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Abstract

Background

Floating catchment methods have recently been applied to identify priority regions for Auto-

mated External Defibrillator (AED) deployment, to aid in improving Out of Hospital Cardiac

Arrest (OHCA) survival. This approach models access as a supply-to-demand ratio for each

area, targeting areas with high demand and low supply for AED placement. These methods

incorporate spatial covariates on OHCA occurrence, but do not provide precise AED loca-

tions, which are critical to the initial intent of such location analysis research. Exact AED

locations can be determined using optimisation methods, but they do not incorporate known

spatial risk factors for OHCA, such as income and demographics. Combining these two

approaches would evaluate AED placement impact, describe drivers of OHCA occurrence,

and identify areas that may not be appropriately covered by AED placement strategies.

There are two aims in this paper. First, to develop geospatial models of OHCA that account

for and display uncertainty. Second, to evaluate the AED placement methods using geospa-

tial models of accessibility. We first identify communities with the greatest gap between

demand and supply for allocating AEDs. We then use this information to evaluate models

for precise AED location deployment.

Methods

Case study data set consisted of 2802 OHCA events and 719 AEDs. Spatial OHCA

occurrence was described using a geospatial model, with possible spatial correlation
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accommodated by introducing a conditional autoregressive (CAR) prior on the municipality-

level spatial random effect. This model was fit with Integrated Nested Laplacian Approxima-

tion (INLA), using covariates for population density, proportion male, proportion over 65

years, financial strength, and the proportion of land used for transport, commercial, build-

ings, recreation, and urban areas. Optimisation methods for AED locations were applied to

find the top 100 AED placement locations. AED access was calculated for current access

and 100 AED placements. Priority rankings were then given for each area based on their

access score and predicted number of OHCA events.

Results

Of the 2802 OHCA events, 64.28% occurred in rural areas, and 35.72% in urban areas.

Additionally, over 70% of individuals were aged over 65. Supply of AEDs was less than

demand in most areas. Priority regions for AED placement were identified, and access

scores were evaluated for AED placement methodology by ranking the access scores and

the predicted OHCA count. AED placement methodology placed AEDs in areas with the

highest priority, but placed more AEDs in areas with more predicted OHCA events in each

grid cell.

Conclusion

The methods in this paper incorporate OHCA spatial risk factors and OHCA coverage to

identify spatial regions most in need of resources. These methods can be used to help

understand how AED allocation methods affect OHCA accessibility, which is of significant

practical value for communities when deciding AED placements.

Introduction

To best serve the public, hospitals, medical centres, and emergency services should be in loca-

tions where they can serve the most people in need. Recent research has evaluated various

techniques for evaluating or identifying locations of External Defibrillators (AEDs) [1, 2]. This

is an idea upon which this paper builds: exploring how to evaluate, locate, and improve AED

locations.

AEDs are a portable device that can be used by a layperson to provide advanced life support

for out of hospital cardiac arrests (OHCAs) by bringing the device to the victim. OHCAs are a

major public health problem affecting about 1 citizen per 1000 inhabitants in developed coun-

tries [3–5]. OHCA survival decreases up to 10% for each minute of delay between collapse and

treatment, but survival can be improved through delivery of cardiopulmonary resuscitation

(CPR) from bystanders, and early defibrillation [6] through devices such as AEDs. Bystander

response to OHCA events improve OHCA survival by performing CPR and providing

advanced life support using AEDs [3, 4]. The impact of bystander AED use is increasing with

technology such as smartphone applications being used to assist in responding to and treating

OHCA events, improving survival [7].

AEDs need to be close to OHCA events so they can be used quickly in response to an

OHCA event—ideally within 100m or a 2 minute walk to provide adequate coverage [2, 8, 9].

AEDs are currently placed following methodology prescribed by the American Heart
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Association (AHA) and European Resuscitation Council (ERC), with AEDs being placed

where OHCA events occur every 2 and 5 years, respectively. However, it is prohibitively

expensive to place AEDs where all OHCA events occur. Alternative methods for AED place-

ment need to be considered.

