of proteins, collectively the set of rare domains occur in

many proteins. When the rare domain threshold is 2, 54.8% of the

proteins in the Riley dataset have at least one rare domain.

Figure 4 shows the breakdown of proteins by domain

architecture. As the rare domain threshold increases, the

proportion of only-rare proteins, i.e. proteins comprising only rare

domains, increases, while the proportion of only-promiscuous

proteins, i.e. proteins comprising only promiscuous domains,

decreases. Both only-rare and only-promiscuous proteins may be

single- or multi-domain proteins. Mixed architecture proteins comprise

Figure 5. Domain coverage by protein architecture type. Coverage of all domains by protein architecture type (top). ‘‘onlyrare’’ refer to
proteins comprising one or more rare domains. ‘‘onlypromis’’ refer to proteins comprising one or more promiscuous domains. ‘‘mixed’’ refer to
proteins comprising rare and promiscuous domains. Coverage of the 642 gold domains by protein architecture types (bottom). A gold domain is a
domain that participates in at least one gold standard domain-domain interaction (GDDI). For rare domain threshold values between 2 and 4
inclusive, even though only-rare proteins involve a larger fraction of all domains, they cover a smaller fraction of gold domains than only-promiscuous
proteins. Thus gold domains are more likely to be promiscuous domains. Mixed architecture proteins provide the largest coverage of gold domains
when the rare domain threshold is between 3 and 5 inclusive. This range lies within the range where mixed architecture proteins make up the largest
proportion of the protein population (Figure 4). So there exists a sweet spot where mixed architecture proteins are the most popular protein type
and provide the largest coverage of gold domains.
doi:10.1371/journal.pone.0088943.g005

DDIs from PPIs with Formal Concept Analysis
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Table 2. A cross-table representing the relation between proteins and domains associated with S. pombe in the Riley dataset.

Objects = Proteins (uid) Domain Freq.

10 1076 136 16 275 353 620 659 683 949

Attributes = Domains

APSES x 1

Ank x 1

Cyclin_C x 1

Cyclin_N x x 2

PBD x 1

Pfam-B_106217 x 1

Pfam-B_2441 x 1

Pfam-B_33993 x 1

Pfam-B_39251 x 1

Pfam-B_45975 x 1

Pfam-B_78326 x 1

Pkinase x x x x x 5

RA x 1

Ras x 1

SAM_2 x x 2

Domains per protein 1 1 2 4 1 4 2 1 2 3

E.g.: the domain set for protein 353, D(353) = {APSES, Ank, Pfam-B_39251, Pfam-B_45975}; and the protein set for domain Pkinase, P(Pkinase) = {10, 1076, 136, 16, 949}.
doi:10.1371/journal.pone.0088943.t002

Figure 6. The OA (fully-labeled) concept lattice for the S. pombe context in Table 2.
doi:10.1371/journal.pone.0088943.g006

DDIs from PPIs with Formal Concept Analysis
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both rare and promiscuous domains and are thus necessarily

multi-domain proteins. The proportion of mixed architecture

proteins is influenced by the proportions of rare and promiscuous

domains. When the rare domain threshold is between 2 and 16,

mixed architecture proteins make up the largest proportion (at

least a third) of the protein population in the Riley dataset. The

peak occurs at rare domain threshold 4 where 37.8% of the

proteins have mixed architecture.

The concept-based scoring method proposed in this paper does

not require or depend on the specification of a rare domain

threshold. However, since mixed architecture proteins are the

workhorse proteins of the proposed method (Results section), it is

reassuring to know that mixed architecture proteins are not rare

phenomena in the Riley dataset and that there exists a range of

rare domain threshold values where at least a third of the proteins

have mixed domain architecture. However for the concept-based

scoring method to be feasible at least in principle, the mixed

architecture proteins also need to cover gold domains.

Figure 5 illustrates how domains are covered by proteins of

different architectural types. At rare domain threshold 2 and

above, only-rare proteins cover a larger portion of all domains

than only-promiscuous proteins (Figure 5 top). However, the

coverage of gold domains by only-rare proteins exceeds the

coverage of gold domains by only-promiscuous proteins only when

the rare domain threshold is 5 and larger (Figure 5 bottom). Thus

for rare domain threshold values between 2 and 4 inclusive, even

though only-rare proteins involve a larger fraction of all domains,

they cover a smaller fraction of gold domains than only-

promiscuous proteins. This agrees with the notion that gold

domains are more likely to be promiscuous.

Up to and including rare domain threshold 11, proteins with

mixed architecture provide the largest coverage of all domains

(Figure 5 top). However, mixed architecture proteins provide the

largest coverage of gold domains only when the rare domain

threshold is between 3 and 5 inclusive (Figure 5 bottom). This

range lies within the range where mixed architecture proteins

make up the largest proportion of the protein population (Figure 4).

So there exists a sweet spot where mixed architecture proteins

form the most popular protein type and have the largest coverage

of gold domains.

Method

Formal Concept Analysis
Formal Concept Analysis (FCA) [9] is a technique to organize a

(finite) set of objects G by their common attributes and dually a

(finite) set of attributes M by their common objects into a (finite) set

of partially ordered pairs of sets called (formal) concepts. Implicit is a

binary relation I # G x M which associates objects with attributes.

(g, m) M I or equivalently g I m denotes object g has attribute m. The

triplet (G, M, I) forms the (formal) context within which a FCA is

carried out. For small finite examples, a context can be specified

completely with a cross-table. The resulting set of concepts,

denoted B(G, M, I), forms a concept lattice.

For the application in this paper, the set of objects is the set of

proteins, i.e. G = P, the set of attributes is the set of domains, i.e.

M = D, and g I m denotes protein g has domain m, i.e. m M D(g) and

dually g M P(m). Table 2 is the cross-table for the relation between

proteins and domains associated with the organism S. pombe in the

Riley dataset. The (fully-labeled) concept lattice depicting this

context is given in Figure 6.

FCA in more detail. This section describes FCA for those

unfamiliar with the theory and in enough detail to support the

discussion in this paper. The more mathematically inclined are

referred to [9] for a rigorous and complete exposition of FCA.

A concept c M B(G, M, I) is an ordered pair of sets (O, A) such that

O # G, A # M and the set of all attributes common to all objects in

O under relation I is A and the set of all objects with attributes in A

Figure 7. The oa (reduced) concept lattice for the context in Table 2. The OA concept lattice was presented in Figure 6. The oA and Oa
concept lattices are given in Figures S2 and S3 in File S1, respectively.
doi:10.1371/journal.pone.0088943.g007

DDIs from PPIs with Formal Concept Analysis
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under relation I is O. More formally, the last two conditions are

A = O9 = {m M M | (mg M O) g I m} and O = A9 = {g M G | (mm M A) g I

m} respectively. If this seems a bit chicken-and-egg, these last two

conditions can be satisfied by working from the power-set of

objects or alternatively from the power-set of attributes; but there

exist more efficient FCA algorithms such as Lindig’s C

implementation called Colibri-concepts [12] which is freely available

on-line and runs on Linux. For the complete protein-domain

relation in the Riley dataset, Colibri-concepts produced a lattice

with 8,894 concepts in less than 5 minutes on a Linux machine

allocated with a maximum of 2 Gbs of memory.

