
ARTICLE Communicated by Aapo Hyvarinen

A Correspondence Between Normalization Strategies
in Artificial and Biological Neural Networks

Yang Shen
yshen@cshl.com
Julia Wang
julwang@cshl.edu
Saket Navlakha
navlakha@cshl.edu
Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology,
Cold Spring Harbor, NY 11724, U.S.A.

A fundamental challenge at the interface of machine learning and neu-
roscience is to uncover computational principles that are shared between
artificial and biological neural networks. In deep learning, normalization
methods such as batch normalization, weight normalization, and their
many variants help to stabilize hidden unit activity and accelerate net-
work training, and these methods have been called one of the most im-
portant recent innovations for optimizing deep networks. In the brain,
homeostatic plasticity represents a set of mechanisms that also stabilize
and normalize network activity to lie within certain ranges, and these
mechanisms are critical for maintaining normal brain function. In this
article, we discuss parallels between artificial and biological normaliza-
tion methods at four spatial scales: normalization of a single neuron’s
activity, normalization of synaptic weights of a neuron, normalization
of a layer of neurons, and normalization of a network of neurons. We
argue that both types of methods are functionally equivalent—that is,
both push activation patterns of hidden units toward a homeostatic state,
where all neurons are equally used—and we argue that such representa-
tions can improve coding capacity, discrimination, and regularization. As
a proof of concept, we develop an algorithm, inspired by a neural normal-
ization technique called synaptic scaling, and show that this algorithm
performs competitively against existing normalization methods on sev-
eral data sets. Overall, we hope this bidirectional connection will inspire
neuroscientists and machine learners in three ways: to uncover new nor-
malization algorithms based on established neurobiological principles;
to help quantify the trade-offs of different homeostatic plasticity mech-
anisms used in the brain; and to offer insights about how stability may
not hinder, but may actually promote, plasticity.
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1 Introduction

Since the dawn of machine learning, normalization methods have been
used to preprocess input data to lie on a common scale. For example,
min-max normalization, unit vector normalization, z-scoring, and the like
are all well known for improving model fitting, especially when differ-
ent input features have different ranges (e.g., age versus salary). In deep
learning, normalizing the input layer has also proved beneficial; for ex-
ample, “whitening” input features so that they are decorrelated and have
zero mean and unit variance leads to faster training and convergence
(LeCun, Bottou, Orr, and Müller, 1998; Desjardins, Simonyan, Pascanu, &
Kavukcuoglu, 2015). More recently, normalization has been extended to
hidden layers of deep networks, whose activity can be viewed as inputs to
a subsequent layer. This type of normalization modifies the activity of hid-
den units to lie within a certain range or to have a certain distribution, inde-
pendent of input statistics or network parameters (Ioffe & Szegedy, 2015).
While the theoretical basis for why these methods improve performance has
been subject to much debate—for example, reducing covariate shift (Ioffe
& Szegedy, 2015), smoothing the objective landscape (Santurkar, Tsipras,
Ilyas, & Madry, 2018), decoupling the length and direction of weight vectors
(Kohler et al., 2019), and acting as a regularizer (Wu et al., 2019; Luo, Wang,
Shao, & Peng, 2018; Poggio, Liao, & Banburski, 2020)—normalization is
now a standard component of state-of-the-art architectures and has been
called one of the most important recent innovations for optimizing deep
networks (Kohler et al., 2019).

In the brain, normalization has long been regarded as a canonical compu-
tation (Carandini & Heeger, 2011; Weber, Krishnamurthy, & Fairhall, 2019)
and occurs in many sensory areas, including in the auditory cortex to vary-
ing sound intensities (Rabinowitz, Willmore, Schnupp, & King, 2011) and
the olfactory system to varying odor concentrations (Olsen, Bhandawat,
& Wilson, 2010). Normalization is believed to help generate intensity-
invariant representations for input stimuli, which improve discrimination
and decoding that occurs downstream (Carandini & Heeger, 2011). Gain
control is a related mechanism commonly used at the sensory layer to en-
sure neural activity remains within bounds (Schwartz & Simoncelli, 2001;
Priebe & Ferster, 2002). For example, gain control is used to ensure that neu-
ral responses in the retina remain within a narrow range of amplitudes,
despite significant changes in light level from day to night (Shapley, 1997;
Rodieck, 1998; Mante, Frazor, Bonin, Geisler, & Carandini, 2005).

But beyond the sensory (input) level, there is an additional type of
normalization found ubiquitously in the brain, called homeostatic plasticity
(Turrigiano, 2012). Homeostasis refers to the general ability of a system to
recover to some set point after being changed or perturbed (Cannon, 1932).
A canonical example is a thermostat used to maintain an average temper-
ature in a house. In the brain, the set point can take on different forms at
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different spatial scales, such as a target firing rate for an individual neu-
ron or a distribution of firing rates over a population of neurons. This set
point is typically approached over a relatively long period of time (hours
to days). The changes or perturbations occur due to other plasticity mecha-
nisms, such as long-term potentiation (LTP) or long-term depression (LTD),
which modify synaptic weights and firing rates at much faster timescales
(seconds to minutes). Thus, the challenge of homeostasis is to ensure that
set points are maintained on average without “erasing” the effects of learn-
ing. This gives rise to a basic stability-versus-plasticity dilemma. Disruption
of homeostasis mechanisms has been implicated in numerous neurological
disorders (Laughlin & Sejnowski, 2003; Turrigiano & Nelson, 2004; Houwel-
ing, Bazhenov, Timofeev, Steriade, & Sejnowski, 2005; Yu, Sternad, Corcos,
& Vaillancourt, 2007; Bakker et al., 2012; Wondolowski & Dickman, 2013),
indicating their importance for normal brain function.