Population-based strategies place AEDs in locations with high observed OHCA occurrence

[10], but these may not generalise well to other areas. For example, golf courses had high

OHCA incidence in one region, but not another [2, 10, 11]. This motivates the need for more

sophisticated AED placement strategies.

AED access can be improved by modelling access as a relationship between supply (AEDs

locations), and demand, (OHCA events). This can be achieved using a method known as the

two-step floating catchment area (henceforth 2SFCA), a special case of the gravity-based

model, which has been used to measure healthcare access [12]. As the name suggests, the

2SFCA involves two steps. The first step calculates the supply-to-demand ratio for each supply

point, which measures how well the supply meets the demand. The second step calculates the

access for the spatial catchment.

A modification of the floating catchment approach has been applied to identify priority

regions for AED placement based on supply of AEDs and demand of OHCA events [1]. Here,

the authors incorporated exponential weights to account for the step-wise decay of distance

access in a given catchment, to give more weight to OHCA events that are closer to AEDs,

rather than equally weighting them. Demand was measured by incorporating risk factors for

OHCA occurrence, such as age, gender, income, and land use information. A Bayesian geospa-

tial model was used to account for these factors, and estimate the count of OHCA events,

which were then used to compute access in a geospatial region. Following this, the authors

identified priority areas for AED placement based on the supply-to-demand ratio. Their

approach is incomplete, however, as it does not identify exact AED locations, or provide meth-

ods for precise placement. This means AEDs could be poorly placed within a region identified

as priority. There is a missed opportunity to compare and combine information from priority

regions with exact ideal AED locations.

Mathematical optimisation strategies have improved AED access [2, 8, 9]. This approach

identifies precise AED locations that optimally cover as many OHCA events in a set distance

(e.g., 100m) as possible. These models are based on the Maximal Covering Location Problem,

originally described by Church and Velle [13]. The approach has been applied to AED place-

ments by Chan et al [8], where they were shown to be more effective than population-based

approaches. This approach is referred to as a fixed location method, as AED locations are fixed

and cannot be relocated. Recent research [14] has further validated fixed-location optimisation

strategies, demonstrating that it is effective in rural and urban areas. Additionally, they dem-

onstrated the potential efficacy of a cost effective relocation approach, where existing AEDs

are relocated to cover more OHCA events, covering up to 50% of OHCA events.

These two approaches for AED placement work at different scales and use differently struc-

tured information. The first incorporates spatial covariates related to OHCA occurrence, and

OHCA and AED locations to identify priority regions for AED placement, but does not iden-

tify precise AED locations. The second approach identifies precise AED locations based on

previous OHCA events, but does not consider other known risk factors for OHCA, such as

age, population density, and gender [1, 15, 16] into the AED placements. It is currently

unknown whether these optimisation approaches are allocating AEDs to regions needing

access, only that they improve coverage. The AED placements also do not take into account

other more global spatial predictors of OHCA occurrence. These two approaches could be

used together to jointly evaluate the impact of AED placements and drivers of OHCA
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occurrence. This provides a more comprehensive approach and identifies precise AED place-

ments, priority areas for AED placements, and describes drivers of OHCA events.

This paper has two aims. The first is to develop geospatial models of OHCA, accounting for

and displaying uncertainty. The second is to evaluate the AED placement methods using geos-

patial models of accessibility. To achieve our aims we identify communities with the greatest

gap between demand and supply for allocating AEDs, and then use this approach to evaluate

models for precise AED location deployment.

This paper proceeds as follows, we first describe the case study data and data processing.

Then, we explain how spatial effects are measured, how access is measured, and how we

measure access and priority ranking. We then describe the optimal allocation of AEDs.

Results are then presented, and discussed, along with ideas for future research and final

conclusions.

Materials and methods

Ethics

Data are collected and stored following Good Clinical Practice Guidelines and the relevant leg-

islation governing the use of patient data. The investigation complied with the Declaration of

Helsinki”s principles for physicians engaged in biomedical research involving human subjects.

The Queensland University of Technology Human Research Ethics Committee assessed this

research as meeting the conditions for exemption from HREC review and approval in accor-

dance with section 5.1.22 of the Australian National Statement on Ethical Conduct in Human

Research.

Data

Data in this study can be broken up into two different categories: (1) OHCA and AED related

data, (2) and spatial and statistical data.