The set of objects O is called the extent of concept c, and the set of

attributes A is known as the intent of concept c. A concept’s extent is

denoted O(c) and its intent as A(c). The prime symbol 9 denotes the

mapping from an extent to its intent and vice versa, i.e. let a

concept c = (O, A), then O9 = A, A9 = O, O = O0, A = O09, and so on.

This pair of maps between the set of extents and the set of intents

forms a Galois connection between the two partially ordered sets.

The statements O = O0 and A = O09 are true due to the maximal

condition for extents and intents. This implies that if a set of

objects (attributes) forms the extent (intent) of a concept, then the set

of objects (attributes) uniquely identifies the concept, and conversely

a concept unambiguously identifies its extent and its intent.

The set of concepts is ordered by set inclusion ÆB(G, M, I); #æ.
For two distinct concepts in B (G, M, I), (O1, A1) # (O2, A2) implies

O1 , O2 and dually A1 A2. The join (least upper bound) and meet

(greatest lower bound) are defined for every pair of non-

comparable concepts in ÆB(G, M, I); #æ. ÆB(G, M, I); #æ forms a

concept lattice. Intuitively, a concept lattice is a two-in-one lattice

with a right-side up lattice for the set of extents and an upside

down lattice for the set of intents. More formally, a concept lattice

is a complete lattice with a top element (G, ) and a bottom element

(, M). A complete lattice defined on a subset of a power-set is

closed under arbitrary joins (in the form of unions) and meets (in

the form of intersections) [13]. Within a concept lattice, the join

(supremum) of two arbitrary concepts c1 ~ c2 = ((O(c1) < O(c2))0,

A(c1) > A(c2) ), and the meet (infimum) of two arbitrary concepts

c1 ‘ c2 = ((O(c1) > O(c2), (A(c1) < A(c2))0 ). c1 ~ c2 is a concept

since A(c1) > A(c2) = (O(c1) < O(c2))9 and (O0, O9) is always a

concept. Similarly, c1 ‘ c2 is a concept since O(c1) > O(c2) = (A(c1)

< A(c2))9 and (A9, A0) is always a concept. The intersection of any

number of extents (intents) always results in an extent (intent). The

same is not generally true for unions of extents (intents) [9].

Rather, (O(c1) < O(c2)) # (O(c1) < O(c2))0 and (A(c1) < A(c2)) #
(A(c1) < A(c2))0 hold.

Figure 8. Key steps in the proposed concept-based scoring and ranking method for domain-pairs. See text for further explanation and
Figures S6 and S9 in File S1 for a walk-through on how to compute the ,CB, PG. value for a domain-pair.
doi:10.1371/journal.pone.0088943.g008
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The down-set of c represented as Q{c} = {x M ÆB(G, M, I); #æ | x

# c}. The up-set of c represented as q{c} = {x M ÆB(G, M, I); #æ |

c # x}. The extent of a concept c is the union of the extent of each

concept M Q{c}. The intent of a concept c is the union of the

intent of each concept M q{c}. This relationship between concepts

makes it possible to reduce the labeling of concepts to objects and

attributes specific to a concept (Figure 7). Changing the labels does

not change the concepts. A concept lattice with reduced labeling is

a reduced concept lattice.

There are then four possible ways to label a concept lattice: (i)

with complete object labels and complete attribute labels (OA); (ii)

with reduced object labels and reduced attribute labels (oa); (iii)

with complete object labels and reduced attribute labels (Oa); and

(iv) with reduced object labels and complete attribute labels (oA).

The oa and oA combinations produce object-reduced concept lattices.

The oa and Oa combinations produce attribute-reduced concept

lattices. In an object-reduced concept lattice, object labels appear

exactly once and the set of object labels (proteins) is finite.

Similarly in an attribute-reduced concept lattice, attribute labels

appear exactly once and the set of attribute labels (domains) is

finite. Each combination is explored in this paper for the proteins

and their domains in the Riley dataset. It is possible for two

different combinations to produce two different outcomes because

the labels of objects and attributes are used instead of the objects

and attributes themselves. OL(c) refers to the set of object-labels for

O(c), and similarly AL(c) refers to the set of attribute-labels for A(c).

Organization of domains and proteins in a concept

lattice. Promiscuous domains gravitate towards the top of an

attribute-reduced concept lattice. This is expected since for a

domain to be promiscuous, it must occur in many proteins. In

FCA language, involving more proteins (objects) means a larger

extent, and as one goes up in a concept lattice extents increase in

size, culminating in the top element whose extent is the entire

object set. For S. pombe, the domains with frequency N(d) .1 are

Pkinase (5), SAM_2 (2) and Cyclin_N(2) (Table 2) and they reside

in concepts one step away from the top element but two steps away

from the bottom element (Figure 7). In contrast, the rare (non-

promiscuous) domains gravitate towards the bottom of an

attribute-reduced concept lattice since by their rarity, rare

domains command smaller extents.

The position of a protein in an object-reduced concept lattice

depends on the promiscuity of its domain(s). Three of the four

single-domain proteins for S. pombe have promiscuous domains

(N(d) .1), and these single-domain proteins (10, 1076 and 659)

reside in concepts one step away from the top element in Figure 7.

A multi-domain protein with a combination of promiscuous and

rare domains will appear in an object-reduced concept lattice with

its rare domains. E.g. protein 620 appears with domain Cyclin_C

and not with Cyclin_N (Figure 7). Also in Figure 7, protein 16

appears with its Pfam-B domains (which tend to be rare) in

concept 2 and not with the more promiscuous Pkinase in concept

1. In general therefore, proteins with rare domains will gravitate

towards the bottom of an object-reduced concept lattice, and

proteins with only promiscuous domains will gravitate towards the

top of an object-reduced concept lattice. Further, because

attributes accumulate downwards in a concept lattice, concepts

containing multi-domain proteins will tend to be sub-concepts of

concepts containing single-domain proteins. These points are

illustrated in Figure S4, Figure S5, and Table S1 in File S1.

In a reduced concept lattice, there will be concepts with an

empty object-label set or an empty attribute-label set. At the very

least the object-label sets and attribute-label sets of the top and

bottom elements will be, by definition, empty. The more

numerous rare domains will ‘‘consume’’ proteins and leave fewer

proteins available to fill the object-label sets of concepts with

promiscuous domains. Thus an empty object-label set OL(c) = is

more likely towards the top of an object-reduced concept lattice.

Concepts with multi-domain protein(s) in their extents will tend to

have empty attribute-label sets in an attribute-reduced concept

lattice unless the multi-domain protein(s) introduces ‘‘new’’

domains. E.g. concept 7 in Figure 7 has an empty attribute-label

set since the domain set it ‘‘inherits’’ is {Pkinase, SAM_2} which is

exactly the domains of protein 136. In contrast, the attribute-label

set of concept 2 is not empty but is filled with domains specific to

protein 16. Hence, empty attribute-label set AL(c) = is more likely

towards the bottom of an attribute-reduced concept lattice. The

presence of empty object-label sets and empty attribute-label sets

influences the number of concept-pairs available to evaluate

domain-pairs, and the diversity of CB and PG values produced by

the concept-based scoring method.

