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Abstract: Alzheimer’s disease (AD) has become a common disease of the elderly for which no cure
currently exists. After over 30 years of intensive research, we have gained extensive knowledge of
the genetic and molecular factors involved and their interplay in disease. These findings suggest
that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant
cases differently from sporadic cases, but we could be observing different underlying pathological
mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent
pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these
scenarios, which are highly interconnected but can also point to the different subgroups of AD. The
identification of the pathologic triggers and order of events in the disease processes are key to the
design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a
single approach; different therapeutic strategies at specific disease stages may be appropriate. For
successful prevention and treatment, biomarker assays must be designed so that patients can be more
accurately monitored at specific points during the course of the disease and potential treatment. In
addition, to advance the development of therapeutic drugs, models that better mimic the complexity
of the human brain are needed; there have been several advances in this arena. Here, we review
significant, recent developments in genetics, omics, and molecular studies that have contributed to
the understanding of this disease. We also discuss the implications that these contributions have
on medicine.

Keywords: Alzheimer disease; amyloid β; tau; APOE; TREM2; neuroinflammation; OMICS; biomark-
ers; therapeutics

1. Introduction

Ever since Alois Alzheimer provided the first clinical and pathological description
of this disease in 1901, we have learned that Alzheimer’s disease (AD) is a complex and
multifactorial condition in which the interplay of both genetic (65%) and lifestyle (35%)
factors [1] is involved in the accumulation of protein aggregates of β-amyloid (Aβ) and
tau in the brain that ultimately causes neuronal death and loss of gray matter. AD has
had an estimated cost to the United States healthcare system of USD 290 billion. Disease
prevalence is expected to grow from 5.8 million in 2019 to 14 million by 2050 [2]; hence,
extensive international research efforts have been devoted to deciphering the causes of
disease and developing therapeutics that may alter the course of the disease. Results have
been elusive for several reasons.

There are three main etiological categories in AD: autosomal dominant AD (ADAD),
early onset AD (EOAD), and late-onset AD (LOAD). Mutations in one of the three genes
with Mendelian inheritance that cause disease (amyloid precursor protein (APP) and
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presenilin 1 and 2 (PSEN1, PSEN2)) are normally present in the ADAD form, with early
onset (before 65 years old) and rapid progression. This form is fairly rare, about 1% of cases,
but it has been instrumental for our initial understanding of the pathology of the disease,
the development of animal models, and the design of the first therapeutic treatments. APP,
PSEN1, and PSEN2 are members of the same Aβ processing pathway. The identification of
specific mutations directly related to the main pathological hallmark of AD, extracellular
aggregates of Aβ plaques, led to great advances in our understanding of the disease and to
the formulation of the amyloid cascade hypothesis [3]. The amyloid cascade hypothesis
states that a malfunction in the system causes an accumulation of Aβ in the brain that
triggers a cascade of events, ultimately resulting in cell death.

The remaining 99% of cases are largely classified into EOAD (~5%) or LOAD (~95%)
according to the age of disease onset, with a threshold arbitrarily established at 65 years
old. In addition, these can also be further categorized into sporadic AD (sAD) or familial
AD (fAD), depending on the incidence of cases within families. Unless specified, for the
remainder of the text, we will refer to the non-ADAD forms (EOAD, LOAD, sAD, and
fAD) as AD. The non-ADAD forms present a more complex genetic architecture, with
associations to over 29 genetic loci identified to date [4–7]. The loci identified through
genetic studies have suggested alternative pathways beyond those involved in Aβ accu-
mulation, such as tau aggregation, lipid metabolism, the innate immune response, and
endosomal vesicle recycling. It is not clear whether any of these pathways have a greater
role than the others. On top of this complexity, microglia are active players in the clearance
of Aβ plaques whose activation seems to be regulated by APOE; yet, hyper activation of
microglia is detrimental [8,9] (Figure 1).

This complexity raises questions for the “one-size-fits-all” approach. Critics of the
amyloid cascade hypothesis have stated that the failure of Aβ-targeted drugs is partly due
to the fact that ADAD may be different from AD. As such, a plethora of potential drug
targets have been envisioned, but most have been unsuccessful for various reasons. First,
it is unclear how and when the implicated genes and pathways interact and if they are
“active” in all individuals. Second, a definitive diagnosis of AD cannot be made without
confirmation by autopsy, so physicians and scientists have to rely on biomarkers (e.g., mea-
suring Aβ, tau, or p-tau in cerebrospinal fluid (CSF) or plasma, or Aβ deposition in the
brain using positron emission tomography (PET) imaging) to make diagnoses as accurate
as possible. However, these methods are either not fully implemented (plasma), invasive
(lumbar puncture for CSF), or expensive (CSF and imaging), which limits their generalized
use in screening of trial participants. These diagnostic challenges lead to a “contamination”
of clinical trials with non-AD cases, mostly with misdiagnosed frontotemporal dementia
(FTD) cases [10] and clinically diagnosed cases that were amyloid-negative by Pittsburgh
compound B (PIB) imaging or CSF ELISA (around 30% are amyloid-negative) [11]. Another
major problem is that pathological changes that underlie brain degeneration and cognitive
loss begin at least 10 to 20 years before dementia onset [12,13]. Most clinical trials so far
have focused on individuals with clinical symptoms, in which the neurodegeneration may
be too advanced for any therapeutic to reverse or stop deterioration [14]. Accordingly,
current clinical trials are trying to include mild cognitive impairment (MCI) cases, defined
as a transitional state between normal aging and dementia, although not all MCI patients
convert to AD. Hence, a critical goal of biomedical research is to identify biomarkers of AD
for these preclinical stages allowing for early diagnosis and intervention.
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Figure 1. Schematic representation of the molecular interplay between neurons, astrocytes, microglia, and vasculature 
system in Alzheimer’s disease. Neurons produce the transmembrane amyloid precursor protein (APP). APP is cleaved by 
γ (γs) and β secretase (βs) into amyloid β (Aβ) units of different length aggregates extracellularly into plaques. Oligomeric 
Aβ promotes the generation of ROS that triggers the release of endothelin-1, causing perycite constriction, which decreases 
brain blood flow. Soluble Aβ blocks the reuptake of synaptically released glutamate by either N-methyl-D-aspartate re-
ceptor (NMDA) or by excitatory amino acid transporter (EAAT) receptors causing glutamate accumulation perisynapti-
cally (excitotoxicity), which increases depolarization and promotes hyperactivity. In microglia, Aβ binds to the toll-like 
receptor 4 (TLR4), which causes translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) from the cytosol to the nucleus, where it increases the transcription of NLRP3 and pro-IL-1β. In the cytoplasm, via 
activated caspase-1, the inflammasome promotes the maturation of IL-1β. Amyloid plaques stimulate the activation of 
p38MAPK (p38) in microglia, astrocyte, and neuron. In microglia, p38 activation results in upregulation of proinflamma-
tory cytokines, interleukin 1β (IL-1β) and tumor necrosis factor α (TNFα); IL-1β in turns activates p38 in astrocytes and 
neurons. In astrocytes, p38 activation causes increased expression of TNFα and nitric oxide (NO) and excitotoxicity. In 
neurons, p38 activation results in tau phosphorylation (Tau → p-Tau) and microtubule disassembly. APOE is mostly gen-
erated by astrocytes; free APOE can facilitate Aβ blood bran barrier (BBB) transit, but it can also accelerate aggregation 
and deposition of Aβ in an isoform-dependent manner. APOE can be lipidated by ABCA1 transporter-forming lipoprotein 
particles that bind soluble Aβ, which are then uptaken by neurons and glia via cell-surface receptors, including low-den-
sity lipoprotein receptor (LDLR) and low-density lipoprotein receptor-related protein (LRP1), and degraded at the lyso-
some. When free APOE binds to ApoE receptors in neurons, it can activate a non-canonical MAPK pathway, in an isoform-
dependent manner, that induces cFOS phosphorylation stimulating the transcription factor AP-1, which in turn enhances 
transcription of APP. The complex amyloid plaque lipidated APOE can stimulate microglia through transmembrane pro-
teins triggering receptor expressed on myeloid cells 2 (TREM2) and sialic acid-binding Ig-like lectin 3 (CD33). TREM2 
activation induces the association of TREM2 to DAP12, which gets phosphorylated and recruits spleen tyrosine kinase 
(SYK), which activates phosphoinositide 3-kinase (PI3K) that depends on DAP10. PI3K targets protein kinase B (AKT) and 
activates the mammalian target of rapamycin (mTOR), which activates glycolysis, the p38MAPK pathway, and inhibits 
autophagy. Instead, CD33 activation inhibits PI3K. The complement receptor 1 (CR1) is a receptor for the complement 
components C3b and C4b and promotes the phagocytosis of Aβ. 

