
sports

Review

Mechanisms of Hamstring Strain Injury: Interactions
between Fatigue, Muscle Activation and Function

Shaun Huygaerts 1,2, Francesc Cos 3,4, Daniel D. Cohen 5,6, Julio Calleja-González 7,8 ,
Marc Guitart 9, Anthony J. Blazevich 10 and Pedro E. Alcaraz 1,11,*

1 UCAM Research Center for High Performance Sport, Catholic University San Antonio, 30830 Murcia, Spain;
shaun_huygaerts@hotmail.com

2 Department of Performance, Royal Antwerp Football Club, 2100 Deurne, Belgium
3 Department of Performance and Health, New York City Football Club, New York, NY 10962, USA;

cosfrancesc@gmail.com
4 National Institute of Physical Education (INEFC), University of Barcelona, 08038 Barcelona, Spain
5 Masira Institute, University of Santander (UDES), Bucaramanga 680011, Colombia;

danielcohen1971@gmail.com
6 Mindeportes (Colombian Ministry of Sport), Bogota 110311, Colombia
7 Laboratory of Analysis of Sport Performance, Department of Physical Education and Sport, Faculty of

Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain;
julio.calleja.gonzalez@gmail.com

8 Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia
9 Department of Performance, Football Club Barcelona, 08028 Barcelona, Spain; marc.guitart@fcbarcelona.cat
10 Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith

Cowan University, Joondalup 6027, Australia; a.blazevich@ecu.edu.au
11 Faculty of Sport Sciences, Catholic University San Antonio, 30107 Murcia, Spain
* Correspondence: palcaraz@ucam.edu; Tel.: +34-670-818-474

Received: 7 April 2020; Accepted: 12 May 2020; Published: 18 May 2020
����������
�������

Abstract: Isolated injury to the long head of biceps femoris is the most common type of acute
hamstring strain injury (HSI). However, the precise hamstring injury mechanism (i.e., sprint-type) is
still not well understood, and research is inconclusive as to which phase in the running cycle HSI risk
is the greatest. Since detailed information relating to hamstring muscle function during sprint running
cannot be obtained in vivo in humans, the findings of studies investigating HSI mechanisms are based
on modeling that requires assumptions to be made based on extrapolations from anatomical and
biomechanical investigations. As it is extremely difficult to account for all aspects of muscle-tendon
tissues that influence function during high-intensity running actions, much of this complexity is not
included in these models. Furthermore, the majority of analyses do not consider the influence of prior
activity or muscular fatigue on kinematics, kinetics and muscle activation during sprinting. Yet, it has
been shown that fatigue can lead to alterations in neuromuscular coordination patterns that could
potentially increase injury risk. The present critical review will evaluate the current evidence on
hamstring injury mechanism(s) during high-intensity running and discuss the interactions between
fatigue and hamstring muscle activation and function.

Keywords: athletic injuries (MeSH); hamstring muscles (MeSH); running (MeSH); biomechanics;
muscle functioning; fatigue (MeSH)

1. Introduction

Hamstring strain injury (HSI) is the most common non-contact muscle injury in high-speed
running sports such as Australian football [1–5], American football [6], rugby [7–9] and soccer [10–13].
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This type of injury is characterized by acute pain in the posterior thigh with disruption of the hamstring
muscle fibers, where direct external contact with the thigh is excluded as a cause of injury [14,15].
Injury rates are particularly high in soccer, accounting for 37% of all muscle related injuries [16], and a
recurrence rate of 12–33% has been reported [13,17,18]. Data showing higher injury rates towards the
late stages of each half of a (European) soccer game [16] suggests an association between fatigue and
injury risk. Minimizing the risk of first injury is considered a key aspect of overall hamstring injury
reduction strategies, as well as secondary prevention [19]. Despite the increasing research focus in this
area, the potential injury mechanisms are not well defined [20], and injury incidence seems to have
either remained about the same [15] or even increased (e.g., soccer; [21]) in recent years. This injury
burden is a concern for clubs in terms of team performance from a key player availability perspective
in senior professionals [22] and in the long-term development of younger players [23]. It is also
associated with a significant financial cost (e.g., the average cost for a first team player is approximately
€500,000 per month in European soccer leagues) [24]. For these reasons, there remains considerable
interest among researchers and practitioners in investigating hamstring injury mechanism(s) in order
to develop evidence-based risk reduction prevention strategies.

