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Highlights Impact and implications

� HCV proteins localize to mitochondria-associated

ER membranes.

� Mitochondria-associated ER membrane integrity,
which requires CypD, is necessary for HCV
replication.

� Core and NS3 co-immunoprecipitate in a protein
complex with VDAC1.

� Less VDAC1 is present at mitochondria-associated
ER membranes in HCV+ cells, but Ca2+ and
glucose signalling are maintained.

� The amount of VDAC1 at mitochondria-associated
ER membranes changes throughout progression of
chronic hepatitis C.
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Hepatitis C virus infects the liver, where it causes
inflammation, cell damage and increases the long-
term risk of liver cancer. We show that several HCV
proteins interact with mitochondria in liver cells and
alter the composition of mitochondrial subdomains.
Importantly, HCV requires the architecture of these
mitochondrial subdomains to remain intact for effi-
cient viral replication.
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Background & Aims: Chronic HCV infection causes cellular stress, fibrosis and predisposes to hepatocarcinogenesis. Mito-
chondria play key roles in orchestrating stress responses by regulating bioenergetics, inflammation and apoptosis. To better
understand the role of mitochondria in the viral life cycle and disease progression of chronic hepatitis C, we studied
morphological and functional mitochondrial alterations induced by HCV using productively infected hepatoma cells and
patient livers.
Methods: Biochemical and imaging assays were used to assess localization of cellular and viral proteins and mitochondrial
functions in cell cultures and liver biopsies. Cyclophilin D (CypD) knockout was performed using CRISPR/Cas9 technology.
Viral replication was quantified by quantitative reverse-transcription PCR and western blotting.
Results: Several HCV proteins were found to associate with mitochondria-associated endoplasmic reticulum (ER) membranes
(MAMs), the points of contact between the ER and mitochondria. Downregulation of CypD, which is known to disrupt MAM
integrity, reduced viral replication, suggesting that MAMs play an important role in the viral life cycle. This process was
rescued by ectopic CypD expression. Furthermore, HCV proteins were found to associate with voltage dependent anion
channel 1 (VDAC1) at MAMs and to reduce VDAC1 protein levels at MAMs in vitro and in patient biopsies. This association did
not affect MAM-associated functions in glucose homeostasis and Ca2+ signaling.
Conclusions: HCV proteins associate specifically with MAMs and MAMs play an important role in viral replication. The as-
sociation between viral proteins and MAMs did not impact Ca2+ signaling between the ER and mitochondria or glucose
homeostasis. Whether additional functions of MAMs and/or VDAC are impacted by HCV and contribute to the associated
pathology remains to be assessed.
Impact and implications: Hepatitis C virus infects the liver, where it causes inflammation, cell damage and increases the
long-term risk of liver cancer. We show that several HCV proteins interact with mitochondria in liver cells and alter the
composition of mitochondrial subdomains. Importantly, HCV requires the architecture of these mitochondrial subdomains to
remain intact for efficient viral replication.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
It is estimated that approximately 1% of the global population are
chronic HCV carriers. Chronic hepatitis C triggers liver inflamma-
tion and fibrosis, which increases the risk of hepatocellular
Keywords: hepatitis C virus; mitochondria-associated ER membranes; voltage-
dependent anion channel 1; fibrosis.
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carcinoma (HCC).1 With the development of direct-acting antivi-
rals, chronic hepatitis C has become a curable disease.1 HCV, a
single-stranded, positive-sense hepatotropic RNA virus of the Fla-
viviridae family encodes 10 proteins: the glycoproteins E1 and E2
and core protein form the virion structure; the non-structural
proteins p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B are necessary
for replication and virion assembly. NS3/4A is a protease/helicase
required for HCV polyprotein cleavage and RNA secondary struc-
ture unwinding. NS5B is the RNA-dependent RNA polymerase,
while NS4B and NS5A are part of the replication complex and are
required for formation of double membrane vesicles (DMVs) –