Domain-pair Scoring and Ranking
One of the earliest methods for detecting over-represented

‘correlated sequence-signatures’ e.g. domain-pairs, in a database of

protein-protein interactions used the log-odds of the ratio between

observed and expected frequencies to score pairs of sequence-

signatures [14]. Larger scores indicate a frequency of occurrence

in the database which is higher than expected by random chance.

This method was called the Association method in [1] and

subsequently adopted in other papers, e.g. [6].

Specifically, the score of a domain-pair (a, b) with the

Association method is AM(a, b) = log2 [M(a, b)/(N(a) 6 N(b))].

M(a, b) = | {(x, y)1 | a M D(x) and b M D(y)} | is the number of

Figure 9. Concept-pair promiscuity decreases as score increas-
es. Spearman’s rank correlation rho for OA is 20.4934008, and for oA is
20.3893343. Promiscuity of a domain-pair (a, b) is [N(a)+N(b)]/2 where
N(d) is the number of times domain d occurs in a set of proteins. For a
concept-pair (ci, cj), promiscuity is the average promiscuity of all
domain-pairs in AL(ci) 6 AL(cj), and the score is the log-odds ratio of
interacting protein-pairs to non-interacting protein-pairs in OL(ci) 6
OL(cj). For OA concept-pairs that produce a score in [212, 210), the
median promiscuity is 133.5 and the mean promiscuity is 129.2; when
the score is 0.0, the median promiscuity falls to 13.25 and the mean
promiscuity is 23.47. There were no oA scores smaller than 212.0. In
non-attribute-reduced concept lattices (OA and oA), a domain-pair can
be generated by more than one concept-pair (ci, cj) through the cross-
product of their attribute-label sets, i.e. AL(ci) 6 AL(cj). This paves the
way for a more promiscuous domain-pair to have the same score as a
less promiscuous domain-pair. The piggy-backing mechanism takes
effect when a domain-pair improves its score because either one or
both of its domain partners happen to occupy the same attribute-label
set as one or more rarer domains.
doi:10.1371/journal.pone.0088943.g009
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interacting protein-pairs in the database such that a is a domain of

protein x and b is a domain of protein y. N(d) is the number of

proteins in the database that has domain d in its domain

architecture. The scores are negative in value with a maximum

of log2(1) = 0 which is the score for domain-pairs that occur only

between interacting protein-pairs, and an undefined minimum of

log2(0) which is the score for domain-pairs that occur only between

non-interacting protein-pairs. Domain-pairs with larger scores are

ranked more highly.

The Riley dataset comprises proteins from multiple organisms,

and both interacting and non-interacting proteins are restricted to

those from the same organism. To handle this situation, AM(a,

b) = log2 [M(a, b)/(M(a, b)+Z(a, b))]. M(a, b) is defined previously.

Z(a, b) = | {(x, y)0 | a M D(x) and b M D(y)} | is the number of non-

interacting protein-pairs in the database such that a is a domain of

protein x and b is a domain of protein y.

Concept-based Scoring and Ranking ,CB, PG.
The concept-based scoring scheme proposed in this paper (Figure 8)

also uses the log-odds ratio AM(a, b) described before, but the

scoring is done using pairs of concepts. The concepts used exclude

the top and the bottom concepts, and any other concepts with an

empty object-label set or an empty attribute-label set. Protein-pairs

generated by the object-label sets of a concept-pair, i.e. OL(c1) 6
OL(c2), are used to compute the log-odds ratio which is then used

to evaluate the domain-pairs generated by the attribute-label sets

of said concept-pair, i.e. AL(c1) 6AL(c2). Essentially, each concept-

pair (ci, cj) provides a different context (in the form of protein-pairs)

to evaluate a domain-pair. The set of concept pairs {(ci, cj)} used to

evaluate a domain-pair (a, b) is determined by the attribute-label

sets, and comprises all distinct concept-pairs where a M AL(ci) and b

M AL(cj). Concept-based scoring and ranking is demonstrated in

Figures S6, S7, S8 and S9, and Table S2 in File S1.

With concept lattices that are not attribute-reduced (oA and

OA), a domain-pair can have more than one score. CB(a, b) is the

largest score found for domain-pair (a, b), while PG(a, b) is the

number of unique scores for (a, b) which are strictly smaller than

CB(a, b). Domain-pairs with larger CB scores are ranked more

highly. The PG scores help to break ties between domain-pairs

Figure 10. Impact of domain shuffling on domain architecture (top). Each point plots the minimum and maximum domain frequency in a
protein. For example, the original domain set for protein 949, D(949) = {PBD, Pfam-B_2441, Pkinase} (Table 2). The minimum and maximum
occurrence values for D(949) are 1 and 5 respectively. A point (x, y) in the plot denotes the minimum and maximum domain occurrence in a protein.
Prior to domain shuffling, there are proteins with both rare and promiscuous domains, as shown by the black markings in the upper left of the plot.
After domain shuffling, proteins have domains which are either rare only or promiscuous only, as shown by the orange markings on the y = x line.
Domain shuffling changes the original heterogeneous domain architecture to a homogeneous one in terms of domain occurrence. Gold domain
coverage by protein type after domain shuffling (bottom). At all rare domain threshold values, at least 99.5% of the 642 gold domains are
covered by either proteins comprising only rare domains or proteins comprising only promiscuous domains. When the rare domain threshold is 4, the
coverage comes very close to a 50:50 split. Compare with Figure 5 (bottom) for gold domain coverage by protein type before domain shuffling.
doi:10.1371/journal.pone.0088943.g010
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with identical CB scores. Given identical CB scores, domain-pairs

with larger PG scores are ranked more highly.

A domain-pair may be left scoreless if it was not evaluated at all

(this is possible with the oa concept lattice when many concepts

are excluded because of empty object-label or empty attribute

label sets), or if its evaluation results in an undefined score, i.e.

log2(0). Scoreless domain-pairs are given a negative PG value, and

are placed in random order below domain-pairs with CB scores.

The Oa scores are identical to those obtained with the Associative

method since every domain appears exactly once in an Oa
concept lattice and all proteins containing a domain appears in the

object-label set of a concept whose attribute-label set has the

domain.

The number of times a domain-pair is evaluated depends on the

promiscuity of the domain-pair and the type of concept lattice

used. A domain-pair can be evaluated at most once in an attribute-

reduced concept lattice. When the concept lattice type permits (i.e.

attribute-labels are not reduced), domains that are more promis-

cuous have more opportunity to appear in different attribute-label

sets. The question then becomes is it better for a promiscuous

domain to appear with other promiscuous domains or with rare

domains. The results suggest that a promiscuous domain-pair is

more likely to improve its score if either one or both of its partner

domains appear with rare domains. This is because rare domains

tend to produce fewer non-interacting protein-pairs. The piggy-

backing mechanism takes effect when a domain-pair improves its

score because one or both of its domain partners happen to occupy

the same attribute-label set as one or more rarer domains.

Evidence of piggy-backing in non-attribute-reduced concept

lattices is supported by the presence of positive PG values, and a

negative correlation between score and average promiscuity of

domain-pairs. This negative correlation can be observed when

evaluating individual domain-pairs (e.g. in Figures S6 and S9 in

File S1), and also in general over all concept-pairs (Figure 9). The

facility for promiscuous domains to appear with rare domains in

the same attribute-label set is provided by mixed architecture

proteins.