Figure 1. Schematic representation of the molecular interplay between neurons, astrocytes, microglia, and vasculature
system in Alzheimer’s disease. Neurons produce the transmembrane amyloid precursor protein (APP). APP is cleaved
by γ (γs) and β secretase (βs) into amyloid β (Aβ) units of different length aggregates extracellularly into plaques.
Oligomeric Aβ promotes the generation of ROS that triggers the release of endothelin-1, causing perycite constriction,
which decreases brain blood flow. Soluble Aβ blocks the reuptake of synaptically released glutamate by either N-methyl-D-
aspartate receptor (NMDA) or by excitatory amino acid transporter (EAAT) receptors causing glutamate accumulation
perisynaptically (excitotoxicity), which increases depolarization and promotes hyperactivity. In microglia, Aβ binds to the
toll-like receptor 4 (TLR4), which causes translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) from the cytosol to the nucleus, where it increases the transcription of NLRP3 and pro-IL-1β. In the cytoplasm, via
activated caspase-1, the inflammasome promotes the maturation of IL-1β. Amyloid plaques stimulate the activation of
p38MAPK (p38) in microglia, astrocyte, and neuron. In microglia, p38 activation results in upregulation of proinflammatory
cytokines, interleukin 1β (IL-1β) and tumor necrosis factor α (TNFα); IL-1β in turns activates p38 in astrocytes and neurons.
In astrocytes, p38 activation causes increased expression of TNFα and nitric oxide (NO) and excitotoxicity. In neurons,
p38 activation results in tau phosphorylation (Tau→ p-Tau) and microtubule disassembly. APOE is mostly generated by
astrocytes; free APOE can facilitate Aβ blood bran barrier (BBB) transit, but it can also accelerate aggregation and deposition
of Aβ in an isoform-dependent manner. APOE can be lipidated by ABCA1 transporter-forming lipoprotein particles that
bind soluble Aβ, which are then uptaken by neurons and glia via cell-surface receptors, including low-density lipoprotein
receptor (LDLR) and low-density lipoprotein receptor-related protein (LRP1), and degraded at the lysosome. When free
APOE binds to ApoE receptors in neurons, it can activate a non-canonical MAPK pathway, in an isoform-dependent manner,
that induces cFOS phosphorylation stimulating the transcription factor AP-1, which in turn enhances transcription of
APP. The complex amyloid plaque lipidated APOE can stimulate microglia through transmembrane proteins triggering
receptor expressed on myeloid cells 2 (TREM2) and sialic acid-binding Ig-like lectin 3 (CD33). TREM2 activation induces
the association of TREM2 to DAP12, which gets phosphorylated and recruits spleen tyrosine kinase (SYK), which activates
phosphoinositide 3-kinase (PI3K) that depends on DAP10. PI3K targets protein kinase B (AKT) and activates the mammalian
target of rapamycin (mTOR), which activates glycolysis, the p38MAPK pathway, and inhibits autophagy. Instead, CD33
activation inhibits PI3K. The complement receptor 1 (CR1) is a receptor for the complement components C3b and C4b and
promotes the phagocytosis of Aβ.
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2. There Is More to Alzheimer’s Disease Than Amyloid
2.1. The Amyloid vs. Tau Hypotheses

The identification of mutations in the APP, PSEN1, and PSEN2 genes in families with
ADAD led to the formulation of the amyloid cascade hypothesis. The presenilin genes
encode secretases (α, β, and γ) that cleave APP, a transmembrane protein, into amyloid β
(Aβ) units of different lengths (from 36 to 43 amino acids in length) that are released to the
extracellular space. Neurons are the main producers of Aβ, and mutations in these genes
cause an overproduction of Aβ42 and its various toxic forms that accumulate into plaques.
Plaque formation may start a series of events involving synaptic dysfunction by interfering
with glutamatergic synapsis and inflammation by causing microglia hyperactivity, which
promotes hyperphosphorylation of tau. Tau hyperphosphorylation can lead to the gen-
eration of destabilized microtubules in the intracellular space that aggregate and form
neurofibrillary tangles (NFTs), leading to widespread neuronal dysfunction and death [15].
AD is a disease that starts with the accumulation of Aβ plaques followed by the formation
of NFTs, which would be more likely to cause the observed neuronal dysfunction and
degeneration [16,17] since the spreading of tau pathology is highly correlated with the
patterns of clinical symptoms and cognitive decline [18]. Nonetheless, a decrease in cere-
bral blood flow is one of the first changes in AD pathology and could reflect dysfunction
of contractile pericytes. Nortley et al. (2019) measured capillary diameters at positions
near pericytes in human brain biopsies from cognitively unimpaired individuals with Aβ
plaques, as well as in AD mice models (APPNL-G-F). They observed that capillaries were
constricted near pericytes and that this constriction was correlated with the severity of Aβ
deposition. In addition, oligomeric Aβ promotes the generation of reactive oxygen species
(ROS) (NOX4), which triggers the release of endothelin-1, which acts on ETA receptors to
induce pericyte contraction. However, it is not clear what damage to synapses and neurons
is due to the decrease in energy supply caused by Aβ-induced capillary constriction [19].

Another early feature of AD caused by Aβ depositions is neuronal hyperactivity.
Zoo et al. (2019) demonstrated that, given a neuron-specific baseline activity driven by
glutamatergic synapses, soluble Aβ blocks the reuptake of synaptically released gluta-
mate, causing presynaptic glutamate accumulation, which increases depolarization and
promotes hyperactivity [20]. Current AD treatment with memantine blocks the effects of
excess glutamate that inhibits signal detection by NMDA glutamate receptors. This study
suggests that targeting excitatory amino acid transporters (EAAT) may be a mechanism to
therapeutically target neuronal hyperactivation at the early stages of the disease.

Immune response and inflammation are other key features in the pathology of AD
(as later discussed in Section 2.3, “The underground of Alzheimer’s disease”). Upon
microglia activation by Aβ deposits, the NLRP3 inflammasome assembles and initiates
an inflammatory response, which contributes to the seeding and spreading of Aβ in AD
mouse models [21]. Ising et al. (2019) demonstrated that in the absence of the NLRP3
inflammasome, tau hyperphosphorylation and aggregation were reduced, suggesting that
tau pathology is a downstream process of the Aβ cascade and dependent on microglia
activation [22].