Neuromuscular fatigue is one potential major HSI risk factor [15,25,26]. Fatigue can be defined
as the inability to maintain a given exercise intensity or power output, resulting from either acute
or residual (i.e., inadequate recovery from repeated exposures to load) physical exercise burden [27].
The acute fatigue that develops during and immediately after the conclusion of bouts of physical activity
is attributed to a combination of central and peripheral fatigue mechanisms [27]. Central fatigue affects
the voluntary activation of muscle and principally occurs during submaximal, low-intensity muscle
contractions [28]. It can be caused by a decrease in the excitation supplied by the motor cortex and/or a
decrease in motoneuronal pathway activity [28]. Peripheral fatigue corresponds to an alteration in
muscle contraction capacity and can be induced by disturbances in the propagation of the muscle action
potential, excitation-contraction coupling and contractile (force production) mechanisms [28]. In sports
such as soccer, mechanical demands, particularly those related to decelerations and eccentric actions,
can induce muscle damage. This promotes increases in inflammatory proteins and immune cells and
subsequent alterations in redox status during the recovery period after a game [29]. The exercise-induced
muscle damage and its sequelae can reduce physical performance for up to several days [30] and
are suggested to be a principle cause of the residual fatigue observed in soccer players following
competition [27]. While evidence for an association between acute fatigue and injury is principally
epidemiological [16], there are a number of viscoelastic, neuromuscular and biomechanical alterations
demonstrated during simulated/real competitions that could theoretically increase susceptibility
to injury. The accumulation of fatigue across training and competition periods is also associated
with elevated injury risk, especially when abrupt increases in total training loads or intensities
occur [31] or during periods of match congestion [32]. Nevertheless, acute, residual and chronic fatigue
might influence risk in very different ways, and consequently, the strategies used to reduce the risk
associated with each may differ. Since player monitoring practices have the potential to reduce residual
fatigue-related injury risk [33], monitoring of player workload and response to workload—in the form
of subjective and objective assessment of fatigue—is now commonly performed and is considered a
cornerstone of player welfare systems [33]. However, the present article will primarily consider the
potential effect of acute fatigue on associated risk factors for HSI. Therefore, the objective of this critical
review is to evaluate the current evidence and provide an overview of: (1) mechanisms of hamstring
injury and (2) interactions between fatigue, hamstring muscle activation and function and potential
interactions with risk.

2. Mechanisms of Hamstring Strain Injury

Animal models have been used to try and determine the general mechanisms of muscle strain injury,
suggesting that excessive muscle strain in eccentric contractions or stretching is the main mechanism of
muscle strain injury [34]. Two specific hamstring injury types, defined by the injury mechanism, have
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been described: (1) stretch-type and (2) sprint-type [35]. The stretch-type hamstring injury occurs in
movements involving a combination of extreme hip flexion and knee extension (e.g., kicking and dance
maneuvers), while the sprint-type injury occurs during maximal or near-maximal running actions [18].
Both injury types are strain injuries; however, the stretch-type seems to occur at long muscle lengths,
while the sprint-type may occur well within the normal working range of the muscle [18]. Using
magnetic resonance imaging (MRI), the stretch-type hamstring injury has been shown to primarily
affect the semimembranosus, and particularly the proximal free tendon rather than the intramuscular
tendon [36,37]. In contrast, the sprint-type hamstring injury primarily involves the long head of biceps
femoris (BFlh) [23,38]. Injuries to BFlh show a greater involvement of the proximal region compared to
the distal region [23,39], with the musculotendinous junction (aponeurosis and adjacent muscle fibers)
reported as the most common injury location [23,38,40].