Data: OHCA and AED related data. OHCA was data obtained from a cardiac arrest reg-

istry based in Ticino, Switzerland, which has a population of 346,539 (as of 2013) and covers

2812 km2 [17]. The data contains OHCA events from January 1st 2005 to December 31st 2015

for individuals older than 1 year. OHCA events in this registry are defined as events that occur

outside of a hospital, where there is cessation of cardiac mechanical activity, and is confirmed

by the absence of signs of circulation. OHCA events are geolocated as GPS latitude and longi-

tude co-ordinates. A small number of cases matched to written addresses, which places events

in the centre of a street or suburb. Data for AEDs contain GPS co-ordinates and availability:

either public and available 24 hours a day 7 days a week, or time limited where AEDs are in a

non-public structure. Locations for potential AEDs included GPS co-ordinates for every build-

ing in Ticino, approximately 118,000 locations. These data were provided by the Federal Statis-

tical Office, Federal Register of Buildings and Dwellings.

Data: Spatial and statistical data. Shapefiles of the spatial polygons related to the 115

municipalities were made available from the Ufficio del catasto e dei riordini fondiari of Can-

ton Ticino. General information on each municipality, including the financial strength of each

area, was provided by USTAT, the Statistical Office of Canton Ticino. Financial strength was

computed as a weighted average of indicators related to revenue, taxation, and the resident

population. For complete details on the calculation of financial strength see Appendix A in S1

File. The land use, specifically, the number of hectares used for transport, industry and com-

mercial use, buildings, recreation, and special urban use, was also available for each of these

municipalities, and provided by the Federal Office of Statistics.

Bayesian analysis of health facility access
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Overview of methods

A brief overview of each step of the analysis is now provided. First, A grid is overlaid over the

spatial area, the number of OHCA events in each grid cell are calculated, and each grid cell is

assigned covariate information from the municipality it falls into. Next, a Bayesian geospatial

model is fit to obtain an estimate of the expected number of OHCA events in a given grid cell.

Following this a spatial access model is fit at each grid cell, providing each grid with an access

score. The fixed location method is then used with the observed OHCA events to identify 100

optimal AED locations. Priority rankings are then created. Each of these steps is now explained

in more detail.

Data pre-processing

One problem that must be tackled is that the data used in analyses are collected at different

spatial scales. Specifically, OHCA events, AED locations, and building locations have GPS co-

ordinates, and thus observed at the point level, while census information of the other variables

are obtained at the spatial scale of municipalities. However, the municipality areas are too

large for the purposes of the floating catchment analysis, so in the absence of other readily

available information, a grid was generated to provide smaller resolution for analysis. This grid

was defined with dimensions 0.01 degrees latitude and longitude, resulting in 3205 grid cells

1100m by 1100m (see Fig 1). The number of OHCA events that fall within each grid cell were

then calculated. Covariate information for each grid cell was calculated from the municipality

in which the grid cell centroid fell, and was divided by the number of cells falling within the

borders of each municipality. For example, if ten grid cells fell within a municipality, the covar-

iate values for each grid were given by dividing the municipality covariate value by ten. Fig 1

shows the grid created, and a map showing the number of OHCA events that lie within each

spatial area.

Modelling spatial effects

Bayesian models provide simple and effective ways of analysing small effects, and allow infer-

ences using probabilities of potential events and outcomes. A model is fit to estimate the num-

ber of OHCAs in a given grid cell. The following covariates have been shown to be related to

OHCA incidence [1, 15, 16], and so are included in the model: proportion of men, proportion

of people aged over 65, financial strength of an area, and proportion of area used for transport,

industry and commercial uses, buildings, recreation, and special urban use. As 85% of the spa-

tial grid cells have zero OHCA events and many low counts (Fig 2), a Zero-Inflated Poisson

(ZIP) model is used to account for these additional zeros. A ZIP model allows the number of

events yki in the ith grid cell in the kth municipality to be zero with some probability p, or else to

follow a Poisson distribution (which can also have zeros) with probability 1 − p:

yki �
0; with probability p

Poisson ðlkiÞ; with probability 1 � p
ð1Þ

(

The probability p is expressed as:

p ¼
expðyÞ

1þ expðyÞ
ð2Þ

and a prior is set on θ. In this case study θ was set to be y � N ð0:000001; 2Þ. Hence a priori, p
has a mean of 0.5, and 2.5th and 97.5th percentiles of 0.05 and 0.95, respectively. Other
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specifications of θ were considered (for example, y � N ð0:001; 2Þ, and y � N ð0:1; 1Þ), but

these had very little impact on the parameter estimates.