In this article, we highlight parallels between normalization algorithms
used in deep learning and homeostatic plasticity mechanisms used in the
brain. Identifying these parallels can serve two purposes. First, machine
learners have extensive experience analyzing normalization methods and
have developed a sense of how they work, why they work, and when using
certain methods may be preferred over others. This experience can translate
to quantitative insights about outstanding challenges in neuroscience, in-
cluding the stability-versus-plasticity trade-off, the roles of different home-
ostasis mechanisms used across space and time, and whether there are
parameters critical for maintaining homeostatic function that have been
missed experimentally. Second, there are many normalization techniques
used in the brain that have not, to our knowledge, been deeply explored
in machine learning. This represents an opportunity for neuroscientists to
propose new normalization algorithms from observed phenomena or estab-
lished principles (Hassabis, Kumaran, Summerfield, & Botvinick, 2017) or
to provide new perspectives on why existing normalization schemes used
in deep networks work so well in practice.

2 Normalization Methods across Four Spatial Scales

We begin by describing artificial and neural normalization strategies that
occur across four spatial scales (see Figure 1 and Table 1): normalization
of a single neuron’s activity via intrinsic neural properties, normalization
of synaptic weights of a neuron, normalization of a layer of neurons, and
normalization of an entire network of neurons.

2.1 Normalization of a Single Neuron’s Activity. Here, we focus on
normalization methods that directly modify the activity level of a neuron
via intrinsic mechanisms.

In deep learning, the current most popular form of single neuron nor-
malization is batch normalization (Ioffe & Szegedy, 2015). It has long been
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known that z-scoring the input layer—that is, shifting and scaling the in-
puts to have zero mean and unit variance—speeds up network training
(LeCun, Bottou, Orr, & Müller, 1998). Batch normalizaton essentially applies
this idea to each hidden layer by ensuring that for every batch of training
examples, the activation of a hidden unit over the batch has zero mean and
unit variance.

Mathematically, let {z1, z2, . . . , zB} be the activations of hidden unit z for
each of the i = 1 : B inputs in a training batch. Let μB and σ 2

B be the mean and
variance of all the zi’s, respectively. Then the batch-normalized activation
of z for the ith input is

ẑi = zi − μB√
σ 2

B + ε

,

where ε is a small constant.
In practice, the effect of this simple transformation is profound: it leads to

significantly faster convergence (larger learning rates) and improved stabil-
ity (less sensitivity to parameter initialization and learning rate) (Ioffe and
Szegedy, 2015; Bjorck, Gomes, Selman, & Weinberger, 2018; Santurkar et al.,
2018; Arora, Li, & Lyu, 2019). Numerous extensions of this method have
since been proposed with various tweaks and perks on a similar underly-
ing idea (see Table 1).

Figure 1: Neural homeostatic plasticity mechanisms across four spatial scales.
(A) Normalization of a single neuron’s activity. Left: Neuron X has a relatively
low firing rate and a high firing threshold, θX , and vice versa for neuron Y. Right:
Both neurons can be brought closer to their target firing rate by decreasing θX

and increasing θY . (B) Normalization of synaptic weights. Left (synaptic scal-
ing): If a neuron is firing above its target rate, its synapses are multiplicatively
decreased, and vice versa if the neuron is firing below its target rate. Right (den-
dritic normalization): If a synapse size increases due to strong LTP, its neighbor-
ing synapses decrease their size. (C) Normalization of a layer of neurons. Left:
Two layers of neurons with feedforward connections and other feedback in-
hibitory connections (not shown). Right: The cumulative distribution of firing
rates for neurons in the first layer is exponential with a different mean for differ-
ent inputs. The activity of neurons in the second layer is normalized such that
the means of the three exponentials are approximately the same. (D) Left: Exam-
ple of a neural circuit with the same units and connections but different activity
levels for neurons (purple bars) and different weights (pink arrow thickness)
under two different conditions. Right: Despite local variability, the global dis-
tributions of firing rates and synaptic weights for the network remains stable
(log-normally distributed) under both conditions.
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In the brain, normalizing the activity of a neuron has long been appre-
ciated as an important stabilizing mechanism (Pozo & Goda, 2010). For
example, if neuron u drives neuron v to fire, the synapse between them may
get strengthened by Hebbian plasticity. Then the next time u fires, it is even
more likely that v fires, and this positive feedback loop can lead to excessive
activity. Similarly, if the synapse undergoes depression, it is less likely for
v to fire in the future, and this negative feedback can lead to insufficient
activity. The job of homeostasis is to prevent neurons from being both
overutilized (hyperactive) and underutilized (hypoactive) (Turrigiano,
2008).