Since the majority of HSIs occur during maximal or near-maximal running efforts [23,37,39],
the present critical review will focus on the sprint-type injury. The phase of the running cycle during
which HSIs most commonly occur [41] remains a controversial topic in sprint-type HSI research.
In order to increase the efficacy of hamstring injury risk reduction strategies, a complete understanding
of the biomechanical function of the hamstring muscles during sprinting is required [41]. In the
following sections, we outline the current evidence relating to HSI mechanisms and examine the possible
influence of fatigue and the interactions between fatigue, hamstring muscle activation and function.

2.1. Hip, Knee and Hamstring Mechanics during High-Speed Running

Before exploring the mechanism(s) of sprint-type injury, the running cycle should be described.
A complete running cycle includes two main phases: the stance phase (foot in contact with the ground)
and the swing phase (foot not in contact with the ground). These two main phases can be further
divided into sub-phases: early stance (braking), late stance (propulsion), early and middle swing
(recovery) and late swing (pre-activation) [42]. In a recent review, Kenneally-Dabrowski et al. [43]
comprehensively described hip, knee and hamstring mechanics during high-speed running, showing
that during the stance phase net joint torque mainly results from muscle torques (generated from muscle
contractions) and external forces (resulting from ground reaction forces) [43]. On the other hand, during
the swing phase net joint torque mainly results from muscle torques and motion-dependent torque
(resulting from the mechanical interaction of segments) [43]. The hip displays extensor dominance
(reaching peak extension torque at approximately 4.1 N·m·kg−1) during the early stance phase and
shifts to a flexion moment towards the latter half of stance [43]. Regarding knee moments, Schache
and colleagues [44] reported an extension moment for the first half of the stance phase (peaking at
3.6 N·m·kg−1) before a flexion moment is produced towards the late stance phase [43–45]. However,
other studies have reported much more variable knee moments, sometimes switching several times
from extension to flexion dominance throughout the stance phase, findings which may be attributed
to different filtering techniques utilized and data processing [43]. The hip displays a large flexion
moment during the first half of the swing phase (peaking at 4.3 N·m·kg−1), while the knee produces
a small extension moment (1.0 N·m·kg−1) [44,45]. During the second half of the swing phase, the
hip displays a large extension moment (4.2 N·m·kg−1), while the knee produces a smaller flexion
moment (1.8 N·m·kg−1) [44,45]. Furthermore, the hamstring muscles undergo a stretch-shortening
cycle throughout high-speed running actions [46,47]. Traditionally, it has been suggested that BFlh
shortens during the first part of the swing phase as the knee flexes and the hip moves from extension
to flexion [43]. Subsequently, a rapid lengthening of BFlh takes place as the hip continues to flex, while
the knee extends throughout the second half of the swing phase [43]. Next, BFlh starts to shorten as the
hip extends and the knee flexes in preparation for foot strike [43]. Throughout the stance phase, the hip
continues to extend and the knee flex for the first half, before starting to extend [43]. While most studies
suggest that BFlh shortens throughout the stance phase, two studies have reported a lengthening of the
hamstrings during the late stance phase [48,49]. It is therefore suggested that length change could be
dependent upon the degree of hip and knee extension exhibited by an individual athlete [43]. In reality,
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this movement pattern would be influenced by the athlete’s anatomical variability [50] and specific
sprint mechanics [51].