The parameter λki was modelled as a function of the risk factors x = (x1, . . ., xm) as in Eq 3.

In this model, ui is a spatially structured random effect with an intrinsic conditional autore-

gressive specification [18, 19], and vi is a spatially unstructured random effect, (see Eqs 4 and

Fig 1. Map of the OHCA events, where the higher the number of OHCA events, the darker the bin colour.

https://doi.org/10.1371/journal.pone.0218310.g001
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5, respectively).

logðlkiÞ ¼ b0 þ
XM

m¼1

bmxmi þ ui þ vi ð3Þ

uijuj; tu � N
1

ni

X

i�j

uj;
1

tuni

 !

; i 6¼ j ð4Þ

vi ¼ Nð0; svÞ ð5Þ

Here τu is a precision parameter; ni is the number of neighbours of the ith grid cell, and the sub-

script i* j refer to a cell i of the grid cell and to its neighbour j respectively. An alternative for-

mulation that accounts for age and gender as an offset was also considered and is described in

Appendix B in S1 File.

Measuring accessibility and priority ranking

An altered 2SFCA method is applied, which uses an exponential decay from the AED to

OHCA distance, as described in [1]. Our adoption of a exponential decay function extends the

2SFCA method of [1] to rank geographical regions according to their accessibility. We believe

that the continuous decreasing behaviour of the demand weight is a better approximation of

the reality, relative to a step-wise decreasing function. Also, the chosen decay can be inter-

preted in terms of demand or in terms of procedure effectiveness: after the threshold of 100m,

we consider, based on literature considerations, the AED not effective to cover an OHCA that

will likely divert on a different AED (therefore no demand for the first AED).

This process has two steps, and follows the notation where i is a grid cell, j is an AED point

location, and k is a municipality. The first step calculates the supply to demand ratio, Rj, for

each AED location. The supply of Sj is defined as 1 as there is 1 AED, and demand is the

weighted sum of the demand scores of an OHCA event from spatial area dkj within distance d0

(100m) of AED j.
The choice of 100m is not arbitrary and is based on current literature, [2, 8, 9], and dictated

by resuscitation guidelines [20]. To elaborate, without cardiopulmonary resuscitation and

Fig 2. Distribution of non-zero OHCA counts in each grid cell from 2005 to 2015.

https://doi.org/10.1371/journal.pone.0218310.g002
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AED use, the probability of surviving an OHCA is reduced by 10-15% every minute of cardiac

arrest. A health untrained person can run at 2 metres per second, so a distance of 500m will be

covered in about 250 seconds or about 4 minutes. This means if an AED is 500 metres away, 4

minutes equals a probability to survive of slightly more than 50%, which is very undesirable.

This is a further medical justification to optimize AED distribution to reduce access time to 1

to 2 minutes or up to a distance of 100 metres. Thus, the paper focuses only on bystander

response of 100m. We report the results based on a different distance of 250m in Appendices F

and G in S1 File, but this caused a mismatch between AED placements and OHCA predic-

tions. Following this, we decide to focus on bystander response up to 100m.

The ratio of supply to demand is then:

Rj ¼
Sj

P
k2fdkj�d0g

DkiGðdkj; d0Þ
ð6Þ

Here, the estimated demand score, Dki for the OHCA in grid cell i of municipality k, is

weighted by a exponential function with a smooth decay, set to be equal to zero at d0:

Gðdkj; d0Þ ¼
e
�

1

2
�

dkj

d0

� �2

� e
�

1

2

1 � e
�

1

2

; dkj � d0

0 dkj > d0

ð7Þ

8
>>>>>><

>>>>>>:

An alternative, stepwise formulation was considered, but the results were effectively identi-

cal to the exponential decay (see Appendices E, F, and G in S1 File).