Thus, several conditions favourable to the concept-based scor-

ing method arise:

i. The domain-pairs that need to be ranked highly are

promiscuous. The GDDIs are promiscuous.

ii. It must be possible to evaluate a domain-pair with different

protein-pairs. This is possible only with concept lattices that

Figure 11. Scatter-plot of GDDI rank vs. promiscuity, scenario A Pe = 1.0. All the 177,233 putative DDIs were ranked as described in the text,
and the ranks of GDDIs were extracted to create the plots. Promiscuity of a domain pair (a, b) = [N(a)+N(b)]/2 where N(d) is the number of times
domain d occurs in a protein set. Only the concept lattices which are not attribute-reduced (OA and oA) exhibit the desired negative relationship,
which means they tend to rank promiscuous GDDIs more highly. The relationship is strongly positive when the Oa rankings are used. Oa results are
identical to the Associative method which is known to penalize promiscuous domain-pairs. There is also a tendency for the oa concept lattice to rank
promiscuous GDDIs less highly, but this positive relationship is not so apparent because scoreless GDDIs are included in the plot (they start at rank
49,378 and onwards to the right of the plot). When the oa concept lattice is used, only 350 of the 783 GDDIs have CB scores; the remaining GDDIs are
scoreless and are ranked randomly but below the GDDIs with CB scores. The same pattern of relationships is observed with evaluation scenarios B
and C (Figures S11 and S12 in File S1).
doi:10.1371/journal.pone.0088943.g011
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are not attribute-reduced, i.e. OA and oA. Strictly speaking

then, neither oa nor Oa can produce concept-based scores

since their PG values are always # 0. The Oa scores are

identical to those of the Association method.

iii. To improve the score of promiscuous domain-pairs through

piggy-backing, it must be possible for promiscuous domains

to reside with rare domains in one or more attribute-label

sets. This is made possible by multi-domain proteins, in

particular those which have a mix of promiscuous and rare

domains in their architecture, i.e. mixed architecture

proteins. Within a sensible range of rare domain thresholds,

a substantial proportion of proteins in the Riley dataset are

proteins with mixed architecture (Figure 4) and these proteins

cover a substantial proportion of the gold domains (Figure 5).

Results

The concept-based scoring method is applied to the Riley

dataset using all four types of concept lattices. The algorithm in

Figure 8 was implemented in C++ and compiled with g++ -O3.

No special effort was made to optimize the code. With the given

dataset, the program ran to completion in under 15 minutes with 2

GB of memory on a 64-bit Linux machine. The domain-pair

rankings are evaluated on three fronts: (i) Correlation between

rank and promiscuity of GDDIs, (ii) GDDI recovery and (iii) the

Nye test [15]. The hypothesis is that when conditions are

favourable to piggy-backing, i.e. the concept lattice is not

attribute-reduced and a good proportion of proteins are of mixed

architecture, highly ranked DDIs are expected to be more

promiscuous. Since GDDIs are more promiscuous than non-

GDDIs, highly ranked domain-pairs will be enriched with GDDIs.

This in turn will aid GDDI recovery and increase the pass rate on

the Nye test.

Four Evaluation Scenarios
The concept-based scoring method is evaluated under the

following four circumstances, all of which are related to input data

characteristics. In all scenarios, R’s Wilcox.test confirms that the

set of GDDIs is still significantly more promiscuous than the set of

non-GDDIs. More promiscuous GDDIs are more likely to survive

the changes. GDDIs make up 0.44% of DDIs in A, 0.60% in B,

0.21% in C and 0.11% in D. Median promiscuity of GDDIs to

DDIs is 7.0:5.0 in A, 8.5:5.5 in B, 9.5:5.5 in C and 15.0:4.0 in D.

With a smaller GDDI to DDI percentage and a much larger

GDDI to DDI promiscuity ratio, scenario D is the most difficult of

all. The resultant number of PPIs, DDIs, GDDIs and GPPIs for

each scenario is summarized in Table S3 in File S1.

Figure 12. Scatter-plot of GDDI rank vs. promiscuity, scenario D shuffled domains, Pe = 1.0. Mixed architecture proteins play a critical role
in the ability of non-attribute-reduced concept lattices to rank promiscuous GDDIs highly. All the 194,752 putative DDIs were ranked as described in
the text, and the ranks of GDDIs were extracted to create the plots. Promiscuity of a domain pair (a, b) = [N(a)+N(b)]/2 where N(d) is the number of
times domain d occurs in a protein set. The concept lattices which are not attribute-reduced (OA and oA) no longer exhibit the desired negative
relationship (Figure 11). Instead, they tend to rank promiscuous GDDIs less highly. The relationship is still strongly positive when the Oa rankings are
used. Oa results are identical to the Associative method which is known to penalize promiscuous domain-pairs. There is still also a tendency for the
oa concept lattice to rank promiscuous GDDIs less highly, but this positive relationship is not so apparent because scoreless GDDIs are included in
the plot (they start at rank 28,457 and onwards to the right of the plot). When the oa concept lattice is used, only 59 of the 214 GDDIs have CB scores;
the remaining GDDIs are scoreless and are ranked randomly but below the GDDIs with CB scores.
doi:10.1371/journal.pone.0088943.g012
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A. Under the default or original circumstance, the complete

Riley dataset is used without modification. Since all PPIs in

the given input data are used, the probability of including a

PPI, Pe is 1.0.

B. PPI data obtained via high-throughput methods are error-

prone. To account for the inaccuracies in PPI data, the

robustness of computational methods when dealing with PPIs

is commonly tested by using Pe ,1.0. Ref. [6] for example,

reported the results for their method at Pe = 0.5. The

concept-based scoring method is also evaluated at Pe = 0.5,

that is each PPI from the set of PPIs in the Riley dataset is

included with 50% probability.

C. The log-odds ratio depends on the set of protein-pairs used

and also on the PPI network. To test the robustness of the

results against changes in PPIs, the nodes of each organism’s

PPI network were shuffled amongst themselves. Node

shuffling generates a new set of PPIs, but the number of

PPIs per organism and the original PPI network structure

(e.g. degree distribution, average path length, clustering and

degree-degree assortativity) remains unchanged. The new set

of DDIs overlaps but is no longer a subset of the original

DDIs.

D. Finally, to test the influence of domain architecture on the

results, the domains of proteins are shuffled. For this scenario

domain repetition within a protein is allowed and a protein

becomes a multi-set of domains. The shuffle changes the

frequency of domains in a small but still statistically

significant way. The new set of DDIs overlaps but is no

longer a subset of the original DDIs. Domain shuffling was

accomplished with the following steps:

1. Place every instance of a domain in the input data into a

sequence, sorted by frequency of occurrence. Domain

Figure 13. Effect of domain-shuffling on the relation between attribute-label frequency and domain frequency. The scatter-plot at the
bottom zooms in on the first 100 domain frequency values. There is a strong positive correlation prior to domain-shuffling (scenario A) which is lost
after domain-shuffling (scenario D). The lost of this strong positive correlation impairs piggy-backing (Figure 14).
doi:10.1371/journal.pone.0088943.g013
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instances with identical frequency are shuffled amongst

themselves.

2. Sort the proteins by their size, i.e. number of domains they

contain.

3. Starting from the largest to the smallest protein, assign

domains to proteins starting from the least to the most

frequently occurring domains. The reason for this is to

reduce domain repetition within a protein.