2.2. The Late Swing Phase

The majority of researchers investigating the role of the hamstrings during sprint-running argue
that the late swing phase is likely to be the point in the running cycle at which the hamstrings are
most susceptible to injury [45,52–56]. Indeed, during sprinting, maximum electromyogram (EMG)
activity has been consistently shown to occur during the terminal swing phase [52,55,57]. Furthermore,
based on their modelling of muscle force and length characteristics during sprint running, Chumanov
et al. [52] concluded that the hamstring muscle-tendon unit exclusively undergoes a lengthening
activation during the late swing phase. Furthermore, Schache et al. [45] identified peak muscle-tendon
strain, peak muscle-tendon force and the occurrence of negative work in BFlh, semitendinosus (ST) and
semimembranosus (SM) during the late swing phase during maximal sprint running. More specifically,
BFlh displayed the largest peak muscle-tendon strain (12.0% increase in length from upright stance
position), ST displayed the greatest muscle-tendon lengthening velocity, and SM produced the highest
muscle-tendon force, absorbed and generated the most muscle-tendon power and performed the
largest amount of positive and negative work. Additionally, Higashihara et al. [55] found that peak
muscle-tendinous stretch was synchronous with the peak EMG activation in BFlh during the late swing
phase in overground sprinting [55]. As running speed increased from 80% to 100%, biceps femoris
(BF) activity during the terminal swing phase increased an average of 67%, while ST and SM only
showed a 37% increase [39]. Speculatively, these disproportional increases in the demand on BF at
maximal running speeds may also contribute to its greater tendency to be injured during high-speed
running than the other hamstring muscles. However, a study using finite-element computational
modeling based on muscle-tendon dimensions of athletes participating in high-speed sports reported
that whole-fiber length change of BFlh relative to the muscle-tendon unit length change remained
relatively constant as running speed increased [53]. Nonetheless, the computational models also
predicted that peak local fiber strain relative to the strain of the muscle-tendon unit increased with
speed, with the highest peak local fiber strain relative to the whole muscle fiber strain occurring at the
fastest speed (100% maximum) during the late swing phase [53]. These findings, and the observations
of two independent hamstring injury case studies [54,56], support the notion that injury susceptibility
is greater during the late swing phase. However, it should be noted that the majority of analyses based
on mechanical models did not consider the potential additional influence of prior activity and fatigue
on kinematics, kinetics and muscle activation during sprinting.

Some issues need to be highlighted before interpreting these studies. First, detailed information
relating to hamstring muscle function during sprint running cannot be obtained in vivo in humans.
The findings of studies investigating hamstring strain injury mechanisms are therefore principally based
on modeling and assumptions extrapolated from anatomical and biomechanical investigations [58].
With these simulation models, it remains extremely difficult to account for all aspects of muscle tissue
that influence function during high-speed running actions, and as such, much of this complexity is
omitted. For example, Van Hooren and Bosch [59] speculated that the hamstring muscles do not
actively lengthen during sprinting and that it is more likely that the hamstrings function predominantly
isometrically during the swing phase of running [59]. However, the authors also hypothesized
that fascicle lengthening may feasibly underpin muscle injury, but that this eccentric action may
occur as a result of the inability of fascicles to remain isometric [59]. Although these arguments
were mainly based on evidence from animal studies, their work has challenged the conclusions of
current modeling studies investigating the mechanism of hamstring injury during high-speed running.
According to Van Hooren and Bosch [60], potential errors in modeling studies would include an
underestimation of stretch in the tendinous tissues, and hence overestimation of fascicle stretch as
a result of potential differences in real and modeled tendon stiffness, as well as not accounting for
muscle slack (i.e., compliance)—causing a delay between muscular contraction and recoil of the
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series elastic elements [61]. Secondly, as mentioned previously, given the epidemiological evidence,
the presence of fatigue is likely a key factor in relation to HSI susceptibility. Since fatigued muscles
seem to be able to absorb less energy before reaching the stretch limit, fatigue may directly increase risk
of injury [62]. Therefore, it is logical to consider interactions between fatigue and muscle activation
and function as a potential mediator of risk, as will be further outlined below. Yet, the majority of
studies investigating hamstring muscle mechanics in relation to HSI susceptibility have examined
sprint running in non-fatigued conditions (Table 1) [20,41,45,47,49,52–57,63–66].

Table 1. Summary of studies using biomechanical models to estimate the phase of the running cycle at
which the hamstring muscles are most susceptible to strain injury.