evaginations of the endoplasmic reticulum (ER)– that host the viral
replication complex.2–6 In addition, a fractionof theviral replication
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complexes is thought to be located at mitochondria-associated ER
membranes (MAMs).7,8 MAMs are defined as areas where ER and
mitochondrial membranes are maintained in close proximity
through protein tethering complexes. MAMs allow ion and
metabolite exchangebetween these organelles and thus impact the
metabolic and respiratory activity of mitochondria, glucose and
Ca2+ homeostasis, cholesterol and phospholipid metabolism, and
lipid droplet and autophagosome biogenesis.9 Initiating HCV RNA
replication at MAMs is thought to be advantageous for the virus,
since viral RNA and protein would initially accumulate in an envi-
ronment rich in enzymes involved in cholesterol, triglyceride, fatty
acid, and phospholipid metabolism, all of which are intimately
involved in HCV particle formation.8 Furthermore, NS3/4A is
thought to blunt innate immune responses locally soon after
replication is initiated by targeting MAVS located at MAMs.7

Controversies persist as to the localization of structural and
non-structural viral proteins to MAMs or mitochondria during
HCV infection, as current evidence depends on the expression or
infection system used. In cell lines expressing single viral pro-
teins or replicons, a number of viral proteins have been observed
at mitochondria or MAMs. In replicon or core-expressing cells,
core staining overlaps with mitotracker staining in the peri-
nuclear region.10,11 More particularly, core co-localized with su-
peroxide dismutase at mitochondria and was found in MAM
fractions. Core was also detected at the outer mitochondrial
membrane (OMM) by electron microscopy (EM).10–12 In 293T
cells, ectopically expressed p7 localized to mitochondria and was
detected in MAM fractions.13 In replicon-harboring cells, NS3A
and NS4A, but not NS5A or NS5B, have been shown to co-localize
with mitotracker in the perinuclear region.11,14 Furthermore,
NS3/4A has been shown to co-localize with mitochondrial
markers15 and has been detected in MAM fractions.7 However, in
the context of the cell culture-derived HCV (HCVcc) systems, not
all of these data have been reproducible.16,17 Core co-localized
with lipid droplets rather than mitochondria. Indeed, using
mitotracker (as a mitochondrial marker) or EM, the authors
observed limited or absent co-localization of viral proteins with
mitochondria.16,17 However, cellular fractionation of HCVcc-
infected cells confirmed that NS3/4A as well as NS5A co-purify
with the MAM marker sigma 1 receptor (S1R) in detergent-
resistant fractions.8 Finally, core and NS3 have been detected in
HCV-positive liver sections in the cytoplasm, dilated ER cisternae
and enlarged mitochondria,18 however, this has not been
confirmed in other studies.19 Interestingly, using replicon-
containing cells, or cells infected with virions produced by
trans-complementation, it has been shown that defective mito-
chondria accumulate in the vicinity of virus-induced DMVs, but
not in areas of the cytoplasm that are more distant to DMVs,
suggesting that the effect of HCV on mitochondria is spatially
restricted. Defective mitochondria in the vicinity of DMVs were
characterized by a reduced surface area of mitochondria-ER
contacts.15 In line with this observation, HCV replicons were
shown to alter MAM composition.20 Herein, we show – in the
Table 1. Patient data of liver samples.

Number of samples Patient age (mean ± SD) Sex (

10 (HCV-) 55 ± 6.6
9 (HCV+) 39 ± 8.3
9 (HCV+) 42 ± 9.7
7 (HCV+) 39 ± 3
9 (HCV+) 54 ± 5.8
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context of hepatoma cells productively infected with HCVcc –

that viral proteins directly interact with MAMs and mitochon-
dria, alter MAM composition in vitro and in liver biopsies, and
that MAMs are required for viral replication.
Materials and methods
Reagents
Antibodies used are listed in the supplementary CTAT table.
Construction of the CRISPR CAS9 lentiviral construct targeting
CypD has previously been described.21

Cell culture
Huh7.5 cells were maintained and the HCV JFH1 strain was
produced as described previously.22 All infections of Huh7.5 cells
were performed at a multiplicity of infection (MOI) of 0.1 and
cells were harvested at the indicated days post infection (dpi).