Modifying a neuron’s excitability (e.g., its firing threshold or bias) repre-
sents one intrinsic neural mechanism used to achieve homeostasis (Bienen-
stock, Cooper, & Munro, 1982; Zhang and Linden, 2003; Turrigiano, 2011).
The idea is simple (see Figure 1A); each neuron has an approximate target
firing rate at which it prefers to fire. A neuron with sustained activity above
its target rate will increase its firing threshold such that it becomes harder to
fire, and likewise, a neuron with depressed activity below its target will de-
crease its firing threshold, thus becoming more sensitive to future inputs.
The net effect of these modifications is that the neuron hovers around its
target firing rate, on average, over time. Several parameters are involved in
this process, such as the rate at which thresholds are adjusted (which affects
how quickly homeostasis is approached) and the value of the target itself,
which may be cell-type-specific. Other intrinsic mechanisms, such as mod-
ifying ion channel density, can also be used to intrinsically regulate firing
rates (see Figure 1).

Both of these methods are unsupervised; they adjust the activity of a neu-
ron to lie within a preferred, narrow range with respect to recently observed
data.

2.2 Normalization of Synaptic Weights. Here, we focus on normaliza-
tion methods that indirectly modify the activity of a neuron by changing its
weights.

In deep learning, one popular way to (postsynaptically) normalize the
inputs to a hidden unit is weight normalization (Salimans & Kingma, 2016).
The idea is to reparameterize the conventional weight vector w of a unit
into two components,

w = c
‖v‖v,

where c is a scalar and v is a parameter vector, both of which are learned.
This transformation fixes the length (Euclidean norm) of the weight vec-
tor, such that ‖w‖ = c, for any v. Backpropagation is then applied to c and
v instead of to w. Thus, the length of the weight vector (c) is decoupled
from the direction of the weight vector (v/‖v‖). Such “length-direction”



3186 Y. Shen, J. Wang, and S. Navlakha

decoupling leads to faster learning and exponential convergence in some
cases (Kohler et al., 2019). The concept of weight normalization has also
been proposed as a means to enforce optimization constraints in neural map
formation (Wiskott & Sejnowski, 1998).

In the brain, the best-studied type of weight normalization is called
synaptic scaling (Turrigiano, 2008; see Figure 1B, left). If a neuron is on
average firing above its target firing rate, then all of its incoming excita-
tory synapses are downscaled (i.e., multiplied by some factor, 0 < α < 1) to
reduce its future activity. Similarly, if a neuron is firing far below its tar-
get, then all its excitatory synapses are upscaled (α > 1); in other words,
prolonged inactivity leads to an increase in synaptic size (Murthy, Schiko-
rski, Stevens, & Zhu, 2001). These rules may seem counterintuitive, but re-
member that these changes are happening over longer timescales than the
changes caused by standard plasticity mechanisms. Indeed, it is hypothe-
sized that one way to resolve the plasticity-versus-stability dilemma is to
temporally segregate Hebbian and homeostatic plasticity so that they do
not interfere (Turrigiano, 2017). This could be done, for example, by activat-
ing synaptic scaling during sleep (Tononi & Cirelli, 2012; Krishnan, Tadros,
Ramyaa, & Bazhenov, 2019).

Interestingly, synapse sizes are scaled on a per neuron basis using a mul-
tiplicative update rule (see Figure 1B, left). For example, if a neuron has
four incoming synapses with weights 1.0, 0.8, 0.6, and 0.2 and if the neuron
is firing above its target rate, then the new weights would be downscaled to
0.5, 0.4, 0.3, and 0.1, assuming a multiplicative factor of α = 1/2. Critically,
multiplicative updates ensure that the relative strengths of input synapses
are preserved, which is believed to help maintain specificity of the neuron’s
response caused by learning. The value of the multiplicative factor need not
be constant and could depend, for example, on how far away the neuron
is from reaching its target rate. Thus, synaptic scaling keeps the firing rate
of a neuron within a range while preserving the relative strength between
synapses.

Another form of weight normalization in the brain is called dendritic nor-
malization (Royer & Pare, 2003; Rabinowitch & Segev, 2008; Chistiakova,
Bannon, Chen, Bazhenov, & Volgushev, 2015); it occurs locally on individ-
ual branches of a neuron’s dendritic arbor (see Figure 1B, right). The idea is
that if one synapse gets strengthened, then its neighboring synapses on the
arbor compensate by weakening. This process is homeostatic because the
total strength of all synapses along a local part of the arbor remains approx-
imately constant. This process could be mediated by a shared resource, for
example, a fixed number of postsynaptic neurotransmitter receptors avail-
able among neighboring synapses (Li, Li, Lei, Wang, & Guo, 2013; Triesch,
Vo, & Hafner, 2018). Computationally, this process creates sharper bound-
aries between spatially adjacent synapses receiving similar inputs, which
could enhance discrimination and contrast.
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2.3 Normalization of a Layer of Neurons. Here, we focus on normal-
ization schemes that modify the activity of an entire layer of neurons, as
opposed to just a single neuron’s activity.