Reference (Year) Participants Late Swing Phase Early Stance Phase Late Stance Phase

Schache et al. (2012)
[45]

Sprinters
(5 males, 2 females) X

Chumanov et al. (2011) [52] Recreational athletes
(9 males, 3 females) X

Fiorentino et al. (2014)
[53]

Track and field athletes
(7 males, 7 females) X

Higashihara et al. (2014)
[55]

Track and field athletes
(13 males) X

Higashihara et al. (2010)
[57]

Track and field athletes
(8 males) X

Thelen et al. (2005)
[63]

Recreational athletes
(9 males, 6 females) X

Thelen et al. (2005)
[47]

Recreational athlete
(1 male) X

Yu et al. (2008)
[49]

Sprinters or middle-distance
runners

(20 males)
X X

Mann and Sprague (1980)
[65]

Sprinters
(15 males) X

Mann (1981)
[64]

Sprinters
(15 males) X

Ono et al. (2015)
[66]

Track and field, rugby and
soccer players

(12 males)
X

Sun et al. (2015)
[20]

Sprinters
(8 males) X X

Liu et al. (2017)
[41]

Sprinters
(8 males) X X

* Schache et al. (2009)
[56]

Australian Rules Football
player

(1 male)
X

* Heiderscheit et al. (2005)
[54]

Skier
(1 male) X

Note: The modeling studies included in this table obtained measurements in non-fatigued participants. * Case
studies of hamstring strain injury (HSI) occurrence during assessment.

2.3. The Early Stance Phase

Although HSI is commonly thought to occur in the terminal swing phase, and taking into account
that this assumption has been established without full consideration of the problems raised above,
the possibility cannot be excluded that HSI can also occur in the early stance phase, during which some
studies report a second peak in hamstring muscle activity [49,52]. In fact, decades ago researchers
speculated that the early stance phase would be the highest risk phase of sprint running [64,65].
This hypothesis was based on the finding that maximum hip extension and knee flexion torques
occurred during ground contact [64,65]. Furthermore, although peak BFlh muscle-tendon force has
been reported to occur during the late swing phase, a second (smaller) peak has also been observed
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during the early stance phase [45,46]. Some researchers have suggested that BFlh muscle-tendon force
in the early stance phase may be underestimated due to over-filtering of force and kinematic signals,
which could potentially result in erroneously low hip and knee torques [20,41]. During the early stance
phase, it is also suggested that the ground reaction force causes a large extension torque at the knee and
a flexion torque at the hip [43]. Consequently, in order to counter the large passive forces, the hamstring
muscles would need to produce large flexion torques at the knee and extension torques at the hip,
placing them under an extremely high load [20,41]. In addition, using EMG and MRI measurements,
selective recruitment of ST and gracilis has been observed with lengthening during knee extension [67].
In addition, BFlh and SM may be selectively recruited during tasks dominated by hip extension such as
standing, forward bending or extending backward from the hip [68]. Based on these data, it could be
speculated that acute cases of HSI involving BFlh could also occur during the stance phase of sprinting.

Furthermore, the results of a study which calculated a surrogate measure of hamstring tensile
forces during overground sprinting using EMG, ground reaction force and 3D motion analysis data,
did support the early stance phase as a point of increased susceptibility to HSI [66]. The product of
normalized muscle-tendon length and the normalized EMG (nEMG) value was calculated for each
muscle and defined as the tensile force index [66]. The tensile force indexes of BFlh and ST increased
abruptly in concert with the largest magnitudes noted within the stance phase [66]. Moreover, during
the period from the foot strike to the peak ground reaction force in the early stance phase (lasting
approximately 0.01 s), BFlh nEMG reached its peak when the knee joint was extended maximally [66].
These findings, combined with evidence that greater muscle activation and larger muscle forces may
be associated with higher risk of muscle strain [63,69], suggest that BFlh would be susceptible to
strain injury during the early stance phase of the sprinting stride. However, as the relevance of tensile
force index to injury risk has not been established, the conclusions of this study should be considered
with caution [66], highlighting again the issues of using simulation models to analyze and interpret
hamstring tissue mechanics.

2.4. The Swing-Stance Transition Period

One recent study suggested that the risk of sustaining HSI is high in both the late swing and the
early stance phases but with different loading mechanisms underpinning them [41]. Liu et al. [41]
concluded that large passive torques at the knee and hip joints during maximal sprinting in elite athletes
acted to lengthen the hamstring muscles in both phases. The active muscle torques generated mainly by
the hamstrings counteracted the passive effects generated by the forward swing of the leg (late swing
phase) and the external ground reaction force (early stance phase) [41]. As a result, the researchers
suggested that these two phases may be considered to be a single phase (the swing–stance transition
period) (Figure 1) because lower extremity joint motions are continuous and the hamstring muscles
function to extend the hip and flex the knee throughout the entire phase [41].