The impact of shuffling on domain architecture is shown in

Figure 10 (top) which plots the minimum and maximum domain

occurrence for each protein. Points from the original domain

architecture (prior to domain shuffling) concentrate on the left half

of the plot, while points from the shuffled (mutated) domain

architecture occupy the y = x line. This reveals that mixed domain

architecture in proteins is destroyed by the shuffling. The

homogeneity in the mutated proteins is because protein sizes are

shorter than the length of a subsequence of domains with identical

occurrence. Gold domain coverage by protein type after shuffling

is given in Figure 10 (bottom). At all rare domain threshold values,

at least 99.5% of the 642 gold domains are covered by either

proteins comprising only rare domains or proteins comprising only

promiscuous domains. When the rare domain threshold is 4, the

coverage comes very close to a 50:50 split. Compare with Figure 5

(bottom) for gold domain coverage by protein type before domain

shuffling. Domain shuffling changes the context between proteins

and domains. As such, a new concept lattice is computed.

Correlation between GDDI Rank and Promiscuity
Figure 11 plots the promiscuity of GDDIs against their rank

obtained with different concept lattice types. Promiscuity of a

domain pair (a, b) = [N(a)+N(b)]/2 where N(d) is the number of

times domain d occurs in a protein set. The GDDI rankings were

extracted from the rankings of all DDIs (ranking domain-pairs is

described in step 6 of Figure 8). However, to reduce rank ties a

small random element is added to GDDIs with the same ,CB,

PG. score such that each GDDI has a unique numeric rank

value. Ranking starts at 0 and declines as numeric values get

larger. GDDIs with larger ,CB, PG. scores have higher rank but

smaller numerical rank value. For this reason, the expected

correlation is a negative one.

Of the four plots in Figure 11, only the OA and oA ones exhibit

a negative correlation between GDDI promiscuity and rank. A

negative correlation implies that higher ranking GDDIs tend to be

more promiscuous. The relationship is strongly positive (Spear-

man’s rank correlation rho = 0.88) when the Oa rankings are used.

Oa results are identical to the Associative method which is known

to penalize promiscuous domain-pairs.

There is also a tendency for oa to rank promiscuous GDDIs less

highly (Spearman’s rank correlation rho = 0.49), but this positive

relationship is not as strong as Oa’s because scoreless GDDIs are

included in the plot (they start at numeric rank value 49,378 and

above). When the oa concept lattice is used, only 350 of the 783

GDDIs have CB scores. The remaining 55.3% of GDDIs which

are scoreless are ranked in random order below the GDDIs with

CB scores. But R’s Wilcox.test confirms that the domain-pairs

(including non-GDDIs) with CB scores are significantly less

promiscuous than the scoreless domain-pairs. Hence, the oa
concept lattice tends to ranks more promiscuous domain-pairs less

highly.

The increased presence of empty object-label sets and empty

attribute-label sets in a reduced (oa) concept lattice is the reason

many domain-pairs are scoreless. Concepts with an empty object-

label set or an empty attribute-label set are ignored when

computing scores for domain-pairs (Figure 8). For the Riley

dataset, 127856/177233 = 72.14% of the possible domain-pairs

are left scoreless by the oa concept lattice. The many scoreless

domain-pairs means the oa results are unsuitable or too weak for

identifying strong interactions in protein complexes. oa performs

poorly in the Nye test (Results section). Although oA has empty

object-label sets and Oa has empty attribute-label sets, they do not

produce any scoreless domain-pairs for the Riley dataset. The

number of concepts used by each type of concept lattice for the

Riley dataset is given in Table S4 in File S1.

The anti-correlation in Figure 11 is observed with evaluation

scenarios B and C (Figures S10 and S11 in File S1), which implies

the robustness of the GDDI rank vs. promiscuity relationship

against changes in PPIs. However, this relationship is vulnerable to

changes in protein domain architecture. When the domains are

shuffled (scenario D), both OA and oA GDDI rankings become

positively related with promiscuity, i.e. less promiscuous GDDIs

are ranked more highly (Figure 12). Domain shuffling destroys

proteins with mixed architecture (Figure 10). Hence, mixed

Figure 14. Effect of domain-shuffling on PG values and piggy-
backing. In both scenarios A and D, OA produces a larger range of PG
values than oA (top). Prior to domain-shuffling (A), the range of PG
values is [0, 523] for OA and [0,21] for oA. Post domain-shuffling (D),
the range of PG values is [0, 16] for OA and [0, 9] for oA. A reason for
this is OA uses many more concepts than oA to score domain-pairs
(Table S4 in File S1). In both scenarios A and D, OA has more piggy-
backing, as evidenced by its much higher proportion of domain-pairs
with PG .0. A domain-pair with PG .0 means its CB score is the result
of one or more piggy-backs. The text discusses the pros and cons of
OA’s higher piggy-backing potential. For oA, the proportion of
domain-pairs with PG .0 drops from 4.83% (8555/177233) to 1.69%
(3284/194752) when the domains are shuffled. With fewer piggy-backs,
the results for oA deteriorate. PG is always 0 for attribute-reduced
concept lattices (oa and Oa).
doi:10.1371/journal.pone.0088943.g014
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architecture proteins influences the ability of non-attribute-

reduced concept lattices to rank promiscuous GDDIs highly.

Domain Shuffling and Mixed Architecture Proteins
Domain shuffling in scenario D destroys the mixed architecture

proteins (Figure 10) and changes the protein-domain context into a

more fragmented one. The number of concepts increases from

8,892 to 11,032, and the length of the longest path from the top

element to the bottom element of the concept lattice reduces from

10 to 4. The most pertinent consequence of the changes in the

concept lattice in D is that there is no longer a strong positive

correlation between attribute-label frequency (the number of times

a domain appears in an attribute-label set in a concept lattice) and

domain frequency (the number of times a domain appears in a

protein in a set of input proteins) (Figure 13). Instead, attribute-

labels appear almost uniformly in frequency regardless of domain

frequency, which is a similar relationship that attribute-labels have

with domain frequency in attribute-reduced concept lattices. It is

not surprising then that both oA and OA produce similar results to

Oa in Figure 12, i.e. rank more promiscuous domain-pairs less highly.

The lost of the strong positive correlation between attribute-

label frequency and domain frequency means a reduction in the

number of contexts (sets of protein-pairs) to evaluate promiscuous

domain-pairs, and a decrease in piggy-backing opportunities.

Figure 14 (top) shows the decrease in the range of PG values as a

result of domain shuffling. The decrease in piggy-backing

opportunities becomes more severe when the concept lattice is

object-reduced. Under scenario D, only 1.69% of the domain-

pairs evaluated with oA have PG .0 (Figure 14 bottom). While

the range of PG values becomes much narrower for OA under

scenario D, the proportion of domain-pairs still able to piggy-back

in OA remains above 62%. With a weakened piggy-backing

mechanism, both oA and OA no longer rank more promiscuous

domain-pairs more highly (Figure 12).