Immunoblotting, immunoprecipitation, quantitative reverse-
transcription PCR, biochemical fractionation
Quantitative reverse-transcription PCR, immunoblotting and sub-
cellular biochemical fractionation were performed as previously
described.22,23 For Immunoprecipitations (IP), cell lysates were
pre-cleared with protein G agarose beads before incubation with
anti-voltage dependent anion channel 1 (VDAC1) or control IgG
andproteinG agarosebeadsaspreviously described.24 Intracellular
HCV RNA was analyzed by quantitative reverse-transcription PCR
using b-glucuronidase as the housekeeping gene.

Immunofluorescence and fluorescent in situ PLAs
Immunofluorescence and in situ proximity ligation assays (PLAs)
(Sigma, Duolink®) were performed as previously described.25

Images were acquired under identical conditions at 60x magni-
fication and analyzed using Fiji software (NIH, USA) following the
procedure described in.26 Data are expressed as ratio of dots per
nucleus compared to controls.

Bright field PLAs on liver biopsies
Liver biopsies and resections from controls (intestinal cancer
with liver metastasis) and patients with chronic hepatitis C were
acquired during routine diagnostic work whenever sufficient
material was available. Biopsies were used under the French IRB
“Comité de Protection des Personnes Sud-Est 287 IV” agreement
#11/040 obtained in 2011 after obtaining written informed
consent. Paraffin-fixed hepatic tissues were de-paraffinized and
antigen retrieval was performed with sodium citrate buffer
(10 mM, pH 6) at 98.7 �C for 40 min. For in situ PLAs, Duolink® In
Situ Detection Reagents Brightfield were used according to the
manufacturer’s protocol. PLA signals were assessed exclusively in
parenchymal tissue of all liver biopsies, using the same methods
described above, but with a color deconvolution step before
determining the threshold. All available patient data are sum-
marized in Table 1.
F/M/unknown) Inflammation grade Fibrosis stage

1/2/7 0 0
5/2/2 1-2 0-1
3/6/0 1-3 2-3
3/4/0 2-3 4
3/6/0 2.5-3 HCC
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Insulin sensitivity
Control and infected cultures were serum starved for 3 h and
then treated or not with 100 nmol/L insulin for 15 min, washed
with cold PBS, harvested and subjected to western blot analysis.

Mitochondrial Ca2+ measurement
Ca2+ imagingwasperformed as describedpreviously.27Huh7.5 cells
were transduced with an adenovirus expressing the FRET-based
mitochondrial Ca2+ sensor 4mtD3cpv (gift from Prof. R. Tsien28).
Cells were perfused with a Ca2+-containing buffer followed by a
stimulation with 100 lM ATP in a Ca2+-free EGTA buffer with
simultaneous imagingona Leicawide-fieldmicroscope (excitation:
430 and 480 nm; emission 535 nm). Data were extracted using
MetFluor software (Leica Microsystems) and plotted as the FRET
ratio (535 nm/480 nm) after correcting for background and pho-
tobleaching (R/R0). The concentration of cytosolic Ca2+ was
measured in cells loaded with 5 lM Fura2-acetoxymethyl ester at
37 �C for 1 h. The loaded cells were excited at 340 and 380 nm and
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emission was collected at 510 nm. Data were presented as fluo-
rescence ratio (F340/F380) after subtraction of background.

Statistics
Experiments were performed in biological duplicates or tripli-
cates, unless otherwise indicated. Normal distribution of the data
was tested using Shapiro-Wilk. Graph Pad Software was used for
all further statistical tests as detailed in the figure legends.
Results
HCV proteins are enriched at MAMs in productively infected
cells
To assess the intracellular localization of HCV proteins, produc-
tively infected cell cultures were harvested 3 dpi and separated
on sequential density gradients into mitochondria, MAM and ER
fractions (Fig. 1A-C). Fraction-enrichment was validated using
MAM-associated marker proteins known to be either ER-specific,
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such as inositol trisphosphate receptor 1 (IP3R1) and S1R; or
mitochondria-specific, such as glucose-regulated protein 75
(Grp75), cyclophilin D (CypD) and VDAC1.9 All HCV proteins that
were probed for were present in the ER but were also enriched in
the MAM fraction. Only NS3 could also be detected in the
mitochondrial fraction. The presence of HCV proteins did not
alter the distribution of the cellular marker proteins amongst the
different fractions, except for VDAC1. In the MAM fraction of
infected cells, VDAC1 levels were on average reduced by 60%
(Fig. 1C,D), while its total expression levels remained unchanged
(Fig. 1C). VDAC1 is a porin located at the OMM. The physiological
functions of VDAC1 on the OMM are the regulation of metabolite
and ion transport between the cytoplasm and the mitochondrial
intermembrane space and release of pro-apoptotic factors from
the mitochondrial intermembrane space into the cytoplasm,29
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thus controlling apoptosis. In addition, VDAC1 located at MAMs
plays a predominant role in Ca2+ and lipid transfer from the ER to
mitochondria. In contrast to VDAC1, expression levels of CypD
and Grp75, mitochondria-specific MAM markers that are
required for MAM formation and Ca2+ transfer at MAMs,30 were
unaltered.