In the second step, access, Ai, aggregates this information, such that for each spatial area i is

calculated by summing up the weighted supply-to-demand ratios for each AED that fall within

spatial area i:

Ai ¼
XJ

j¼1

Rj ð8Þ

Priority ranks are created by considering regions with predicted OHCA counts greater than

1 in a grid cell, then ordering by the lowest access score and highest predicted OHCA counts.

To find the areas most in need of resources, we consider the top 20 priority areas and then

rank them according to those that had the most AEDs placed.

The optimal allocation method for AEDs

AED locations are identified using the fixed location method optimisation and the observed

OHCA events. This identifies a set of AED locations that maximize the number of OHCA

events covered within a set distance of an AED. Possible AED locations are given by the data-

base of buildings in Ticino. A number of new AEDs can be specified, for example, the top 100

AED locations covering the most historical OHCA events.

More formally, the variables xj, and yi are binary, where xj is equal to 1 when OHCA j is

covered, and 0 otherwise for j = 1, . . ., J OHCA events. Similarly, yi is 1 if an AED is placed in

location i, and 0 otherwise, for possible AED locations i = 1, . . ., I. The matrix A has J rows of

OHCA incidents, and I columns of potential AED locations. Here, aji is binary, and indicates
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whether OHCA j is covered (within 100m) by location i.

A ¼ ½aj;i� ¼

01;1 11;2 � � � 01;I

12;1 02;2 � � � 12;I

..

. ..
. . .

. ..
.

0J;1 1J;2 � � � 1J;I

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð9Þ

This optimisation model maximizes the total number of OHCAs covered by the configura-

tion of the AEDs yi,

max
XJ

j¼1

xj ð10Þ

subject to the constraints: only N locations for AED placement are selected,

XI

i¼1

yi ¼ N ð11Þ

and that when at least one AED i covers an OHCA j, and the corresponding AED yi is selected,

then OHCA xj is covered.

xj �
XI

i¼1

aijyi8j¼1...J ð12Þ

OHCAs that are already covered by current AED placements are removed from the analy-

sis, to improve only coverage of uncovered OHCAs. The fixed location model is performed for

N = 100, to find the top 100 locations for AEDs.

Computation. The R statistical and programming environment [21] was used for all anal-

ysis and visualisation, along with the integrated design environment, RStudio [22]. Reproduc-

ibility was ensured using the rmarkdown [23] and knitr [24] packages. The R package,

maxcovr [25] was used to determine optimal AED locations, using lpSolve internally to

as the linear programming solver for the fixed location method [26]. Data read in was per-

formed using readr and readxl [27, 28], and data manipulation and results extraction

used R packages dplyr, tidyr, purrr, and kableExtra [29–32]. Spatial and statistical

analysis was performed using the packages simple features, sp, spdep and raster [33–36].

The ZIP model was fit using Integrated Nested Laplace Approximation (INLA), using option

“zeroinflatedpoisson1” [37].

Results

Among the 2802 OHCA cases in this study, over 70% of OHCA events occurred in those aged

over 65 (Table 1). Additionally, the majority of events occurred in urban areas (Table 2).

Table 1. Age distribution of OHCA patients.

Age (Years) N Percent

0-15 3 0.11

15-64 742 26.48

65-105 2044 72.95

(Missing) 13 0.46

https://doi.org/10.1371/journal.pone.0218310.t001
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The model performs well at predicting expected counts in a region (Fig 3). Fig 4 uses sam-

ples from the posterior density of each covariate, and shows the 95% credible intervals, and the

probability of the covariate being greater than zero in a grid cell. Note here that recreational

and industrial areas, as well as the proportion of men, being older than 65, and the population

density increase OHCA occurrence. Additionally, the proportion of buildings, urban areas,

and financial strengths are associated with lower counts of OHCA events.