GDDI Recovery
GDDI recovery is concerned with finding as many GDDIs as

possible while making as few mistakes as possible. The GDDIs are

sourced from the iPfam database [6]. This is a test of quantity, not

quality. All GDDIs are treated equally, i.e. GDDIs are not

Figure 15. Recovery of GDDIs [6]. GDDIs make up 0.44% of DDIs in A, 0.60% in B, 0.21% in C and 0.11% in D. Median promiscuity of GDDIs to
DDIs is 7.0:5.0 in A, 8.5:5.5 in B, 9.5:5.5 in C and 15.0:4.0 in D. Except for the concocted scenario D, at high Specificity (FPR # 0.2), concept-based
rankings produced with concept lattices that are not attribute-reduced (OA and oA) outperform (have higher Sensitivity or larger TPR) those by
concept lattices that are attribute-reduced (Oa and oa). In scenarios A to C, oA outperforms OA. This outcome holds even when DOMINE [18] and
3did [19] domain-pairs are used to evaluate the rankings (Figure 16). The quality of the oA domain-pair rankings becomes more evident by
examining its top 100 domain-pairs (Figure 17 and File S2). OA’s poorer performance in scenarios A to C is attributed to ‘‘excessive’’ piggy-backing.
Scenario D shows that oA’s GDDI recovery is more sensitive to changes in protein domain architecture than OA’s. The changes introduced by
domain shuffling in D reduce oA’s piggy-backing potential and its GDDI recovery suffers as a result. In contrast, OA is able to retain some of its
previously ‘‘excessive’’ piggy-backing potential (Figure 14). Nonetheless, the GDDIs recovered at low FPR by OA in scenario D are of the less
promiscuous variety (Figure 12). In all four scenarios, the oa concept lattice leaves at least 72% domain-pairs and at least 55.30% GDDIs scoreless.
Also, the Oa rankings produced the worst GDDI recovery performance in all four scenarios.
doi:10.1371/journal.pone.0088943.g015
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differentiated by their promiscuity. GDDI recovery is performed

by inspecting domain-pairs in descending rank order and

obtaining the True Positive Rate (TPR) and False Positive Rate

(FPR) for each unique ,CB, PG. score [17]. TPR is the number

of GDDIs found so far divided by the total number of GDDIs to

find. FPR is the number of non-GDDIs met so far divided by the

total number of non-GDDIs. The total number of non-GDDIs is

the total number of DDIs less the total number of GDDIs.

For the problem of identifying reliable DDIs, it is preferable to

keep the FPR low. Even at FPR = 0.2, there are already 35,290

false positives to eliminate either experimentally or through

literature search in scenario A. Further, errors in predicting DDIs

can be propagated to other areas that rely on DDI data, such as

prediction of protein-protein interactions and identification of

protein binding surfaces. Hence, the argument for low FPR or

high Specificity. A cost-efficient high-throughput method to

eliminate non-interacting domain-pairs with high confidence

would render computational efforts to predict reliable DDIs

obsolete.

The TPR vs. FPR or ROC graphs are shown in Figure 15.

Except for the concocted scenario D, when FPR # 0.2, rankings

produced by the non-attribute-reduced concept lattices (OA and

oA) have larger TPR or higher Sensitivity than the attribute-

reduced concept lattices (Oa and oa). This outcome supports the

hypothesis that using concept lattices that are not attribute-

reduced is necessary to create a favourable condition for the

concept-based scoring method to identify GDDIs. This outcome is

robust to changes in the PPI data as evidenced by the results from

scenarios B and C. The oa rankings become slightly more

competitive when FPR $0.25, but the rankings quickly become

random as oa is unable to score many domain-pairs due to empty

object-label and empty attribute-label sets in the oa concept

lattice. For instance, 72.14% of the possible domain-pairs and

55.3% of GDDIs are left scoreless by oa in scenario A. The Oa
rankings or Associative method gave the worst GDDI recovery

performance.

Except for the concocted scenario D, up to an FPR as large as

0.5, oA’s GDDI recovery dominates that of OA. A closer look at

Figure 16. Recovery of domain-pairs in DOMINE [18] (top), and in 3did (Jul-25-2013 release) [19] (bottom). At high Specificity (FPR #
0.2), oA’s TPR dominates the other three rankings. All rankings were made under scenario A conditions.
doi:10.1371/journal.pone.0088943.g016
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the top 100 domain-pairs (File S2) reveals that this could be due to

excessive piggy-backing in the OA concept lattice. With no empty

object-label sets, OA generates many more contexts than oA to

evaluate domain-pairs thereby creating more piggy-backing

opportunities. A consequence of this is more opportunity in OA
to promote promiscuous domain-pairs including non-GDDIs up

the ranks. Figure 14 shows the distribution of PG values generated

in scenario A. The OA PG values span a larger range than the oA
PG values. 62.4% of the domain-pairs have PG .0 when the OA
concept lattice is used, while only 4.8% do with oA. OA’s more

diverse PG values help it achieve a higher pass rate in the Nye test

than oA (Results section). However, high ranking non-GDDIs do

at times interfere with OA’s Nye test results (Results section).

Further evidence that the oA domain-pair rankings dominates

that of OA is given in Figure 16, which shows the recovery of

domain-pairs in DOMINE [18] and in 3did [19]. DOMINE is a

collection of known and predicted domain-pairs harvested from

experiments with high-resolution 3D structures and the results of

15 computational methods. 7,766 of the 177,233 domain-pairs in

the Riley dataset are found in DOMINE. 3did is a catalog of

domain-based interactions computationally derived from Pfam

domain definitions and PDB 3D structures. 1,148 of the 177,233

domain-pairs in the Riley dataset are found in 3did (Jul-25-2013

release). Of the 7,766 DOMINE domain-pairs, 663 are GDDIs

and 951 are 3did domain-pairs. Of the 1,148 3did domain-pairs,

650 are GDDIs. There are 581 domain-pairs in the Riley dataset

which is common to all GDDIs, DOMINE and 3did. At high

Specificity (FPR # 0.2), oA’s TPR dominates the other three

rankings. Of the four rankings (all made under scenario A

conditions), oA contains the most number of GDDIs, DOMINE

domain-pairs and 3did domain-pairs in the top 100 domain-pairs

(Figure 17). Amongst oA’s top 100 domain-pairs is domain-pair

(TPR, WD40) which is not a GDDI and whose interaction is

neither recorded in DOMINE nor predicted by 3did. However, a

Figure 17. Number of GDDIs [6], DOMINE domain-pairs [18] and
3did domain-pairs [19] found in the top 100 domain-pairs. Of
the four rankings (all made under scenario A conditions), oA contains
the most number of GDDIs, DOMINE domain-pairs and 3did domain-
pairs in the top 100 domain-pairs (File S2). The 26 GDDIs for oA
intersect with, but is not the same set as, the 26 3did domain-pairs for
oA. Amongst oA’s top 100 domain-pairs is domain-pair (TPR, WD40)
which is not a GDDI and whose interaction is neither recorded in
DOMINE nor predicted by 3did. However, a possible 3D structure for the
obesity-related protein adipose (adp) involves interaction between TPR
and WD40 domains [20].
doi:10.1371/journal.pone.0088943.g017

Figure 18. Nye test pass rate for the four concept lattice types in the four test scenarios. A higher pass rate means a larger proportion of
GPPIs have a GDDI as the highest ranking DDI. Except for D, concept lattices which are not attribute-reduced (oA and OA) have significantly higher
pass rates than concept lattices that are attribute-reduced. The number of GPPIs is different in each scenario since GPPIs depend on GDDIs and PPIs,
both of which are affected in scenarios B to D (Table S3 in File S1). GPPIs with only one DDI are included in the counts. The 2,326 GPPIs in A includes
546 single-DDI GPPIs. The Nye test results supports the hypothesis that in addition to a concept lattice that is not attribute reduced, mixed
architecture proteins are also necessary to create favourable conditions for concept-based scoring to do well.
doi:10.1371/journal.pone.0088943.g018
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possible 3D structure for the obesity-related protein adipose (adp)

involves interaction between TPR and WD40 domains [20].