In deep learning, layer normalization (Lei Ba, Kiros, & Hinton, 2016) was
proposed to overcome several drawbacks of batch normalization. In batch
normalization, the mean and variance statistics of each neuron’s activity
is computed across a batch of training examples, and then each neuron is
normalized with respect to its own statistics over the batch. In layer normal-
ization, the mean and variance are instead computed over an entire layer
of neurons for each training example, and then each neuron in the layer is
normalized by the same mean and variance. Thus, layer normalization can
be used online (i.e., batch size of one), which makes it more amenable to
training recurrent neural networks (Lei Ba et al., 2016).

In the brain, layer-wise normalization has most prominently been ob-
served in sensory systems (see Figure 1C, left). For example, in the fruit
fly olfactory system, the first layer of (receptor) neurons encode odors via
a combinatorial code, in which, for any individual odor, most neurons re-
spond at a low rate and very few neurons respond at a high rate (Stevens,
2015). Specifically, the distribution of firing rates over all receptor neurons
is exponential with a mean that depends on the concentration of the odor
(higher concentration → higher mean). In the second layer of the circuit,
projection neurons receive odor excitation from receptor neurons, as well
as inhibition from lateral inhibitory neurons (Olsen et al., 2010). The re-
sult is that the concentration dependence is largely removed; that is, the
distribution of firing rates for projection neurons follows an exponential
distribution with approximately the same mean, for all odors and all odor
concentrations (Stevens, 2016; see Figure 1C, right). Thus, while an individ-
ual neuron’s firing rate can change depending on the odor, the distribution
of firing rates over all neurons remains nearly the same for any odor. This
process is dubbed divisive normalization and is believed to help fruit flies
identify odors independent of the odor’s concentration. Divisive normal-
ization has also been studied in the visual system, for example, for light
adaptation in the retina or contrast adjustment in the visual cortex (Caran-
dini & Heeger, 2011; Sanchez-Giraldo, Laskar, & Schwartz, 2019).

Overall, layer normalization divides the responses of individual neurons
by a factor that relates to the summed activity of all the neurons in the layer.
These normalizations can be considered “homeostatic” because they pre-
serve, for any input, certain properties of a distribution of firing rates, such
as the mean or variance. In the brain, other nonlinear transformations are
also used alongside these transformations, for example, to adjust satura-
tion rates of individual neurons and amplify signals prior to normalization
(Carandini & Heeger, 2011).

2.4 Normalization of a Network of Neurons. In the brain, recent work
has challenged the conventional view that homeostasis applies only at the
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level of a single neuron or a strict layer of neurons and has instead attributed
homeostasis properties to a broader network of neurons. In one experiment,
the firing rates of individual neurons in a hippocampal network were moni-
tored for two days after applying baclofen, a chemical agent that suppresses
neural activity. After two days, the distribution of firing rates over the pop-
ulation was compared to the distribution of firing rates for a control group
of neurons that received no baclofen; strikingly, both were approximated
by the same log-normal distribution. Moreover, the firing rates of many
individual neurons, in both conditions, significantly changed from day 0 to
day 2 (Slomowitz et al., 2015; Ziv et al., 2013) (Figure 1D). Thus, individual
neurons may deviate from their “preferred” firing rate, but the distribution,
and hence the sum, of firing rates over the population is well preserved.
Similar observations have been made in the stomatogastric ganglion of
crabs and lobsters, where rhythmic bursting is robustly maintained despite
many different configurations of the circuit (Prinz, Bucher, & Marder, 2004).
This remains a beautiful yet mysterious property of network stability imple-
mented by neural circuits, and the mechanisms driving this level of network
regulation remain poorly understood (Buzsaki & Mizuseki, 2014).

In deep learning, we are not aware of a normalization strategy that is
applied across an entire network of units or even across a population of
units beyond a single layer. Network homeostasis could in principle be an
emergent property from local homeostasis rules implemented by individ-
ual units or could be a global constraint intrinsically enforced by some un-
known mechanism. Either way, we hypothesize that network homeostasis
may be attractive in deep networks because it allows for more flexible local
representations while still providing stability at the network level.

3 The Computational Benefits of Homeostasis (Load Balancing)

In computer science, the term load balancing means to distribute a data pro-
cessing load evenly over a set of computing units, such that efficiency is
maximized and the amount of time that units are idle is minimized (Lynch,
1996; e.g., load balancing of servers that handle traffic from users on the
Internet). For neural networks, we define load balancing based on how fre-
quently a set of neurons is activated and how similar their mean activation
levels are on average. Why might load balancing in neural networks be at-
tractive computationally? Three reasons come to mind.