Critics of the amyloid cascade hypothesis suggest that amyloid could be a side-effect
of the disease [15] and that AD could be a disorder that is triggered by impairment of
APP metabolism but progresses through tau-related pathology rather than Aβ-related
pathology [16]. He et al. (2018) injected tau derived from human AD brains (AD-tau) into
AD transgenic mice, overexpressing pathogenic Aβ. Mice showed accumulation of AD-tau
seeds within dystrophic axons surrounding Aβ plaques; these seeds spread to neuronal
somas and dendrites to recruit endogenous soluble tau and form NFTs and neuropil threads
(NTs) [23]. Tau phosphorylation is mediated by neuronal p38 mitogen-activated protein
kinase (p38MAPK), which is activated by Aβ plaques and cytokines (IL-1β). There are
four isoforms of p38MAPK (α, β, δ, and γ), and each can phosphorylate tau at specific
sites. Maphis et al. (2016) found that selective suppression of the p38αMAPK rescued
late-stage tau pathology and improved working memory in 20 months old mice expressing
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human tau (hTau) [24]. On the other hand, Ittner et al. (2016) observed that depletion of
p38γMAPK in APP23 mice increased cognitive deficits whereas increased expression of
p38γMAPK (i.e., increased tau phosphorylation) abolished those deficits. In addition, they
observed that APP23.p38γ−/−.tau−/− mice did not present memory deficits, suggesting
that the effects of p38γ were tau-dependent [25]. While no mutations have been found
within the MAPK pathway that are associated with AD, somatic mutations in the BRAF
gene (which is part of the MAPK pathway) in the erythro-myeloid progenitor lineage in
mice may cause neurodegeneration [26].

Finally, Klein et al. (2019) studied the histone 3 lysine 9 acetylation (H3K9ac) mark
in 669 aged brains from the Religious Order Study (ROS) and the Rush Memory and
Aging Project (MAP) and correlated it to their Aβ and tau pathological signatures. Almost
23% of H3K9ac domains were associated with tau protein load, whereas only 2% were
associated with Aβ. The tau-associated domains clustered in large genomic regions within
gene promoter or enhancer regions and in open chromatin compartments. Using induced
pluripotent stem cell (iPSC)-derived neurons, they further showed that overexpression of
MAPT, without tangle formation, is enough to induce chromatin reorganization, suggesting
that the tau effects in epigenomic architecture are an early event in tau pathology [27].

2.2. Polyvalent APOE

ApoE is a protein that transports lipids from one tissue or cell to another. It is highly
expressed in the liver, adipose tissue, and artery wall, but it is also found in the central
nervous system (CNS), where it is mainly synthesized by astrocytes and microglia [28]. Two
SNPs (rs429358 and rs7412) within the APOE gene generate three major allelic variants (ε2,
ε3, and ε4), which have a worldwide frequency of 8.4%, 77.9%, and 13.7%, respectively [29].
These isoforms bind to lipids, receptors, and Aβwith varying efficiencies [28,30–32]. The
presence of the APOE ε4 allele has been associated with hyperlipidemia and hyperc-
holesterolemia [33,34]; one copy of ε4 increases risk for AD by ~3-fold and two copies
by ~12-fold [35], yet only 40% of sporadic AD and 60–70% of LOAD families carry this
allele [29]. In addition, having the ε4 allele correlates with an average of 2–5 years earlier
AAO, or up to 10 years if carrying two copies of the ε4 allele [36,37]. This risk not only
applies to sporadic or familial LOAD but also to ADAD [38]. The ε2 allele is considered pro-
tective and would delay the appearance of symptoms [36,39,40]. The ε3 allele has a neutral
effect, although rare mutations associated with this isoform (APOE3-Christchurch p.R136S)
confer protection against developing the disease when occurring in homozygosis [41].

It has been suggested that APOE contributes to AD pathology through both Aβ-
dependent and Aβ-independent pathways. In an isoform-dependent manner, free APOE
can influence Aβ deposition, but it can also help soluble Aβ to cross the blood-brain barrier
(BBB) [42–44]. Alternatively, lipidated APOE recruits soluble Aβ preventing Aβ plaque
formation, but also facilitates its cell-absorption by neprilysin, produced by microglia,
or by cell-surface receptors (LRP1, LDLR, and HSPG) where it is degraded at the lyso-
somes [45–47]. However, recent studies suggest that APOE secreted by glia stimulates APP
transcription and Aβ production in neurons in an isoform-dependent manner [48].

On the other hand, APOE has been associated with CSF tau levels [49–51]. iPSC-
derived neurons expressing ApoE ε4, but not ApoE ε3, had higher levels of tau phosphory-
lation [52]. Similarly, tau transgenic mice that express human APOE had higher tau levels
in the brain and a greater extent of somatodendritic tau redistribution compared to Apoe−/−

mice [52]. More importantly, through gene editing, Wang et al. [53] converted ApoE ε4 to
ApoE ε3 and was able to rescue the normal phenotype.

Finally, beyond its effect on amyloid and tau, ApoE also influences microglial activation,
the latter possibly through Trem2 interaction [54,55]. According to Krasemann et al. [55],
the transition of microglia from a homeostatic- to a disease-associated microglial (DAM)
phenotype would be dependent on ApoE. Supporting this, Ulrich et al. (2018) found that
Apoe deficient mice presented a significant reduction in fibrillar plaque-associated mi-
crogliosis and activated microglial gene expression [8]. Recently, Parhizkar et al. (2019)
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showed that amyloid plaque seeding is increased in the absence of functional Trem2 and
that this seeding goes along with decreased microglial clustering and reduced plaque-
associated ApoE [56]. Yet, it is uncertain how Trem2 interferes with microglial lipid
metabolism [57].

2.3. The Underground of Alzheimer’s Disease—The Immune System

Early genome-wide association studies (GWAs) were successful at identifying addi-
tional genetic risk factors for AD, such as CLU, PICALM, CR1, BIN1, and CD33 [4,58–60].
The immune pathway was seen as an important component of AD pathology since CLU,
CR1, and CD33 have putative functions in the immune system. More recent studies with
larger data sets identified additional genome-wide significant genes involved in the im-
mune pathway, including MS4A, CD2AP, EPHA1, and ABCA7 [61,62]. The later discovery
of loss-of-function variants in TREM2 provided scientists with particular targets to focus
on in the study of the immune response in AD pathology [63,64]. More recently, it was
found that the minor allele of rs1057233 (G), near the GWAS CELF1 risk locus [4], showed
an association with lower expression of SPI1 in monocytes and macrophages [65]. SPI1
encodes PU.1, a microglial transcription factor critical for myeloid cell development, which
regulates the expression of numerous AD risk genes (TREM2, TYROBP, CD33, MS4A
cluster genes, and ABCA7) [54,65]. Recent genome-wide meta-analyses of AD-by-proxy
individuals identified 29 risk loci that are strongly expressed in immune-related tissues
and cell types [6]. Two of these genes, ADAM10 and ACE, along with TREM2 and SPI1,
were found to have a genome-wide significant association in the largest known GWAS
that included around 95,000 people [7]. ADAM10 is the α-secretase for APP that pro-
duces a secreted ectodomain fragment (sAPPα) that has neuroprotective and neurotrophic
properties. In addition, ADAM10 cleaves Notch and various immune and growth factor
proteins [66]. ACE encodes an enzyme involved in the conversion of angiotensin I into a
physiologically active peptide, angiotensin II, a potent vasopressor. ACE is also involved
in Aβ degradation [67]. It is still unclear how mutations in these genes relate to microglial
dysfunction, but overexpression of ACE in microglia and macrophages in a double trans-
genic mice model for AD (APPswe/PS1dE9) substantially reduced cerebral soluble Aβ42,
vascular and parenchymal Aβ deposits, and astrocytosis [68].