At present, the evidence is inconclusive as to which phase in the running cycle has the greatest
HSI risk, although the possibility that both late swing and early stance phases may both put excessive
loads on the hamstring muscles with consequent increases in injury susceptibility cannot be discounted.
Importantly, better models are required in order to elucidate hamstring muscle-tendon behavior and
functioning in both phases as well as a need for the evaluation of changes in the kinetic, kinematics,
EMG activity and modeling under fatiguing conditions.
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2.5. Interactions between Fatigue, Hamstring Muscle Activation and Function

Differences in the changes in muscle activation with increasing running speed have been observed
between hamstring muscles within the running cycle [57]. During sprint running (speeds above
95%max), ST EMG activity was significantly greater than that of BF during the middle swing phase, but
not during the early stance or late swing phases when the activity of both muscles increased to a similar
extent [57]. However, an earlier peak activation time in ST than BF was observed during the late swing
phase of sprint running, while an earlier peak activation time in BF compared to ST was seen during
the stance phase [57]. Thus, it appears that BF is activated earlier than ST to prepare for high impact
moments at foot strike when running close to maximum sprinting speed, which could be explained
by the important role of BF in the generation of the forward propulsive force [57]. These temporal
differences in activation patterns between the hamstring muscles may suggest complex neuromuscular
coordination patterns during the running cycle that vary as running speeds increase [57]. Given
that the BF and ST muscle bellies share a common proximal tendon origin, differences in activation
patterns and the timing of peak activation between these muscles may exert significant influence on
HSI risk [57]. In accordance with this, Avrillon et al. [70] observed individual-specific differences in
hamstring muscle coordination strategies and hypothesized that these individual muscle coordination
strategies might have functional consequences. For example, if one muscle is activated to a greater
extent than required by the task, which is inevitably the case when activation between synergists is
imbalanced, its metabolic demand would be higher and fatigue would develop sooner, which the
authors suggested could increase injury risk [70]. Conversely, fatigue influences muscle activation
patterns during maximum sprint running [71] so that neuromuscular coordination is altered under
fatiguing conditions. It is suggested that this could place an excessive load on neighboring tissues,
which could induce excessive tensile shear stress and potentially increase injury risk [72].

Differences in muscle activation patterns have also been associated with lower limb kinematic
changes [73]. In sprints performed after hamstring-specific fatiguing exercise, an earlier reduction in
rectus femoris activity and earlier onset of ST and BF activities was observed in the sprint cycle [71].
This was suggested to contribute to observed kinematic changes, including decreased hip flexion and
increased knee extension at the point of maximum knee extension in the swing phase, decreased leg
angular velocity immediately before foot strike and decreased angular displacement of the trunk,
thigh, and leg segments during the late swing phase of the sprint cycle [71]. The observed decreases in
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angular displacement of the trunk, thigh and leg segments in the late swing phase were attributed to
the decreased hip flexion and increased knee extension at the point of maximum knee extension in
the swing phase [71]. Small et al. [73] studied the changes in sprinting mechanics after simulating the
physiological and mechanical demands of soccer match play and observed reduced maximum hip
flexion and knee extension angles during the late swing phase, an increased anterior pelvic tilt and
an increased lower limb segmental velocity [73]. An increased anterior pelvic tilt has the potential
to increase BFlh length while running, since BFlh attaches directly to the ischial tuberosity of the
pelvis [74]. Therefore, the muscles controlling hip motion and pelvic position could influence the
relative BFlh length during running [74]. The increase in leg angular velocity, which contrasts with the
findings of Pinniger et al. [71], was suggested to be linked to an impaired ability of the hamstrings to
decelerate the limb effectively [73]. Indeed, soccer-specific fatigue has been associated with significant
increases in peak eccentric isokinetic knee flexion torques [75,76], with decrements greatest at longer
hamstring muscle lengths [76]. These findings suggest that the force absorption capacity might be
particularly reduced at the longest hamstring muscle lengths, which could increase vulnerability to
hamstring muscle strain since force production in sprint running is highly dependent on the utilization
of recoil energy from elastic tissues [77]. Both Pinniger et al. [71] and Small et al. [73] interpreted
the decreased thigh flexion angles as a change that might form part of a protective mechanism to
reduce stress on the hamstring muscles at critical phases of the stride cycle. They also reported
contradictory findings regarding knee joint angles and leg angular velocity, which could possibly be
explained by the different fatigue protocols employed by these research groups. In support of this
theory, Hader et al. [78] observed a greater reduction in hamstring muscle activity during intermittent
high-intensity efforts integrating 90◦ changes of direction compared to straight-line high-intensity
running, despite the lower running speeds observed in the 90◦ changes of direction [78]. It seems
that the differing hamstring muscle demands and fatigue profiles imposed by straight line running
and changes of direction may, therefore, also have different outcomes on high-speed/sprint running
biomechanics, which is highly relevant to soccer and other multi-directional repeated sprint sports.