First, load balancing increases the coding capacity of the network—that
is, the number of unique stimuli that can be represented using a fixed num-
ber of resources (neurons). Suppose that under standard training, a certain
fraction (say, 50%) of the hidden units are not used; that is, they are never, or
rarely, activated. This wasted capacity would reduce the number of possible
patterns the network could represent and would introduce unnecessary pa-
rameters that can prolong training. Load balancing of neurons could avoid
these problems by pressing more hidden units into service. In the brain,
equal utilization of neurons also promotes distributed representations, in
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which each stimulus is represented by many neurons, and each neuron par-
ticipates in the representation of many stimuli (often called a combinatorial
code; Stevens, 2015; Malnic, Hirono, Sato, & Buck, 1999). This property is
particularly attractive when such representations are formed independent
of input statistics or structure. Importantly, load balancing is not in con-
flict with sparse coding, another common coding scheme in the brain (Ol-
shausen & Field, 2004). In generating a sparse code, only a small percentage
of neurons are activated per input. However, after averaging over many in-
puts over time, each neuron is activated roughly the same number of times,
and this is a form of load balancing.

Second, load balancing can improve fine-grained discrimination. If a
neuron has a sigmoidal activation function, normalization keeps the neu-
ron in its nonsaturated regime. This means the neuron will be sensitive to
small changes in the input, which is believed to help the neuron be maxi-
mally informative and discriminative (Wang, Stocker, & Lee, 2016; Ganguli
& Simoncelli, 2010, 2014; Wang, Stocker, & Lee, 2012; Laughlin, 1981). More-
over, if input statistics shift over time, the neuron will continue to respond
within a narrow range of amplitudes, and thus continue to have a useful
dynamic range.

Third, load balancing can serve as a regularizer, which is commonly used
in deep networks to constrain the magnitude of weights or the activity
levels of units. Regularizers typically improve generalization and reduce
overfitting (Kukacka, Golkov, & Cremers, 2017) and can be specified ex-
plicitly or implicitly (Neyshabur, Tomioka, Salakhutdinov, & Srebro, 2017).
There are many forms of regularization used in deep learning—for exam-
ple, Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014), in which a random fraction of the neurons is set inactive during train-
ing, or weight regularization, in which �1 or �2 penalties are applied to
the loss function to limit how large weight vectors become (Lang & Hin-
ton, 1990; Zou & Hastie, 2005). Although regularization is a powerful tool
to build robust models, regularization alone is not guaranteed to generate
load-balanced (homeostatic) representations.

4 Empirically Testing the Benefits of Homeostasis

The empirical results in this section serve two purposes. The first is to show
that two popular normalization methods (batch normalization and weight
normalization) generate homeostatic representations and demonstrate the
three benefits of homeostasis discussed in the previous section. The second
is to show that a method inspired by synaptic scaling also demonstrates
these benefits and performs competitively against existing normalization
methods.

These results are not meant to represent a full-fledged comparison be-
tween normalization methods across multiple architectures, data sets, or
hyperparameter settings. Rather, these results are simply meant to demon-
strate a proof-of-concept of the bidirectional perspective argued here.
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Table 2: Normalization Algorithms.

Algorithm Equations Notation

Batch normalization zi = wxi + b i: ith example in a batch of size B

ẑi = zi − μB√
σ 2

B + ε

zi: value of the unit (before activation) for i

yi = ReLU(γ ẑi + β ) yi: value of the unit (after activation) for i

Weight normalization yi = ReLU(wxi + b) w: incoming weights to the unit

w = c
||v|| v xi: inputs to the unit for i

Synaptic scaling w̃ = αw b: bias of the unit
zi = w̃xi + b μB: average of zi’s over the batch
yi = ReLU(zi − μB ) σ 2

B : variance of zi’s over the batch

Mean-only zi = wxi + b γ , β: trainable parameters (BatchNorm)
yi = ReLU(zi − μB ) c, v: training parameters (WeightNorm)

Scale-only w̃ = αw α: trainable parameter (Synaptic Scaling)
zi = w̃xi + b ε: a small constant
yi = ReLU(zi )

Notes: All equations show the forward-pass update equations for a single hidden unit.
For Weight normalization, backpropagation is performed on c and v, instead of w.

4.1 Experimental Setup. For our basic architecture, we used the orig-
inal LeNet5 (LeCun, Bottou, Bengio, & Haffner, 1998) with two convo-
lutional layers and three fully connected layers with ReLU activation
functions.

We experimented with two data sets. The first is CIFAR-10, a standard
benchmark for classification tasks, which contains 60,000 color images, each
of size 32 × 32, and each belonging to one of 10 classes (e.g., airplanes, cats,
trucks). The second data set is SVHN (Street House View Numbers), which
contains 73,257 color images, each of size 32 × 32, and each belonging to one
of 10 classes (digits 0–9). SVHN is analogous to MNIST but is more difficult
to classify because it includes house numbers in natural scene images taken
from a street view.

Each normalization method is applied to every layer, except the input
and output layers, with all affine parameters trainable. All methods used
Adam optimization in PyTorch with default parameters. Additional hyper-
parameters were fixed for each data set: CIFAR-10 (batch size of 32, learning
rate of 0.003, train for about 45,000 iterations) and SVHN (batch size of 256,
learning rate of 0.01, train for about 8,000 iterations). Batch statistics are cal-
culated using training data during training and using testing data during
testing. Table 2 provides the equations for each normalization algorithm.