Activation of p38MAPK signaling in microglia (due to Aβ plaques) releases proinflam-
matory cytokines in astrocytes and neurons, resulting in inflammation and tau phosphory-
lation [69]. Deficits in TREM2 have also been linked to dysregulation in PPARγ/p38MAPK
signaling. Microglia switch from using oxidative phosphorylation for energy production
to glycolysis in the presence of Aβ plaques. This metabolic reprogramming depends on
the mTOR-HIF-1α pathway [70]. Piers et al. (2019) observed that iPSC-derived microglia
from patients carrying pathogenic TREM2 mutations had trouble switching to glycolytic
metabolism, which ultimately was reflected by dysregulation of the PPARγ/p38MAPK
signaling [71].

Microglia are also stimulated by Aβ plaques through transmembrane proteins CD33
and TREM2. While CD33 activation dampens microglial phagocytosis by inhibiting
phosphatidylinositol-3 kinase (PI3K), TREM2 responds to ligand binding by activating
PI3K to increase phagocytosis [72]. Functional analysis suggests that downregulation of
CD33 may be beneficial to AD since amyloid levels were reduced in a mouse model of
AD (APPswe/PS1dE9) that were also CD33−/− [73,74]. However, the consequence of
regulating TREM2 expression is unclear. For example, higher soluble TREM2 (sTREM2)
in MCI or AD individuals was associated with reduced rates of cognitive decline and
clinical progression [75]. Trem2 knockout in a mouse model of tauopathy (PS19) resulted in
a reduction in neurodegeneration and inflammation [76]. However, loss of Trem2 function
increased the seeding and spread of neuritic plaque aggregates in mouse models of AD
(APPPS1-21) injected with human AD-tau [77]. In contrast, overexpression of TREM2 in
BV-2 cells (an immortalized murine microglial cell line) promoted clearance of Aβ prod-
ucts and mediated neuroinflammation by downregulating the expression of inflammatory
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factors [78]. These apparently conflicting roles for TREM2, protective vs. harmful, could be
due to the disease stage examined in each study [79].

Studies in 5XFAD mouse models indicate that TREM2 is essential for microglia to
acquire a DAM phenotype. However, in human AD, the DAM signature of microglia
seems to be conditioned by the expression of the IRF8 transcription factor. Loss-of-function
mutations in TREM2 promoted a less reactive phenotype of microglia [80], suggesting
that the risk-effect that TREM2 exerts on AD may be regulated by third parties. In fact,
recent studies suggest that TREM2 could be regulated indirectly through MS4A4A. A
common variant in the MS4A cluster (rs1582763) is associated with increased CSF sTREM2.
This study also demonstrated that TREM2 is implicated in disease in general and not
only in those individuals that carry TREM2 risk variants. Mendelian randomization
analyses demonstrated that high sTREM2 levels were protective. In addition, it was found
that MS4A4A and TREM2 co-localize intracellularly, suggesting MS4A4A as a potential
therapeutic target for AD [81]; Alector, Inc. is currently testing an antibody that mimics the
protective effect of the MS4A4A variant.

Finally, it seems that microglia and the autophagy pathway may interact in the pathol-
ogy of AD disease. Hung et al. (2018) described deficits in the lysosome and autophago-
some pathways using iPSC-derived neurons from individuals carrying pathogenic mu-
tations in PSEN1 and APP [82]. However, the disruption of these pathways seems to be
more pronounced in the LOAD forms, for which several genes have been associated [83]
and in relation to the expression decline of some proteins in the autophagy pathway
due to age, which is exacerbated in AD [84]. Since microglia are the main cells phagocy-
tizing Aβ plaques, Heckmann et al. (2019) hypothesized that defects in the autophagy
pathway could influence microglial behavior in AD [84]. Using the 5XFAD AD mouse
model, they identified that LC3 associated with endosomal membranes (LC3-associated
endocytosis—LANDO) supports the clearance of Aβ deposits and prevents microglia
activation. However, this process is dependent on the presence of several autophagy
regulators, including ATG5, whose expression decreases with age [84].

Another gene implicated in lysosome and autophagosome dysfunction and risk for
AD is TMEM106B. This gene has been reported to be associated with FTD in granulin (GRN)
mutation carriers [85] and with AD interacting with APOE. More recently, Li et al. used a
digital deconvolution [86] to estimate the brain cell-type proportion from multiple cohorts.
Genetic scans of neuronal proportion indicate that a variant located in the TMEM106B
gene is the major regulator of neuronal proportion in adults but not young individuals [87].
Impaired lysosomal function reduces lysosomal degradative efficiency, which leads to an
abnormal build-up of toxic components in the cell. An impaired lysosomal system has been
associated with normal aging and a broad range of neurodegenerative disorders, including
AD [87]. These findings suggest that TMEM106B could be a potential target for neuronal
protection therapies to ameliorate cognitive and functional deficits.

3. Unraveling the Molecular Mechanisms in AD Pathogenesis

Most of our knowledge of AD genetic risk factors originated from studying blood
samples; yet, the genome is transcribed and translated differentially across tissues in
response to different transcription factors, metabolic signals, and environmental responses.
Accordingly, in recent years there has been an effort to study different omic layers (genome,
transcriptome, proteome, metabolome, and epigenome) in different tissues affected by AD
(blood, plasma, CSF, and brain) and different cell types (macrophages, neurons, microglia,
astrocytes, and oligodendrocytes), whether it is in human samples, mouse models of AD,
or iPSCs. These studies have advanced our understanding of the roles of amyloid, tau,
APOE, and the immune system in identifying the pathological triggers and order of events
in pathogenesis. Recent studies suggest that DNA is not static during an individual’s
lifetime and is a feature of the aging brain. This DNA instability is worse in AD [88–90]. As
such, the existence of somatic genetic mosaicism was suggested after detecting increased
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APP copy number variants (CNV) in cortical neuronal nuclei of sporadic AD patients [91],
although this event would only contribute to a small percentage of sporadic AD cases [92].

Most of our current understanding of processes downstream of the genome comes
from the analysis of the RNA (in its multiple species), whether it comes from blood, bulk
brain tissue, or, more recently, from specific cell types. Using whole transcriptome profiling
of AD brains, over 2000 genes were found to be deregulated in AD cases [93], and most
of these were associated with functional pathways involved in the immune response,
apoptosis, cell proliferation, energy metabolism, and synaptic transmission, corroborating
findings from previous GWAs analyses [94,95]. Yet, this transcriptome profile may differ
depending on the main AD risk factor. Network analysis of transcriptomic data from
AD patients identified aging-associated processes (inflammation, oxidative stress, and
metabolic pathways) were differentially altered depending on APOE genotype (44 vs. 33).
Integration of these results with GWAs data indicated an epistatic interaction between
APOE and several genes in the Notch pathway, suggesting a possible link between APOE
and its role in inflammation and oxidation [96].