The discussion so far all point to oA producing better GDDI

recovery results than OA. However, oA is more vulnerable to

changes in protein domain architecture than OA. When the

domains are shuffled to reduce the number of mixed architecture

proteins (scenario D), oA’s TPR which previously has been above

0.2 when FPR # 0.2 drops to less than 0.2. This decline in oA’s

GDDI recovery performance supports the notion that mixed

architecture proteins play an important role in the success of

concept-based scoring.

Domain shuffling also affects OA’s prioritization of promiscuous

domain-pairs, but the effect on GDDI recovery is dampened by

OA’s ability to provide many more contexts to evaluate domain-

pairs. In scenario D, the oA rankings are produced with only

53.71% of the concepts. In contrast, oA uses 82.38% of the

concepts in the other three scenarios (Table S3 in File S1). OA
always uses 100% of the concepts (with the top and bottom

elements are excluded). While domain shuffling reduces the range

of PG values for OA, the proportion of domain-pairs still able to

piggy-back in OA remains above 62%. In contrast, only 1.69% of

the domain-pairs evaluated with oA have PG .0 (Figure 14 bottom).

Thus even in concocted scenario D, the ability to piggy-back exerts a

strong influence on the performance of concept-based ranking.

As with the other three scenarios, many domain-pairs (85.39%

of the possible domain-pairs and 72.43% of GDDIs) are left

scoreless by oa in scenario D. The dismal performance in Oa’s

GDDI recovery is emphasized by the fact that reversing Oa’s

ranking substantially improves GDDI recovery (Oa_r plot in

Figure 15). There is no potential for piggy-backing when an

attribute-reduced concept lattice is used.

The Nye Test
This test is concerned with whether the highest ranking DDI for

a GPPI is a GDDI. It was first performed by Nye et al. [15] to

predict domain-domain contacts for interacting protein pairs, and

was used in [6] to evaluate their DDI prediction method. Strict

comparison is used for the Nye test in this paper, i.e. if a GPPI has

a non-GDDI with the same highest rank as a GDDI, the test fails

for said GPPI. A GPPI with more DDIs and a smaller GDDI/

DDI ratio is more challenging for the Nye test. A demonstration of

how to conduct the Nye test can be found in Figure S12 in File S1.

Results of the Nye test on the Riley dataset are summarized in

Figure 18. A higher pass rate means a larger proportion of GPPIs

have a GDDI as the highest ranking DDI. The concept lattices

Figure 19. Nye test results by difficulty. The Nye test is more difficult as the number of DDIs per GPPI increases (Figure S13 in File S1). Each bar
shows the fraction of GPPIs with x number of DDIs that pass the Nye test, i.e. where a GDDI is the highest ranking DDI, in scenario A. As the level of
difficulty increases, concept-based scoring and ranking made with the attribute-reduced concept lattices (Oa and oa) become less able to pass the
Nye test. With a few exceptions, regardless of difficulty, more GPPIs pass the Nye test with the OA ranking than with the oA ranking. This is
attributable to OA’s greater potential for piggy-backing (Figure 14). However, the piggy-backing mechanism is also available to promiscuous non-
GDDIs, and this causes some GPPIs to fail the Nye test when using the OA ranking. For example, the GPPI with 50 DDIs is (2252, 2530). This GPPI is
supported by only one GDDI (AAA, AAA), which has a promiscuity of 100. oA ranks (AAA, AAA) as the highest domain-pair for GPPI (2252, 2530) and
so the Nye test is passed. OA ranks (AAA, AAA) as the second highest, below (Pfam-B_1, AAA) which has a promiscuity of 189.5 but is not a GDDI, and
so the Nye test is failed. The Nye test is also passed by oa since (AAA, AAA) is the only domain-pair with a score for GPPI (2252, 2530). However, oa’s
Nye test performance on a GPPI with this high level of difficulty is more the exception than the norm.
doi:10.1371/journal.pone.0088943.g019
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that are not attribute-reduced (OA and oA) produce much higher

pass rates than the attribute-reduced concept lattices (Oa and oa).

OA’s higher pass rate is attributed to its greater piggy-backing

potential (Figure 14). This trend is consistent across all scenarios

except D where Oa performs slightly better than the other three

and appears less affected by changes in protein architecture. Oa’s

result is identical to that of the Associative Method and strictly

speaking is not concept-based.

The large drop in OA’s and oA’s Nye test pass rates in scenario

D reinforce the importance of the ability to piggy-back for the

success of the concept-based scoring method, and this ability is

substantially enhanced by the strong presence of mixed architec-

ture proteins. As previously discussed, domain shuffling changes

the domain architecture of proteins, specifically mixed architecture

proteins are now conspicuously absent in the protein population.

This architectural change affects the shape of the concept lattice

and a pertinent consequence is the lost of the strong positive

correlation between domain frequency and attribute-label fre-

quency (Figure 13). This lost reduces the number of contexts

(concept-pairs) within which to evaluate domain-pairs, and as a

result piggy-backing is drastically reduced (Figure 14). The Nye

test results supports the hypothesis that in addition to a concept

lattice that is not attribute-reduced, mixed architecture proteins

are also necessary to create favourable conditions for concept-

based scoring to do well.

The Nye test results for scenario A is broken down by difficulty

in Figure 19. The Nye test is more difficult for GPPIs that generate

a larger number of DDIs. Most GPPIs generate a small number of

DDIs, but there are GPPIs in the Riley dataset that generate well

over 40 DDIs each (Figure S13 in File S1). As the level of difficulty

increases, concept-based scoring and ranking made with the

attribute-reduced concept lattices (Oa and oa) become less able to

pass the Nye test. None of the GPPIs that generate more than 50

DDIs pass the Nye test when oa’s ranking is used. For the Oa
concept lattice (the Associative method), the cut-off point is even

earlier, at 16 DDIs. In contrast, several GPPIs with more than 50

DDIs could still pass the Nye test when ranking is based on

concept-based scores computed with the non-attributed-reduced

concept lattices (OA and oA).