There are three benefits of homeostasis, measured as follows:

1. Coding capacity: The information entropy of the binarized activation
values over hidden units. Entropy is highest when the probability
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that a random unit is activated (i.e., it outputs a value greater than
zero) for an input is 50%.

2. Discrimination: The classification accuracy on the test set.
3. Regularization: The range of the response magnitudes of hidden units;

a narrower range implies better regularization.

4.2 A Synaptic-Scaling-Inspired Normalization Algorithm. Of the
many normalization strategies discussed above, we choose to model synap-
tic scaling because it is one of the best studied and most widely observed
mechanisms across brain regions and species.

We propose a simplified model of synaptic scaling that captures two
key aspects of the underlying biology: multiplicative scaling of synaptic
weights and constraining a node to be activated around a target activation
probability on average. In the first step, the incoming weight vector w for
a hidden unit is multiplied by a factor α, that is, w = αw. Each hidden unit
has its own α value, which is made learnable during training. The α values
are initialized to 1. In the second step, for each hidden unit, we subtract its
mean activation (over a batch) from its actual activation for each input in
the batch. This process ensures that each unit has a mean activation (be-
fore ReLU) of 0 and, hence, a probability of activation (output value > 0)
of around 50%, and thus resembles the biological observation that no neu-
ron is over- or under utilized. This step is also the same as mean-only batch
normalization (Salimans & Kingma, 2016). One advantage of this synaptic
scaling model compared to batch normalization is that it removes the divi-
sion by the variance term, which can lead to exploding gradients when the
variance is close to zero.

An “ideal” model of synaptic scaling might only multiplicatively scale
the weights of a hidden unit such that a given target activation probability
is achieved on average. Instead, we first scale the weights by a learnable
parameter (α), which allows the network to learn the optimal range of ac-
tivation values for the unit, and we then constrain the unit to hit its target.
Similarly, batch normalization does not simply use z-scored activation val-
ues for each hidden unit (see Table 2), but rather includes two learnable
parameters (γ , β) per unit to shift and scale its normalized activation. In
both cases, this flexibility likely increases the representation power of the
network (Ioffe & Szegedy, 2015).

Mathematically, for each hidden unit, the forward-pass operations for
synaptic scaling are

w̃ = αw,

zi = w̃xi + b,

yi = ReLU(zi − μB),

where the subscript i indicates the ith example in a batch of size B (i = 1 : B);
w, xi, b, zi, yi are the incoming weights to the hidden unit, the inputs for the
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ith example from the previous layer, the bias of the unit, the value of the unit
before activation, and the output of the unit, respectively; μB is the average
of all zi’s over a batch.

To explore how the two steps independently affect classification perfor-
mance, we tested each of them without the other as two additional control
experiments. We call these models “mean-only” and “scale-only,” respec-
tively (see Table 2).

4.3 Existing Normalization Methods Generate Homeostatic Repre-
sentations. First, we confirmed that two state-of-the-art normalization
methods—batch normalization (BatchNorm) and weight normalization
(WeightNorm)—improve discrimination (i.e., classification accuracy) on
CIFAR-10: from 59.3 ± 1.4% for the original version of LeNet5 without nor-
malization (Vanilla) to 63.8 ± 0.9% (WeightNorm) and 65.8 ± 0.5% (Batch-
Norm) (see Figure 2A). Normalized networks also learned faster; they
required fewer training iterations to achieve high accuracy.

Second, we show that BatchNorm and WeightNorm have higher cod-
ing capacity; units are relatively equally utilized, each with an activation
probability close to 0.50. Figure 2B shows that hidden units in normal-
ized networks had more similar activation probabilities than in Vanilla: the
coefficients of variation of activation probabilities across hidden units were
0.20 (BatchNorm) and 1.38 (WeightNorm) compared to 1.65 (Vanilla). Fur-
ther, individual units in networks with BatchNorm and WeightNorm had
activation probabilities closer to 0.50 compared to Vanilla. For example, in
the first fully connected layer, units in BatchNorm and WeightNorm had ac-
tivation probabilities of 0.41 ± 0.05 and 0.17 ± 0.23, respectively, compared
to Vanilla (0.10 ± 0.15) (see Figure 2C). For BatchNorm, the probability of
activation forms a near gaussian distribution, whereas for Vanilla, the distri-
bution forms a huge peak at 0.0 with a long right tail, indicating that many
units in Vanilla never get activated, while a few units are “overused.” The
distribution of WeightNorm lies between Vanilla and BatchNorm.

Third, for regularization, Figure 2D shows that when active, the values of
hidden units have a narrower distribution when using normalization com-
pared to without normalization; the coefficients of variation of activation
values across hidden units were 0.16 (BatchNorm) and 0.30 (WeightNorm)
compared to 0.55 (Vanilla). The average output value for hidden units was
also significantly reduced in BatchNorm (0.89 ± 0.14) and WeightNorm
(0.76 ± 0.23) compared to Vanilla (13.36 ± 7.36). By reducing the activation
values of hidden units and confining them to a narrower range, BatchNorm
and WeightNorm demonstrate regularization.