Integration of transcriptomic data with other phenotypes can also reveal important
aspects of the disease. Transcriptome-wide network analysis with longitudinal cognitive
data was used to identify a set of co-expressed genes that are related to both Aβ and
cognitive decline and are separate from those that cause AD pathology [97]. Using PET
imaging and brain transcriptomic data, Sepulcre et al. (2018) found an association between
gene expression profiles and Aβ and tau pathology progression across the cerebral cortex.
Aβ propagation was related to a dendrite-related genetic profile mostly driven by the CLU
gene; tau propagation was related to an axon-related genetic profile led by the MAPT gene.
This study helps to clarify the possible relationships between Aβ and tau pathology. For
example, BACE1, the gene that codifies for the β-secretase enzyme that cleaves APP, was
identified as one of the central genes in the tau-related interactome network. In addition, a
lipid metabolism category was identified as commonly involved in the propagation of both
Aβ and tau. APOE had a dominant role; participants who were APOE ε4+ had a linear
relationship between the propagation pattern for Aβ and tau compared to those who were
APOE ε4− [98]. This suggests that a person’s genetic profile may define whether the spread
of pathology is due to Aβ or tau.

Bioinformatic deconvolution approaches can untangle the transcriptomic signature of
bulk brain tissue and infer the relative contribution of different cell types to a particular cell
expression pattern [63]. These methods revealed that carriers of pathogenic mutations in
APP, PSEN1, PSEN2, or APOE presented with lower neuron and higher astrocyte propor-
tions compared to patients with sporadic AD, suggesting that the presence of AD genetic
risk factors affects the cellular composition of AD brains [86]. Technological advancements
have enabled the sequencing of individual cell nuclei, which allows for the identification
of cell-specific patterns. Pioneering studies using this technology in human AD brains
were capable of identifying cell-type-specific transcriptomic profiles [99]. This technology
also allows the mapping of specific cell profiles at certain points in time. It was found that
early in the pathology, the disease-associated transcriptional changes were highly cell-type-
specific, whereas, in later disease stages, the transcriptional signature of the disease was
common across cell types, mostly centered around global stress response [100]. Similarly,
these technologies reveal that human microglia have an AD-related gene signature that is
distinct from that described in mouse models [101], suggesting that mouse models of AD
may not be adequate in vivo systems to study all pathological aspects of the disease, as
discussed later in this section.

Circular RNA (circRNA) are formed by back-splicing (head-to-tail splicing) of mes-
senger RNAs during normal processing. They were first described in eukaryotic cells, and
later studies suggested that they were enriched in the synapse, acting as sponges of micro
RNA (miRNA). One of the events implicated in the pathophysiology of AD is synapse
loss [102]. CircRNAs were also found to be co-expressed with known causal AD genes,
such as APP and PSEN1, suggesting that some circRNA are also part of the causal AD path-
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way. CircRNA brain expression explained more about AD clinical manifestations than the
number of APOE ε4 alleles, suggesting that cirRNA could be used as biomarkers for AD.

Epigenetics can lead to changes that affect gene activity and expression but do not re-
quire changes of the nucleotide sequence. The main epigenetic marks are DNA methylation
and histone modifications. Pioneering epigenome-wide association studies (EWAs) of AD
examined the hypermethylation of CpG sites in the brain cortex of AD patients [103,104].
These studies identified methylation changes in the ANK1 gene. Cell-specific EWAs of
neuron and glia single nuclei validated and assigned methylation of ANK1 as specific to
glia [105]. More recently, Smith et al. (2019) performed a targeted methylation analysis
finding that differential ANK1 methylation is a common feature across the entorhinal brain
cortex of subjects with AD, Huntington’s disease (HD), or Parkinson’s disease (PD), but
not those with vascular dementia (VD) or dementia with Lewy bodies (DLB) unless these
individuals had co-existing AD pathology [106]. Other studies have looked at histone
acetylation marks, H4K16ac particularly, which is an epigenetic modification of the DNA
that serves to regulate chromatin compaction, gene expression, stress responses, and DNA
damage repair. H4K16ac marks are usually enriched with aging, but the exploration of
brain temporal lobe tissue from AD patients revealed losses of acetylated histone H4K16ac,
which was superior in the proximity of genes linked to aging and with previously identified
AD genetic loci [107].

Metabolic decline is one of the earliest symptoms detected in patients with MCI [108].
Hence, by identifying those metabolites that differ between MCI to AD patients, it is
possible to establish panels of time-specific metabolic biomarkers, which will help us un-
derstand the mechanisms of disease at different stages. Several metabolites, such as alanine,
aspartate, and glutamate, have been associated with AD and cognitive decline, whereas
unsaturated fatty acids have been associated with early memory impairment [109–111].
As such, the Alzheimer’s Disease Metabolomics Consortium observed that preclinical
AD cases were enriched in sphingomyelins and ether-containing phosphatidylcholines
compared to symptomatic AD cases in which acylcarnitines and several amines were the
most representative metabolomic groups [112]. Similarly, sphingolipids were found to
be the more distinct species between AD cases and controls and were associated with
the severity of AD pathology at autopsy and AD progression [113,114]. The correlation
between these metabolic signatures in the brain and peripheral tissues, as well as their
relationship with key AD pathological biomarkers, remains to be elucidated, but they are a
promising source of novel biomarkers.

Despite the potential of these novel technologies, a major challenge in advancing this
line of research is access to sufficient brain tissue from different stages of the disease to
explore pathology at different time points. iPSCs have become useful models to study
single-cell behavior in disease [115]. Similarly, monocyte-derived microglia-like (MDMi)
cells recapitulate key aspects of microglia phenotype and function, and their expression of
neurodegenerative disease-related genes is different from that of monocytes [116]. These
models have been useful for studying the effects of specific variants on cell phenotype, e.g.,
the study of ADAD mutations [117] and the effects of tau-related mutations in AD [118].
Most importantly, these studies help differentiate functional responses observed in mice
from those in human systems [119]. Transcriptomic analysis of 5XFAD mice and human
AD single nuclei brain cells revealed discordances in the transcriptomic signature of
oligodendrocytes, astrocytes, and microglia between these two systems [80].

Yet, the brain is a complex organ involving the interaction of multiple cell types, with
different proportions in different brain areas. In addition, AD pathogenesis is a combination
of Aβ accumulation, phosphorylated tau (p-tau) formation, hyperactivation of glial cells,
and neuronal loss. Therefore, iPSC or MDMi alone cannot be expected to model the
brain response to AD pathogenic events. A novel engineered model has been developed
that grows three-dimensionally interacting neurons, astrocytes, and microglia in order to
model AD pathogenesis [120]. This new 3D human AD triculture system mirrored the first
pathogenic AD stages, Aβ aggregation and p-tau formation, and the induction of microglia
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recruitment that leads to marked neuron and astrocyte loss [120]. More recently, several
groups have managed to incorporate the microvasculature into these organoids, providing
them with blood-brain barrier characteristics [121]. These models have the potential to
advance our understanding of AD in multiple ways. First, we can study the pathological
processes that occur in the brains of AD patients. By combining patient-specific iPSC with
triculture 3D technology, we could evaluate the differential activation of pathways in a
patient-specific manner. Subsequently, different drugs could be tested to evaluate the
efficacy and occurrence of side effects in a patient-specific and personalized manner.