The hamstrings are also reported to play a crucial role in dynamic knee stability and control,
helping to maintain joint integrity [79,80]. Along with several other complex ligamentous and
musculotendinous structures (e.g., iliotibial band, biceps femoris short head, lateral collateral ligament,
popliteus muscle/complex, lateral gastrocnemius tendon, joint capsule/mid-third lateral capsular
ligament, coronary ligament of the lateral meniscus, oblique popliteal ligament and the fabellofibular
ligament), the distal BFlh tendon forms part of the posterolateral complex of the knee since it attaches
to the head of the fibula and the lateral condyle of the tibia [81]. The posterolateral complex has been
described as a critical element for lower extremity stability [81]. In accordance with this, a recent study
by Cleather [82] provided support to the theory that the hamstring muscles play an important role in
dynamic knee stability and control, creating rotational stability of the tibia in the transverse plane [82].
Therefore, speculatively, increased knee stabilizing demands (e.g., change of direction actions) and
the presence of fatigue could place greater loads on the hamstring muscles, thereby increasing their
vulnerability to strain injury.

It has been suggested that decreased lower limb muscle stiffness observed during fatiguing
stretch-shortening cycle exercises leads to a decrease in the amount of stored and reused elastic
energy [83]. Lehnert et al. [84] found significant reductions in leg stiffness (decreased hip, knee and
ankle flexion measured in repeated two-legged hopping) and reactive strength (the flight-to-contact
time ratio measured in drop jump) after a 90-min soccer-specific aerobic field test protocol (SAFT90—a
series of soccer-specific fatiguing exercises incorporating utility movements and frequent accelerations
and decelerations, as is inherent to match play [73]) in young footballers [84]. In addition, based
on in-match accelerometer data and weekly monitoring of jump performance in Australian football
players, Cormack et al. [85] suggested that neuromuscular fatigue was associated with a reduction in
vertical acceleration in subsequent competition and speculated that this outcome resulted from the
inability of the neuromuscular system to maintain vertical stiffness [85]. These changes in turn promote
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the adoption of a “Groucho” running pattern, a form of locomotion in which the knees remain flexed
during the complete stride. This reduces vertical ground reaction forces (including impact forces) but
increases the energy cost of locomotion by minimizing the elastic bounce of the body and thus the energy
savings that would normally come from bounce-like gait and is associated with decreased running
speeds, reduced acceleration/deceleration abilities and greater O2 consumption [85,86]. The alterations
in running kinematics, reduced movement efficiency and greater moments of force are associated with
an increased load on the contractile muscle units, theoretically increasing strain injury risk (Figure 2).
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Furthermore, evaluation of EMG relative to distance covered indicates that BF and rectus femoris
fatigue occurs earlier than other lower extremity muscles such as vastus lateralis, gastrocnemius and
tibialis anterior during high-speed, but not low-speed running [87]. This may be linked to the higher
activation as running speed increases [39], underpinned by the dominant role of BF in hip extension [66]
and the importance of hip extensors for horizontal force production during sprinting [88]. In line with
this, a fatiguing repeated-sprint protocol on a motorized instrumented treadmill resulted in decreased
sprint acceleration (maximal power output) and horizontal force production [89]. In addition to
decreased maximal power output and horizontal force production, the researchers found (i) a higher
horizontal force production in the fatigued state that was mainly associated with a higher concentric
peak torque of the hip extensors, (ii) a smaller decrease in horizontal force production after fatigue
that was mainly associated with a lesser reduction in gluteus maximus activity at the end of the swing
phase and (iii) that while hamstring muscle torque during knee flexion was associated with horizontal
force production in the non-fatigued state, this association was not observed in the fatigued state [89].
The authors suggested that the decrease in maximal power output under fatigue could be linked
specifically to the decrease in horizontal force rather than the total force output and that this partly
resulted from reduced hamstring muscle function [89], promoting a compensatory increase in the
contribution of other hip extensors such as gluteus maximus [89].