To further investigate the changes of VDAC1 at MAMs in
infected cells, PLAs were set up using antibodies targeting
mitochondria-specific MAM markers VDAC1, CypD or Grp75 in
combination with the ER specific-MAM marker IP3R1 (Fig. S1).
PLAs with CypD/IP3R1 or Grp75/IP3R1 antibody combinations
resulted in no difference in signals between infected and unin-
fected cells. However, VDAC1/IP3R1 PLAs produced fewer green
dots in infected compared to uninfected cells, without detectable
changes to total VDAC1 levels at 3 and 10 dpi (Fig. 2A, B, C).
k 3 dpi 10 dpi

n.s.

n.s.

Mock

3 dpi

10 dpi

GRP75/IP3R13R1

s were infected with HCV and fixed at 3 and 10 dpi. Blots and PLA images are
HCV RNA and immunoblot of the indicated cellular and viral proteins. (B) PLAs
s are shown. Scale bar = 20 lm. (C) Quantitative analysis of the PLA as shown in
elds per sample (mean ± SD). Two-way ANOVA with Tukey’s post hoc test. ****p
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While VDAC1 is ubiquitously expressed on the OMM as well as at
MAMs, IP3R1 is expressed at the ER and MAMs.31 This restricts
PLA signals obtained with the VDAC1/IP3R1 antibody combina-
tion to MAMs. In conclusion, the loss of the VDAC1/IP3R1 PLA
signal along with loss of VDAC1 in the biochemical MAM frac-
tions in HCV-infected cells suggest that HCV causes VDAC1 either
to re-localize away from MAMs or to undergo structural re-
arrangements that interfere with VDAC1 antibody-detection at
MAMs. To find out whether HCV proteins may play a role in these
observations, PLAs using antibodies targeting the viral proteins
core and NS3 in combination with anti-VDAC1 were performed
(Fig. 3A). With both antibody combinations, positive signals were
obtained. VDAC1/core PLA signals were likely to originate from
MAMs, as this was the only biochemical fraction where both
proteins were detected. VDAC1/NS3 PLA signals may reflect
proximity of the two proteins in the context of MAMs or on the
OMM, as both proteins were detected at both sites (Fig. 1C). PLAs
targeting IP3R1/core resulted in strong signals, while IP3R1/NS3
did not produce any fluorescence, suggesting that NS3 may be
more abundant on the OMM than on MAMs or the ER. Finally, IP
using an anti-VDAC1 antibody as bait, contained HCV core and
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NS3 proteins, suggesting that VDAC1 and core either interact
directly or are present in the same protein complex (Fig. 3B). In
conclusion, these data suggest that the viral proteins localize to
mitochondria and/or MAMs, interact with mitochondrial pro-
teins and alter MAM protein composition in infected cells.