Figure 20. Concept-based scoring and ranking in the absence of Pfam-B domains. Rankings were made under scenario A conditions.
Recovery of 3did domain-pairs for yeast (top-left) and human (bottom-left). Without Pfam-B domains, the ROC curve for Oa is no longer below the
y = x line as it was in Figure 15. Nonetheless, at high Specificity (FPR # 0.2), the Sensitivity (TPR) of non-attribute-reduced concept lattices (OA and
oA) still dominate that of the attribute-reduced concept lattices (Oa and oa) although now it is no longer as clear as it was in Figure 15 that oA’s TPR
dominates OA’s TPR. The point is not to quibble about the difference between OA and oA, but between attribute-reduced where piggy-backs are
impossible and non-attribute-reduced where piggy-backs are possible. The ROC curves show that in the absence of Pfam-B domains and on a more
current dataset for single organisms, both OA and oA still outperform both Oa and oa. The Nye test for yeast (top-right) and for human (bottom-
right) is also more successfully passed by both OA and oA than either Oa or oa.
doi:10.1371/journal.pone.0088943.g020
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With a few exceptions, regardless of difficulty, more GPPIs pass

the Nye test with the OA ranking than with the oA ranking

(Figure 19). This is attributable to OA’s greater potential for piggy-

backing. Compared with oA, OA produced a larger range of PG

values and a greater proportion of its domain-pairs piggy-backed

(Figure 14). However, the piggy-backing mechanism is also

available to promiscuous non-GDDIs, and this causes some GPPIs

to fail the Nye test when using the OA ranking. For example, the

GPPI with 50 DDIs is (2252, 2530). This GPPI is supported by

only one GDDI, (AAA, AAA), which has a promiscuity of 100. oA
ranks (AAA, AAA) as the highest domain-pair for GPPI (2252,

2530) and so the Nye test is passed. OA ranks (AAA, AAA) as the

second highest, below (Pfam-B_1, AAA) which has a promiscuity

of 189.5 but is not a GDDI, and so the Nye test is failed. The Nye

test is also passed by oa since (AAA, AAA) is the only domain-pair

with a score for GPPI (2252, 2530). However, oa’s Nye test

performance on a GPPI with this high level of difficulty is more the

exception than the norm.

Discussion

The previous case with GPPI (2252, 2530) illustrates how the

presence of promiscuous Pfam-B domains can cloud the Nye test

results for OA. These promiscuous Pfam-B domains also suppress

GDDI recovery for OA. All domain-pairs in OA’s top 100 that do

not involve a Pfam-B domain is either a GDDI, or identified in

DOMINE or 3did (File S2). However Pfam-B domains are more

likely to be rare domains. Of the 12,455 domains in the Riley

dataset, 9,720 (78%) are Pfam-B domains. Of the Pfam-B

domains, 65% occur in only one protein and 93.5% occur in

three or fewer proteins. As previously acknowledged [10], the

presence of numerous rare Pfam-B domains suppresses the results

for the Association method (Oa). Therefore, there is a need to

evaluate the effectiveness of the concept-based scoring method in

the absence of Pfam-B domains and on a more current dataset for

single organisms. The organisms tested here are yeast (NCBI taxid

559292) and human (NCBI taxid 9606), and the data come from

Biogrid (version 3.2.107) [22], Pfam (version 27.0) [21] and 3did

(Jul-25-2013 release) [19] which are all publicly available and the

most recent at the time of preparing this publication (Table S5 in

File S1). The results are reported in Figures 20 and 21. All

rankings were made under scenario A conditions.

Without Pfam-B domains, the ROC curve for Oa is no longer

below the y = x line as it was in Figure 15. Nonetheless, at high

Specificity (FPR # 0.2), the Sensitivity (TPR) of non-attribute-

reduced concept lattices (OA and oA) still dominate that of the

attribute-reduced concept lattices (Oa and oa) although now it is

no longer as clear as it was in Figure 15 that oA’s TPR dominates

OA’s TPR (Figure 20 left). Without Pfam-B domains, both oA and

OA still have more 3did domain-pairs in their top 100 than both

Oa and oa (Figure 21). However, in contrast to Figure 17, now

OA has more 3did domain-pairs than oA. This is because there

are no promiscuous Pfam-B domains to cloud OA’s ranking. The

point here is not to quibble about the difference between OA and

oA (although computation wise, OA takes longer to complete than

oA), but between attribute-reduced where piggy-backs are

impossible and non-attribute-reduced where piggy-backs are

possible. The results in Figures 20 and 21 show that in the

absence of Pfam-B domains and on a more current dataset for

single organisms, both OA and oA can still outperform both Oa
and oa. The Nye test for yeast and for human is also more

successfully passed by both OA and oA than either Oa or oa
(Figure 20 right).

It may appear from these results that Pfam-B domains should be

excluded since any domain-pair involving a Pfam-B domain is not

documented in any current database as a reliable DDI. However,

Pfam-B domains play a role, through the mixed architecture

proteins, in increasing the number of contexts within which to

evaluate domain-pairs and thus enhance piggy-backing potential.

A suggestion for future work is to expand the attribute set beyond

domains to for example combination of domains in the form of bi-

grams [2] or supra-domains [10], or to include sequence motifs for

a richer characterization of proteins.

To conclude, a method based on Formal Concept Analysis [9]

to infer reliable domain-domain interactions from protein-protein

interactions was proposed and shown to be feasible in the presence

of domain promiscuity. The effectiveness of the proposed method

is due to a piggy-backing mechanism which is made possible in

concept lattices that are not attribute-reduced, and enhanced by

mixed architecture proteins. The problem of using highly reliable

domain-pairs to predict protein-protein interactions with high

accuracy remains a future challenge.
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4. Schuster-Böckler B, Bateman A (2007) Reuse of structural domain-domain

interactions in protein networks. BMC Bioinformatics 8: 259.
5. Park Y, Marcotte EM (2012) Flaws in evaluation schemes for pair-input

computational predictions. Nature Methods 9(12): 1134–1136.
6. Guimaraes KS, Jothi R, Zotenko E, Przytycka TM (2006) Predicting domain-

domain interactions using a parsimony approach. Genome Biology 7: R104.

7. Lee H, Deng M, Sun F, Chen T (2006) An integrated approach to the prediction
of domain-domain interactions. BMC Bioinformatics 7: 269.

8. Riley R, Lee C, Sabatti C, Eisenberg D (2005) Inferring protein domain
interactions from databases of interacting proteins. Genome Biology 6: R89.

9. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations.

Translated from German by Cornelia Franzke. Springer-Verlag Berlin
Heidelberg.

10. Guimaraes KS, Przytycka TM (2008) Interrogating domain-domain interactions
with parsimony based approaches. BMC Bioinformatics 9: 171.

11. Itzhaki Z, Akiva E, Margalit H (2010) Preferential use of protein domain pairs as
interaction mediators: order and transitivity. Bioinformatics 26(20): 2564–2570.

12. Lindig C. Colibri-Concepts version 0.4. Available: http://www.st.cs.uni-

saarland.de/,lindig/#colibri.

13. Davey BA, Priestley HA (2002). Introduction to lattices and order. Second ed.
Cambridge University Press.

14. Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of
protein-protein interaction. J. Mol. Biol. 311: 681–692.

15. Nye TMW, Berzuini C, Gilks WR, Babu MM, Teichmann SA (2005) Statistical
analysis of domains in interacting protein pairs. Bioinformatics 21(7): 993–1001.

16. Finn RD, Marshall M, Bateman A (2005) iPfam: visualization of protein-protein

interactions in PDB at domain and amino acid resolutions. Bioinformatics 21(3):
410–412.

17. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters
27 861–874.

18. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R (2011)

DOMINE: a comprehensive collection of known and predicted domain-domain
interactions. Nucleic Acids Research 39: D730–D735.

19. Mosca R, Ceol A, Stein A, Olivella R, Aloy P (2013) 3did: a catalogue of
domain-based interactions of known three-dimensional structure. Nucleic Acids

Research. first published online September 29, 2013 doi:10.1093/nar/gkt887.
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