The altered hamstring muscle function could also be linked to the previously mentioned “Groucho
position” consequent to fatigue, resulting in a less efficient muscle-tendon unit energy transfer in BFlh
and increasing the demand on adjacent structures and/or synergist muscles such as gluteus maximus.
There is also a growing body of evidence indicating that lumbo-pelvic muscle function may play
an important role in HSI risk reduction [90,91]. Indeed, the presence of fatigue has been shown to
promote anterior pelvic tilt in soccer players, potentially predisposing them to increased injury risk
due to increasing relative BFlh length [73]. Furthermore, it is well established that eccentric knee flexor
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strength training interventions can decrease HSI risk [92], while Delextrat et al. [93] also showed that
training with a strength-endurance emphasis significantly reduced the decline in hamstring eccentric
peak torque associated with simulated match play [93]. In addition, there is retrospective evidence that
prior HSI is associated with strength-endurance deficits [94] and prospective evidence that a weaker
test score on a hamstring specific strength-endurance test (single leg hamstring bridge) is related to
greater HSI risk [95]. Therefore, the effects of strength-endurance training interventions of both the
hamstrings and their synergists on HSI risk warrant further investigation.

3. Conclusions

In conclusion, the hamstring muscles generate large opposing forces during high-speed
running [96] while also playing a role in the production of dynamic stability at the knee [82]. Based on
the present research, the possibility exists that changes in muscle coordination strategies may cause
one or more hamstring muscles to be disproportionately activated [70], possibly increasing metabolic
demand and thus prematurely fatiguing the overactive muscles [70]. With fatigue it appears that
lower limb stiffness decreases [85], which could cause the adoption of a “Groucho” running pattern,
associated with reduced movement efficiency and greater joint moments of force. This phenomenon,
in combination with increased anterior pelvic tilt (due to lumbo-pelvic instability) during running, could
potentially place BFlh at a relatively longer length where it is more vulnerable to strain injury [51,90,91].
Hence, the late swing and early stance phases appear to be critical points at which HSI is more likely to
occur. More accurately defining the influence of fatigue on tissue behaviors in these two phases may
be key to gaining a better understanding of hamstring injury mechanisms.

4. Future Directions

Building on the current understanding of hamstring mechanics and acknowledging that the
occurrence of injury is likely to be multi-factorial, several theories can be proposed that warrant testing.
A significant limiting factor in current research is that simulation models used to estimate tissue
behavior of the hamstring muscle-tendon are incomplete, and possibly oversimplified. This results
from our limited understanding of the mechanical capacities of numerous tissues that influence system
function, difficulties in measuring muscle activity states and timing and inevitable issues around
the indeterminacy of the system. Importantly, the current models do not account for anatomical
variability between individuals and the behavior and influence of the surrounding tissues. In addition,
the majority of modeling studies do not test for the influence fatigue, which is likely to be a major HSI
risk factor. In relation to this, some recent evidence highlights the need for further investigation of
the role of strength endurance in HSI risk. Future research would require the development of better
simulation models, especially using data obtained under fatiguing conditions. In addition, prospective
studies are required that take into consideration the neuromuscular function of a number of synergists
and characterize not only peak muscular strength, but also fatigue resistance in these muscles.
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