VDAC1-IP3R1 proximity is specifically reduced in the context
of MAMs in vivo
To investigate VDAC1 status at MAMs in chronic hepatitis C
in vivo, PLAs were set up on paraffin sections of livers from pa-
tients with HCV at different stages of liver disease and from non-
infected patients without liver disease. Analysis of the PLAs was
then performed on parenchymal tissue sections (Fig. S2). Patient
data are summarized in Table 1. Because MAM formation or
numbers may fluctuate with disease progression, and this may
indirectly influence VDAC1-IP3R1 interactions,25 MAM integrity
was controlled using CypD/IP3R1 PLAs as read out. Indeed,
knockout of CypD has shown that this protein is required for
formation and maintenance of MAMs as well as associated
mitochondrial functions.25 In comparison to control livers, CypD/
IP3R1 signals were very low in HCV biopsies at early fibrosis
IP
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stages, but then increased gradually throughout fibrosis; at the
HCC stage no significant difference was detectable between un-
infected controls without liver disease and the HCC stage. In
contrast to CypD/IP3R1, VDAC1/IP3R1 levels dropped gradually
throughout fibrosis progression and reached the lowest levels at
stage F4. Levels increased again slightly at the HCC stage but
remained significantly under the levels detected in uninfected
control tissues (Fig. 4A, B). Thus, changes to VDAC1/IP3R1 PLA
signals occur in vivo and are unlikely due to a loss of MAM
integrity, but rather due to a differential regulation of VDAC1 at
MAMs. No correlation of VDADC1/IP3R1 nor CypD/IP3R1 PLA
signals with inflammation grade, age or sex of the patients could
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be detected (data not shown, Table 1) and additional patient data
were not available. Finally, loss of the VDAC1/IP3R1 PLA signal in
patients with chronic hepatitis C is most likely not caused by
diminished VDAC1 and IP3R1 expression levels as both proteins
have been reported to be slightly induced in livers of patients
with HCV and HCV-infected humanized mice, while CypD mRNA
and protein have been shown to be stable.32,33

Glucose homeostasis and mitochondrial Ca2+ signaling are
unaltered in infected cells
To investigate whether the HCV-induced changes to VDAC1 at
MAMs impact MAM functions, glucose homeostasis and Ca2+
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Research article
transfer were measured in infected cells. Upon serum starvation,
infected cells maintained their full capacity to phosphorylate Akt
protein in response to acute insulin stimulation, suggesting that
HCV-induced changes at MAMs did not interfere with glucose
JHEP Reports 2023
homeostasis (Fig. 5A, B). Cytosolic and mitochondrial Ca2+ levels
were assessed using the dye Fura-2 and the ratiometric sensor
4mtD3cpv, respectively (Fig. 5C). Basal levels of Ca2+ in the
cytoplasm of infected cells remained unchanged at 3 and 10 dpi.
8vol. 5 j 100647



However, ATP-triggered release of Ca2+ from the ER into the
cytoplasm was reduced in infected cells. The difference with
uninfected cells was small but significant at 3 dpi. At 10 dpi, a
close to 80% reduction was observed, likely due to emerging ER
stress, as confirmed by induction of the ER stress markers CHOP
(DDIT3) and activating transcription factor 4 (Fig. 5D). Using the
mitochondrial Ca2+ sensor, no changes in basal Ca2+ levels nor in
ATP-stimulated Ca2+ influx into mitochondria were observed in
mock compared to infected cells at 3 dpi. At 10 dpi, influx was
significantly reduced, consistent with the loss of Ca2+ in the ER
due to ER stress (Fig. 5C). These data suggest that HCV-induced
alterations to VDAC1 at MAMs do not impact Ca2+ signaling be-
tween the ER and mitochondria and do not impact glucose
homeostasis.

Silencing MAM components inhibits HCV replication
To assess whether the presence of viral proteins at MAMs im-
pacts the HCV life cycle, HCV replication was investigated using
two independent CypD-deficient CRISPR/Cas9 Huh7.5 cell lines
(Fig. 6A).21 CypD-knockout (CypD-KO) did not affect cell growth
(Fig. 6B), but strongly reduced VDAC1/IP3R1 PLA signals,
consistent with a reduction in MAM integrity (Fig. 6C-E), as
previously reported.21,30 In comparison to control cells, a
decrease in HCV replication levels was observed in the CypD-KO
cell lines (Fig. 6F). Replication could be partially rescued in the
CypD-KO cell lines by ectopic CypD expression (Fig. 6F,G).