4.4 Synaptic Scaling Performs Load Balancing and Obtains Competi-
tive Performance. We next tested the Synaptic Scaling method and found
that its classification accuracy (66.0 ± 0.7%) was very similar to Batch-
Norm (65.8 ± 0.5%) on CIFAR-10 (see Figure 2A). In contrast, mean-only
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Figure 2: Data set: CIFAR-10: Normalization increases performance and drives
neural networks toward a “homeostatic” state. (A) Test accuracy (y-axis) versus
training iteration (x-axis). Error bars show standard deviation over 10 random
initializations. BatchNorm and Synaptic Scaling achieve higher accuracy at the
beginning and the end of training compared to all other methods, including
Vanilla. (B) The probability of each hidden unit (columns) being activated over
all inputs in a batch, computed on every 100th training iteration (rows). Heat
maps are shown for hidden units in both fully connected (FC) layers. (C) Dis-
tribution of the probabilities that each unit in the first FC layer is activated per
input. (D) Histogram of the mean activation values for hidden units in the first
FC layer, calculated using the test data set. (E) Distribution of the trained α pa-
rameters for Synaptic Scaling, for each FC layer.

and scale-only performed worse than Synaptic Scaling, suggesting that
both steps—multiplicative scaling of synapses and setting target activation
probabilities—are better when combined than by themselves.
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The coding capacity of Synaptic Scaling is on par with or even slightly
better than BatchNorm. Figure 2B shows that each hidden unit had a similar
probability of being activated—a coefficient of variation of 0.11 for Synaptic
Scaling and 0.20 for BatchNorm, compared to 1.65 for Vanilla. Synaptic Scal-
ing activated hidden units with a probability of 0.51 ± 0.02, slightly higher
than BatchNorm (0.41 ± 0.05) and much higher than Vanilla (0.10 ± 0.15)
(see Figure 2C).

Finally, for regularization, Figure 2D shows that the activation values
across hidden units were similar after normalization with a coefficient of
variation of 0.17 for Synaptic Scaling and 0.16 for BatchNorm, compared
to 0.55 for Vanilla. The average output value for hidden units was also re-
duced in Synaptic Scaling and BatchNorm (0.63 ± 0.11 versus 0.89 ± 0.14,
respectively) compared to Vanilla (13.36 ± 7.36).

Interestingly, the learned α parameters for Synaptic Scaling are all pos-
itive, meaning no weights flipped sign during training, and all the α < 1,
meaning the weights are all scaled down (see Figure 2E). We did not set
any upper or lower bounds on α, and the fact that the learned values stay
within [0, 1] indicates that downscaling of weights, which in turn reduce
activation values, may generally be beneficial for this classification task.

4.5 Validation on a Second Data Set. To ensure these results were not
specific to one data set, we ran all methods on a second data set (SVHN)
and found similar trends (see Figure 3). To summarize, Synaptic Scaling and
BatchNorm improve classification accuracy (see Figure 3A), coding capac-
ity (see Figures 3B and 3C), and regularization (see Figure 3D), compared
to all other methods.

5 Discussion

We showed that widely used normalization methods in deep learning are
functionally equivalent to homeostatic plasticity mechanisms in the brain.
While the implementation details vary, both ensure that the activity of a
neuron is centered around some fixed value or lies within some fixed dis-
tribution, and both are temporally local in the sense that changes only
depend on recent behavior (recent firing rate or recent data observed). In
summary, both attempt to stabilize and bound neural activity in an unsu-
pervised manner, and both are critical for efficient learning.

We showed that two state-of-the-art normalization methods (BatchNorm
and WeightNorm), as well as a new normalization algorithm inspired by
synaptic scaling, demonstrate the three benefits of load balancing: com-
pared to Vanilla, all three methods (1) increase coding capacity (i.e., per in-
put, each unit has a probability closer to 50% of being activated), (2) increase
discrimination (classification accuracy), and (3) act as a regularizer (nar-
rowing the range of activation levels for each unit). Interestingly, Weight-
Norm achieves lower accuracy and generates representations that are less
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Figure 3: Data set: SVHN: Similar benefits of normalization on a second data
set. Synaptic Scaling and BatchNorm have the highest classification accuracy
(A), increase coding capacity (B,C: probability of each hidden unit being acti-
vated), and increase regularization (D: mean activation values for hidden units).
See Figure 2 caption for detailed panel descriptions.