4. Early Prediction and Diagnosis Are Key to Better Treatment

Current diagnostic tools for AD patients include neuropsychological tests to assess
memory and other cognitive abilities, whether it is Clinical Dementia Rating (CDR) [122],
Mini-Mental State Exam (MMSE) [123], Montreal Cognitive Assessment (MoCA) [124],
or Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [125] and mea-
surement of biomarkers in the brain, CSF, or blood. Biomarkers can be measured in the
brain using imaging techniques (MRI, CT, or PET) that inform us about metabolic changes
in the brain (glucose) or deposit of certain protein aggregates (Aβ, tau, and p-tau) or in
biofluids (blood and CSF). A definitive diagnosis of AD can only be made by pathological
exam of the brain postmortem. However, it is known that pathologic changes in the brain
occur years before a person starts showing signs of cognitive impairment [126]. A key
factor in the success of clinical trials and in the treatment of AD patients is the ability to
intervene before clinical symptoms appear. Thus, we are in urgent need of tools that can
identify individuals at risk and be applied at the population level in a fast and affordable
manner. The challenge remains in having access to well-characterized, large cohorts with a
longitudinal repository of body fluids in which sets of biomarkers can be investigated in a
retrospective manner. In addition, as we have reviewed in this manuscript, not only Aβ
and tau contribute to the pathogenesis of AD; there are many other pathways involved that
have the potential to provide accurate biomarkers to predict and follow disease progression
and response to potential treatments. Clinical trials for drug targets have mainly focused
on reducing the production of Aβ or trying to clear its deposits from the brain, mainly
based on the knowledge derived from ADAD patients. Yet, the pathological mechanisms
starting and driving ADAD, EOAD, and LOAD might differ, thus, different therapeutic
approaches that take into account the etiology and genetic background of each individual
should be investigated. In the next section we summarize the most recent papers on risk
prediction, detection, diagnosis, and treatment strategies (Table 1).

Table 1. Summary of selected recent studies of risk prediction, early diagnosis, and treatment.

Approaches to Risk Prediction

Ref. Approach Findings

[127] PRS EOAD, sLOAD, and fLOAD have different PRS profiles

[128] PRS + biomarker Prediction of conversion or AAO

[129] PRS + brain atrophy + MMSE score Better progression prediction

[130] PRS + brain atrophy + MMSE score +
CSF data

Individuals with high PRS and with amyloid and tau pathology showed
a faster rate of memory decline, even among APOE ε4 non-carriers

[131] PRS PRS differentiate AD, FTD, PD, and ALS

Biomarkers for Early Diagnosis

Ref. Target Localization Indicative Of Aβ-
Independent

Tau-
Independent

[132] sTREM2 CSF, plasma Onset and progression of tau
pathology Y N

[133] Nfl plasma, CSF Cytoskeleton protein released with
neuron death Y Y

[134] sPDGRβ blood Blood-brain barrier breakdown Y Y
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Table 1. Cont.

Possible Treatments and Clinical Trials

Clinical
Trial Ref. Target Mechanism Participants Goal Drug Status

NCT01677572

Amyloid β Monoclonal
antibodies

Mild AD and MCI

Clearance of Aβ
plaques

Aducanumab Approved to treat Alzheimer’s
disease

NCT02760602 Prodromal AD Solanezumab T—no evidence that prodromal
AD benefits from drug

NCT02008357 Older Individuals at
risk (APOE4+) Solanezumab P3—not recruiting

NCT01760005 DIAN-TU Solanezumab P3; H—no change in cognitive
performance

NCT01760005 DIAN-TU Gantereumab P3; H—no change in cognitive
performance

NCT01998841 Colombian family Crenezumab P3—not recruiting

NCT01661673 Y-secretase y-modulator Mild Cognitive
Impairment

Decrease production
of toxic Aβ EVP-0962 P2—completed

PRS—polygenic risk score; Nfl—Neurofilament Light; T—terminated; H—halted; P2—phase II; P3—phase III.

4.1. Risk Prediction and Prevention

Polygenic risk scores (PRS) aim to generate a genetic profile of an individual and to
predict this individual’s chances of developing a certain condition. The first PRS for AD
included all 21 variants identified by the IGAP consortia with a prediction accuracy of
78.2% [135], although its accuracy could reach 82% depending on the AD subtype [136]. In
fact, PRS calculated for stratified AD etiologies revealed an accuracy of 75% for fAD, 72%
for sAD, and 67% for AD [127]. Under the hypothesis that a pathway-specific PRS could be
more powerful at predicting certain pathological aspects of the disease, Darst et al. (2016)
clustered the SNPs for the AD PRS into the major AD pathways (Aβ clearance, cholesterol
metabolism, and immune response) and tested their association with cognition function
and AD-biomarkers (Aβ imaging, CSF Aβ, tau, and p-tau) [128]. Unfortunately, these
prediction values were no more accurate than models including all known disease vari-
ants, suggesting there is room for improvement of these predictors. Kauppi et al. (2018)
generated a PRS that predicted progression from MCI to AD over 120 months; when these
data were combined with baseline brain atrophy score and/or MMSE score, the prediction
model was significantly improved (AUC = 84%) compared to the use of the PRS alone [129].
Furthermore, adding biomarker data from CSF and imaging measurements, the same
group found that individuals with high PRS and with amyloid and tau pathology showed
a faster rate of cognitive decline, even among APOE ε4 non-carriers [130]. In a similar
study, it was found that adding imaging information of Aβ and tau deposition (PET) and
neurodegeneration (MRI) to a model that already included clinical and genetic information
improved the prediction accuracy of memory decline [137]. Despite the increase in predic-
tive ability, it is uncertain whether these improvements will be clinically relevant for the
daily practice of predicting people at risk. We are still in need of predictors that do not rely
on biomarkers of already occurring pathology.

4.2. Early Detection, Diagnosis, and Prognosis

In the search for biomarkers that can reflect what is occurring in the brain, CSF has
been the fluid of preference given its direct contact with the CNS. Aβ peptides and tau were
among the first proteins to be investigated in CSF for detection and diagnostic purposes.
This was followed by the investigation of VILIP-1 (marker of neuronal injury), YKL40
(marker of inflammation), neurogranin (NGRN—marker of synaptic function), and CLU
(an apoliprotein involved in several Aβ processes and a risk factor for AD). However, these
markers are not disease-specific (VILIP-1, YKL40 [138], NGRN [139]) or do not present
differently between cases and controls (e.g., CLU [140]). Therefore, there is still a need to
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identify biomarkers that (i) are AD-specific and can predict the onset of cognitive decline
and (ii) are independent of Aβ and tau metabolism so that disease progression can be
monitored in patients enrolled in clinical trials using drugs targeting Aβ or tau. Recently,
progress has been made in the analysis of Aβ in blood (plasma) in order to replace screening
in CSF and reduce its invasiveness and related expenses [75].

Soluble TREM2 (sTREM2) is detectable in CSF and serum. Its levels are elevated
in MCI-AD compared to AD or controls and correlate with those of tau and p-tau, but
not Aβ [132,141]. CSF sTREM2 levels increase before the onset of symptoms, but after
amyloidosis and neuronal injury have already begun [132,142,143], suggesting that TREM2
may play a critical role in the onset and progression of tau pathology and microglia
activation. In addition, a higher ratio of CSF sTREM2 to CSF p-tau181 concentrations
predicted slower conversion from cognitively normal to symptomatic stages or from MCI
to AD dementia [75]. sTREM2 can be generated by the proteolytic action of ADAM10
(an α-secretase also involved in the cleavage of APP), but missense mutations in the
immunoglobulin-like domain and stalk region have been found to interfere with the
cleavage site and shedding of sTREM in opposite directions [144]. In addition, there
are three alternative transcripts for TREM2. One lacks the transmembrane domain and
encodes only the sTREM2 form. Using bulk brain transcriptomic data from AD cases,
TREM2 carriers, and controls. del-Aguila et al. (2019) showed that up to 25% of sTREM2
may be translated from TREM2 isoforms that lack the transmembrane domain; in addition,
the expression of this particular isoform was significantly different in cases compared to
controls [145]. The role of sTREM2 in the cascade of pathologic events remains unclear, and
because of the lack of selective inflammatory markers, it is uncertain whether inflammation
and microglial activation or tau-related abnormalities occur first. Yet again, it may be that
the order of pathologic events may differ between ADAD cases and AD patients that do
not carry mutations on those genes [146].