Discussion
Viruses target mitochondria and MAMs in order to dampen
antiviral immunity and to adapt cellular metabolism and sur-
vival. For HCV, core has been reported to be present at the OMM
while NS3/4A, NS5 and p7 have been detected at MAMs in cell
lines overexpressing viral proteins or replicons.7,12,13,34 NS3 and
NS5A at MAMs are thought to enable a pro-viral cellular
microenvironment,7,34 while the presence of HCV proteins at
mitochondria is thought to cause stress by modulating Ca2+

fluxes and elevating reactive oxygen species levels.35–37 Using
the HCVcc system, we detected only NS3 in mitochondrial frac-
tions; all other HCV proteins that were probed for were detected
at both the ER and MAMs. Furthermore, we showed, using
biochemical fractionation and PLAs, that HCV induced loss of the
VDAC1 signal at MAMs. This is consistent with the study by
Horner et al., who reported a loss of VDAC1 from MAMs in full
length HCV replicon cells using a proteomic approach.7 Finally, IP
using anti-VDAC1 as bait confirmed a direct interaction between
core, NS3 and VDAC1 or at least their presence in the same
protein complexes. How the association of viral proteins with
MAMs and VDAC1 in particular impacts HCV replication and
possibly assembly remains to be studied.

In humans, PLA-profiles of VDAC1/IP3R1 and CypD/IP3R1
throughout fibrosis progression associated with chronic hepatitis
JHEP Reports 2023
C displayed different profiles. CypD/IP3R1 signals decreased at
early fibrosis stages but recovered at the HCC stage to a level
comparable to that in uninfected control tissues. This early
reduction of MAMs with fibrosis may reflect the presence of in-
sulin resistance that is known to correlate with levels of fibrosis.38

Indeed, MAM disruption is associated with hepatic insulin resis-
tance in vitro, in mouse models of obesity and diabetes and in
humans;25,30,39 however, no patient data on glucose homeostasis
from our cohort were available to follow-up on this hypothesis in
more detail. These data show that MAM integrity fluctuates dur-
ing disease progression, which may of course impact the in-
teractions between VDAC1 and IP3R1. VDAC1/IP3R1 PLA levels
gradually decreased and reached their lowest levels at fibrosis
stages 3 and 4, where CypD/IP3R1 had started to increase again. In
agreement, a reinforcement of ER-mitochondria interactions has
been reported in non-alcoholic steatohepatitis biopsies compared
to simple steatosis biopsies, suggesting positive correlation with
disease severity.40 This suggests that VDAC1/IP3R1 interactions
undergo changes in chronic hepatitis C disease progression that
are not due to simple disruption of MAM integrity. The amount of
biopsy material was insufficient to assess whether alterations to
VDAC1/IP3R interactions throughout chronic hepatitis C disease
progression correlated directly with HCV protein expression or
viral replication. Furthermore, disease-stratified control biopsies
from HCV-negative patients were not available to assess whether
the observed effect on VDAC1/IP3R interactions was specific for
chronic hepatitis C.

Interestingly, VDAC1 at MAMs plays determining roles not
only in Ca2+ signaling and glucose homeostasis but also in
autophagy and lipid metabolism.29 We excluded an effect of
reduced VDAC1 expression at MAMs on Ca2+ signaling and
glucose homeostasis in vitro. This suggests that the residual
VDAC1 protein present at MAMs in infected cells is sufficient to
fulfill these functions. Alternatively, the channel conductivity of
VDAC1 may be altered to compensate functionally for the loss of
VDAC protein. This hypothesis, as well as the impact of reduced
VDAC levels at MAMs on autophagy, lipid metabolism and
apoptosis remain to be evaluated in future studies.41

MAMs seem to play an important role in viral replication,
because CypD-knockout, which alters MAM integrity and func-
tions, strongly reduced viral replication. Underlining the impor-
tance of MAMs in viral replication, a recent publication reported
that downregulation of the MAM resident factor S1R inhibited
the establishment of HCV replication.8 Overall, our data are
consistent with the idea that MAMs may be a critical hub for
viral replication. These data warrant further investigations to
assess whether the association of viral proteins to MAMs may
impact physiological functions such as apoptosis resistance,
respiratory bioenergetics or autophagosome formation, which
may play important roles in chronic hepatitis C disease
progression.
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