homeostatic, compared to both BatchNorm and Synaptic Scaling (see Fig-
ures 2 and 3). This suggests that learning algorithms are more efficient when
coupled with homeostatic load balancing, and either without the other de-
grades performance. This article contributes to the growing list of explana-
tions for why normalization is so useful in deep networks (Ioffe & Szegedy,
2015; Santurkar et al., 2018; Kohler et al., 2019; Wu et al., 2019; Poggio et al.,
2020). A natural next step is to develop a theoretical understanding for why
stability (i.e., creating homeostatic representations) may actually promote
plasticity (i.e., improving classification accuracy and learning efficiency),
as opposed to being in conflict.
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While Synaptic Scaling performed similar to BatchNorm on the two
data sets examined here, there are several differences between these two
algorithms, both computationally and biologically. First, BatchNorm is less
sensitive to the learning rate compared to Synaptic Scaling. For example,
on the CIFAR-10 data set, BatchNorm achieves reasonable accuracy (∼58%)
with learning rates as large as 0.10, whereas the accuracy of Synaptic Scaling
drops significantly for learning rates greater than 0.01. Specifically, Batch-
Norm achieves an accuracy of 67 ± 1% and 67 ± 0.4% for learning rates of
0.01 and 0.02, respectively, whereas Synaptic Scaling achieves an accuracy
of 64 ± 2% for learning rate 0.01 but drops to 56 ± 3% for learning rate 0.02.
Thus, BatchNorm is generally more robust than Synaptic Scaling. Second,
BatchNorm divides the mean-centered activation by the standard deviation
over the batch, which could lead to exploding activations when the stan-
dard deviation is close to zero. Synaptic Scaling scales the activations indi-
rectly by multiplying the weights by a learnable parameter, which does not
require any division or calculation of the standard deviation. Third, Synap-
tic Scaling achieves higher coding capacity than BatchNorm; for example,
for Synaptic Scaling, the node activation probability (0.51 ± 0.02) is closer
to 0.5 than BatchNorm (0.41 ± 0.05) (see Figure 2C), and the coefficient of
variation of node activation probabilities is lower for Synaptic Scaling (0.11)
than BatchNorm (0.20) (see Figure 2B). This suggests that the amount of
information (entropy) present in the representation for Synaptic Scaling is
slightly higher than that of BatchNorm. While this did not translate to better
performance on the simple data sets examined here, more work is needed
to test these algorithms in other scenarios (e.g., fine discrimination between
very similar stimuli or testing on data sets with many more classes). We
also emphasize that even though achieving good classification performance
often implies that representations are homeostatic, achieving homeostasis
alone does not guarantee good performance, and more theoretical work is
needed to untangle these dependencies. Fourth, after normalization, Batch-
Norm requires two additional learnable parameters for each node (γ and
β), whereas Synaptic Scaling requires one new parameter per node (α; see
Table 2). Hence, Synaptic Scaling requires half of the parameters as Batch-
Norm, and more work is needed to quantify the trade-offs between fewer
parameters, training efficiency, and representation power. Fifth, we are not
aware of a neural mechanism capable of implementing BatchNorm (par-
ticularly the division by the standard deviation), whereas synaptic scaling
is a well-established neural mechanism whose study may provide better
feedback to neuroscience.

Moving forward, there are several challenges that remain in bridging
the gap between understanding normalization in artificial and biological
neural networks. First, the implementation details of both types of net-
works are well acknowledged to be different (Lillicrap, Santoro, Marris, Ak-
erman, & Hinton, 2020). For example, unlike most artificial networks, the
brain has a strict division of excitatory and inhibitory neurons, which means
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different homeostasis rules can be applied to excitatory and inhibitory
synapses (Joseph & Turrigiano, 2017). Second, our model of synaptic scal-
ing assumed that each hidden unit had the same target fixed point, whereas
in reality, adjustable fixed points might further improve performance. In-
deed, batch normalization allows the fixed points to be learned through the
affine parameter, β. In artificial networks, fixed points could vary based on
the data set, network architecture, or other hyperparameters. In the brain,
different cell types may use different fixed points, or fixed points of a sin-
gle cell may change during different phases of training. Third, it is unclear
how the timescales of homeostasis in the brain map to timescales of learn-
ing in artificial networks. Normalization is typically applied per input or
per batch in deep learning, but other timescales remain unexplored (Tononi
& Cirelli, 2012; Krishnan et al., 2019; Zenke & Gerstner, 2017). Similarly, nor-
malization that operates simultaneously across different spatial scales (e.g.,
combining batch normalization and layer normalization) has only recently
been explored (Ren, Liao, Urtasun, Sinz, & Zemel, 2017). Fourth, there are
different constraints between what a hidden unit can store and compute
and what a neuron can (likely) store and compute. For example, it seems
plausible for a neuron to track its own mean firing rate over a given time
window, but tracking its own variance seems trickier.

There are also several challenges in understanding the neuroscience of
homeostasis that remain outstanding. For example, network-wide home-
ostasis, which goes beyond fixed points for individual neurons, has been
observed in the brain, but the circuit mechanisms that give rise to these ef-
fects remain elusive. Further, it remains unclear what the advantages and
disadvantages of different homeostatic mechanisms are and when to use
which. For example, many homeostatic plasticity mechanisms seek to set a
neuron’s average firing rate to some target rate, but when would it be appro-
priate to achieve this goal by modifying intrinsic excitability versus mod-
ifying pre- or postsynaptic weights? Indeed, there may be multiple means
toward the same end, and it remains unclear what the trade-offs are among
these different paths.

We hope these insights provide an avenue for building future collabora-
tions, where computer scientists can use quantitative frameworks to eval-
uate how different plasticity mechanisms affect neural function. In return,
neuroscientists can provide new perspectives on the benefits of normaliza-
tion in neural networks and inspiration for designing new normalization
algorithms based on neurobiological principles.
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