Neurofilament light chain (NfL) is an intrinsic protein of the axonal cytoskeleton that
is released when neurons die. NfL was found in high concentrations in CSF and blood
among participants of the Dominantly Inherited Alzheimer’s Network (DIAN) ~6.8 years
before the onset of symptoms [133]. NfL is not an AD-exclusive biomarker, but since it is
Aβ- and tau-independent, it has the potential to be used as a proximity marker and as a
marker to monitor therapy response.

The contribution of neurovascular dysfunction and blood-brain barrier (BBB) break-
down to cognitive impairment is widely recognized. These both develop early in AD;
however, the relationship between vascular pathology and Aβ and tau is still unknown.
Nation et al. (2019) studied the CSF from cognitively normal individuals as well as from
individuals with early cognitive dysfunction who were CSF Aβ+, Aβ−, p-tau+, or p-tau−.
The soluble platelet-derived growth factor receptor-β (sPDGFRβ) is mainly expressed by
brain vascular mural cells but not by other cells of the CNS. Nation et al. (2019) found
that sPDGFRβ was increased in the CSF of individuals with advanced CDR regardless
of CSF Aβ of p-tau status, suggesting that biomarkers focused on the integrity of the
brain vasculature could be a novel source for biomarkers of cognitive dysfunction in both
individuals with and without AD [134].

Although most blood- and CSF-based biomarkers focus on protein levels, cell-free nu-
cleotides are also being investigated for use in diagnostic tests. Disease-specific cell-free RNA
transcripts have been found at increased levels in the blood of affected individuals [147,148].
Additionally, small non-coding miRNA were used to differentiate cases from controls across
different neurodegenerative diseases: AD, FTL, and ALS were differentiated from each
other with accuracy ranging from 0.77 to 0.93 [149]. These studies employed samples from
symptomatic patients only, so further studies are required in preclinical individuals to
confirm the potential of this miRNA-based approach as a diagnostic tool.
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4.3. Treatment

The majority of ongoing phase III clinical trials were developed under the umbrella of
the amyloid hypothesis and so are mainly focused on stopping the production of Aβ or
aimed at clearing Aβ plaques. A set of drugs have been designed to target the γ-secretase
complex with the aim to prevent the production of Aβ altogether. However, γ-secretase
cleaves not only APP but also up to another 50 transmembrane protein substrates, including
Notch receptors [150]. Recent studies have revealed that ADAD mutations destabilize the
intermediate enzyme-substrate complexes between APP and γ-secretase, promoting early
disassociation of γ-secretase from Aβ and thereby releasing longer and more amyloidogenic
Aβ peptides [151]. The second wave of current clinical trials use monoclonal antibodies
to promote Aβ clearance, have been designed for a very specific subset of the popula-
tion, and try to tackle the disease before symptoms appear. The Dominantly Inherited
Alzheimer’s Network Trials Unit (DIAN-TU) selects participants from families with autoso-
mal dominant mutations in either APP, PSEN1, or PSEN2 genes and treats them with either
Solanezumab, a monoclonal antibody that targets soluble Aβ, or Gantenerumab, a mono-
clonal antibody that interacts with Aβ plaques and activates microglia phagocytosis [152].
Similarly, the Alzheimer’s Prevention Initiative (API) ADAD trial is focused on a large
Colombian family with ADAD due to a pathogenic mutation in PSEN1 (p.E280A); members
of this family are treated with Crenezumab, a monoclonal antibody that recognizes multiple
Aβ forms and stimulates amyloid phagocytosis while limiting inflammation [153]. The API
also has two more trials: (i) CAD106, a vaccine that combines multiple Aβ forms and aims
to produce a strong antibody response while avoiding inflammatory T cell activation, and
(ii) Umibecestat, which seeks reduction Aβ production by inhibiting the BACE1 protease.
These trials are conducted with 60–75-year-old cognitively normal APOE ε4 homozygotes
and aim to prevent the appearance of disease [154]. However, the predictions for this trial
are not very promising, since Verubecestat, another drug aimed at inhibiting BACE1 to
block Aβ production, failed to improve the cognitive abilities of prodromal AD cases [155].
That is not the case for aducanumab (Aduhelm), a monoclonal antibody against aggre-
gated forms of Aβ approved by the FDA in June 2021 (https://www.fda.gov/drugs/news-
events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease (accessed
on 3 August 2021)). Even though it has proved effective in reducing the burden of Aβ
plaques, it is still not clear if it also reduces the symptomatology [156].

Despite some anti-Aβ therapeutic drugs look promising in phase III clinical trials,
recent data suggest that amyloid would be aside-effect of the brain’s response to stress
in sporadic AD, not a causative factor as in familial AD [157]. Cognitive decline and
pathogenic events are directly associated with the initiation of tau aggregation, hence an
interest in developing tau-related therapies [158]. Tau pathology in AD is characterized by a
disruption of 3R to 4R tau isoforms, resulting in an approximately 2:1 4R:3R ratio [159,160].
Tau expression could be reduced with small interfering RNA (siRNA) [161] or antisense
oligonucleotides (ASO) [162]. These mechanisms have not yet been tested in clinical trials
for AD or other tauopathies, but they have been used for cancer [163] and spinal muscular
atrophy [164].

APOE polymorphisms have been recognized to contribute to AD pathology by both
gain-of- and loss-of-function properties. This bi-directional effect must be taken into
account when designing therapies targeting ApoE [165]. On the one hand, mechanisms
that enhance ApoE quantity have been shown to promote Aβ clearance and synaptic
function in an isoform-dependent manner in murine models [166]. On the other hand,
reduction in ApoE levels in mice models using anti-Apoe ε4 monoclonal antibody seemed
to prevent cognitive impairment and brain hyperphosphorylation [167]. Recently, it was
found that an anti-human ApoE antibody specifically recognizes human ApoE ε4 and ApoE
ε3 and preferentially binds nonlipidated, aggregated ApoE in mouse models expressing
human ApoE and human Aβ [168]. Other therapeutic approaches look at modifying ApoE
properties through structural modification, an increase in ApoE lipidation, or blocking its
interaction. CRISPR/Cas9 has been used to transform ApoE ε4 into ApoE ε3 in mouse

https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease
https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease
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astrocytes [169,170]. Recently, Wang et al. (2018) was successful at converting ApoE
ε4 to ApoE ε3 in iPSC-derived neurons and proved that the introduction of ApoE ε4
recapitulated the pathogenic effects [53].

Given the importance of the immune response in the pathology of AD, therapies
targeting this process, mostly through CD33 and TREM2, are moving into the clinical trial
phase, as announced at the 14th International Conference on Alzheimer’s and Parkinson’s
Diseases, held 27–31 March in Lisbon, Portugal. In particular, two groups, the biotech
Alector, Inc. and the German Center for Neurodegenerative Diseases in Munich, have
developed antibodies that activate TREM2. These antibodies will trigger signaling through
its co-receptor DAP12 resulting in phosphorylation of Syk and the downstream activation
of microglia to remove amyloid. The Alector antibody (AL002) has moved into phase
I clinical study. Similarly, Alector has started its clinical trial of the anti-CD33 antibody
(AL003). Taking into account the time-specific protective vs. harmful effect that microglia
have in AD, if these antibodies work as expected, they would need to be administered at
very specific time points.

Finally, other features of age-related diseases are BBB integrity and the accumulation
of senescent cells. BBB integrity is essential for the (i) Aβ-clearance and (ii) lipid transport.
Docosahexaenoid acid (DHA) is a blood-based essential fatty acid for cognition, and cur-
rent clinical trials are looking at the cognitive benefits of taking DHA diet supplements.
Pan et al. (2016) showed reduced DHA levels and cognitive response in fatty acid-binding
protein 5 (FABP5) knockout mice, suggesting that FABP5 upregulation could be an alter-
native approach to improve DHA uptake and rescue cognitive function [171]. Zang et al.
(2019) studied the brains of patients with AD and the transgenic APP/PS1 mouse model
of AD. They observed that oligodendrocyte progenitor cells (OPC—brain cells mobilized
in response to neuronal injury and demyelination) accumulate around Aβ plaques and
acquire a senescent phenotype characterized by the upregulation of p21/CDKN1A and
p16/INK4/CDKN2A proteins and β-galactosidase activity. They observed that senolytic
treatment (dasatinib plus quercetin) improved APP/PS1 AD mouse model condition by
removing p16-expressing OPCs from Aβ plaques (after 9 days of treatment), reducing Aβ-
plaque-associated proinflammatory cytokines and microglial activation, and reducing lev-
els of inflammation and Aβ plaque size (after 11 weeks of treatment). Altogether, senolytic
treatment improved the hippocampus-dependent learning and memory capabilities of
APP/PS1 AD mice [172]. Quercetin is a flavonoid with antioxidant and anti-inflammatory
effects found in many plants and foods such as berries, green tea, and Ginko biloba,
among others; natural products have the benefit of being readily available, as such some
of them are being tested in animal models, for their neuroprotective, anti-inflammatory,
antioxidant, anti-amyloidogenic, anticholinesterase properties, as potential therapeutics
for AD [173,174].

5. Conclusions and Future Directions

The recent studies of the molecular mechanisms of AD have shown us that amyloid
accumulation does not only trigger tau hyperphosphorylation and immune response,
but it starts other series of events that contribute to increased stress in the brain—e.g.,
reduction in brain blood flow or increment of neuronal hyperactivity. In addition, Aβ
activates the inflammasome and p38MAPK pathway, which stimulates the production of
cytokines that promote tau hyperphosphorylation. Once the pathological environment
is started, APOE can exacerbate the situation, both through the Aβ and tau pathways
in an isoform-dependent manner, but APOE, in turn, seems to be regulated by TREM2.
All of the different molecular mechanisms are highly interconnected and participate in
AD pathogenesis at different time points. Therefore, future research should focus on
identifying the potential triggers for non-ADAD etiologies, whether it is searching for
additional rare coding variants in the many loci associated with the disease or exploring
the non-coding regions of the genome for downstream effects modifying gene expression.
Additionally, improvements are needed in the in vitro systems used to study the disease
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since we have seen that the response in mouse models differs from that of humans. By
better understanding the chain of pathologic events associated with different genetic risk
factors, we can potentially identify AD subtypes related to specific genetic architectures
allowing for personalized diagnosis and treatments. So far, our capacity to predict AD is
quite limited, with PRS having a prediction accuracy between 65% and 75%. Our tools for
early detection are limited as well since we cannot currently detect individuals at risk until
their Aβ and tau load has already built up. Ultimately, this is a detriment to developing
and testing novel therapies in the right groups of participants.

The progress we have made in recent years in the understanding of AD has been
monumental. Yet, there is still substantial work to do before we fully understand and
control this disease. The generation of larger genetic studies and incorporation of rare
variants in prediction models will facilitate the development of improved PRS for the
prediction of the baseline risk of developing AD and will also allow for the identification
of potential AD subtypes. In addition, the discovery of dynamic biomarkers will enable
the prediction of age at onset and the rate of progression of the disease. Omic approaches
can facilitate progress in this area by exploring changes in the proteomic and metabolomic
profiles of individuals at different time points. Finally, to improve and reach a personalized
medicine for AD, future studies need to incorporate ethnic diversity in the recruitment
process as modeling of this disease has, so far, been almost exclusively done with European
and American populations of Caucasian background.
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BBB Blood-brain barrier
BV2 Immortalized murine microglial cell line
CD2AP CD2-associated protein
CD33 Myeloid cell surface antigen CD33
CDR Clinical dementia ratio
CE Cholesterol ester
CERAD Consortium to Establish a Registry for Alzheimer’s Disease
CELF1 CUGBP Elav-like family member 1
CLU Clusterin
CNS Central nervous system
CNV Copy number variant
CR1 Complement C3b/C4b receptor 1 (Knops blood group)
CSF Cerebrospinal fluid
CT Computerized tomography
DAM Disease-associated microglia
DIAN Dominantly inherited network
DLB Dementia with Levy bodies
EMP Erithro-myeloid progenitor
EAAT Excitatory amino acid-mediated transporters
EOAD Early onset Alzheimer’s disease
EPHA1 EPH receptor A1
ERK Extracellular signal-regulated kinase
ETA Endothelin A receptor
EWAs Epigenome-wide association studies
fAD Familial Alzheimer’s disease
fLOAD Familial late-onset Alzheimer’s disease
FDR False discovery rate
FTD Frontotemporal dementia
GWA Genome-wide association
H3K9ac Histone 3 lysine 9 acetylation
H4K16ac Histone 4 lysine 16 acetylation
HD Huntington’s disease
HSPG Heparan sulfate proteoglycan
iPSC Induced pluripotent stem cells
ITAM Immunoreceptor tyrosine-based activation motif
LDLR Low-density lipoprotein receptor
LOAD Late-onset Alzheimer’s disease
LRP1 LDL (low-density lipoprotein) receptor-related protein 1
MAP Memory and aging project
MAPK Mitogen-activated protein kinases (formerly known as ERK)
MAPT Microtubule-associated protein tau
MCI Mild cognitive impairment
MDMi Monocyte-derived microglia-like cells
MKK7 MAPK kinase 7
MMSE Mini-mental state examination
MOca Montreal Cognitive Assessment
MRI Magnetic resonance imaging
MS4A Membrane spanning 4
MS4A4A Membrane spanning 4-domains A4A
mTOR Mechanistic target of rapamycin
NfL Neurofilament Ligtht
NFTs Neuro fibrillary tangles
NGRN Neurogranin
NLRP3 Nucleotide-binding domain (NOD)-like receptor protein 3
NOX4 NADPH oxidase 4
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NT Neuropil threads
p38MAPK p38 mitogen-activated protein kinase
PD Parkinson’s disease
PET Positron emission tomography
PGRN Progranulin
PI3K Phosphatidylinositol-3-kinase
PIB Pittsburgh compound B
PICALM Phosphatidylinositol-binding clathrin assembly protein
PPAR Peroxisome proliferator-activated receptor
PRS Polygenic Risk Score
PS19 Transgenic mouse model carrying MAPT P301S mutation
PSEN1 Presenilin 1
PSEN2 Presenilin 2
ROS Religious Order Study
sAD Sporadic Alzheimer’s disease
sLOAD Sporadic late-onset Alzheimer’s disease
SNPs Single nucleotide polymorphism
sPDGFRβ Soluble platelet-derived growth factor receptor-β
SPI1 Spi-1 proto-oncogene
TLRs Toll-like receptors
TMEM106B Transmembrane protein 106B
TREM2 Triggering receptor expressed on myeloid cells 2
TWAs Transcriptome-wide association studies
TYROBP Transmembrane immune signaling adaptor TYROBP
VD Vascular dementia
VILIP1 Visinin-like 1
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