The posterior mean, standard deviation, and residuals (observed count—posterior mean)

are depicted in Fig 5. Areas with values greater than zero indicate that observed counts of

OHCA are greater than model expected values. Areas with values less than zero indicate that

observed counts of OHCA events are less than model expected values. Areas marked with

darker colours indicate higher occurrence. The posterior mean values are similar to the

observed values, and some areas have a high standard deviation at the edges of the map. The

presence of possible spatial autocorrelation of the regression residuals is tested using the Mor-

an’s I test [38, 39]. The global Moran’s I value is I = -0.03, with p = 0.989, indicating no signifi-

cant overall spatial clustering in the residuals of the model. Areas with high difference in

observed and predicted are mostly in rural areas. The top 10 grid cell locations with the most

OHCA events are mostly in urban regions (Table 2). A table of the top 20 municipalities by

model error is shown in Appendix B in S1 File.

The analysis reveals that almost all areas (99.1%) had an access score of less than one. Prior-

ity ranks were created and access scores of each spatial area are shown in Fig 5 (bottom right),

where areas shown in grey indicate locations that have a predicted OHCA count of< 1. Tables

3 and 4 show the number of AEDs placed in the the top 20 least accessible areas. The top 10

priority areas have AEDs placed in them, but priority ranks 11 to 20 have only 5 AEDs placed,

4 of which are in rural areas. When examining the top 20 grid cell areas where AEDs are

placed, the optimisation favours urban areas, which have higher model predicted OHCA

counts.

Discussion

This paper presents a novel modelling framework that jointly prioritizes regions for AED

placement, evaluates AED placement methods, and identifies covariates important for predict-

ing OHCA events. This reconciles a missed opportunity in past research by [1], which did not

identify exact AED locations in priority regions, and in [14], which did not combine exact

AED locations with relevant spatial information important in predicting OHCA occurrence

[1, 15, 16]. Combining information from geospatial models and the precise facility locations

Table 2. Top 10 Municipalities by OHCA count, also indicating whether they are urban or rural areas.

Municipality Urban / Rural Count Percent

69 Urban 489 17.45

66 Urban 130 4.64

78 Urban 127 4.53

13 Urban 126 4.50

36 Urban 70 2.50

51 Rural 67 2.39

7 Rural 64 2.28

49 Rural 60 2.14

82 Rural 60 2.14

14 Urban 59 2.11

https://doi.org/10.1371/journal.pone.0218310.t002

Bayesian analysis of health facility access

PLOS ONE | https://doi.org/10.1371/journal.pone.0218310 August 7, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0218310.t002
https://doi.org/10.1371/journal.pone.0218310


gives a more complete picture of the impact of facility locations. The geospatial model revealed

an increase of OHCA occurrence for the covariates: recreational and industrial areas, and the

proportion of men, proportion of the population older than 65, and the population density.

Additionally, the proportion of buildings, urban areas, and financial strengths are associated

with lower counts of OHCA events.

A limitation of this study is that the currently available shapefiles are at a low spatial resolu-

tion. This lead us to make the unrealistic assumption that municipalities have their covariates

equally distributed within the surface area. Data at a higher spatial resolution could also help

to glean more useful insight into the relationship between OHCA risk factors and AED place-

ment. However, a main aim of this paper was to demonstrate finding factors related to OHCA

Fig 3. Observed counts of OHCA events in each grid cell compared to the posterior mean counts in a grid cell, with a line of perfect fit.

https://doi.org/10.1371/journal.pone.0218310.g003
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occurrence, and using the floating catchment approach and AED allocation methods in evalu-

ating priority areas and placement methodology.

The distance to an existing OHCA event is crucial to survival, but is only a measure of past

occurrence. Incorporating floating catchment area models with spatial modelling of relevant

spatial risk factors for OHCA events helps us understand how AED deployment strategies

work in spatial areas with higher OHCA occurrence risk factors (more men, higher population

density and older populations). There may be situations with scarcity of services, where multi-

ple OHCA events happen and exhaust available AEDs. To fully account for such a situation,

additional modelling would need to be made where a “wrong decision” was made, where per-

haps an agent made a false trip to where an AED was located previously. These have not been

modelled yet, although scenarios have been considered in [2], which modelled scenarios with

many active bystanders searching for AEDs to use for treatment, and bystanders found AEDs

farther away from the bystander.

Use of the binary coverage in the optimisation model means that areas are either covered or

not. This means that an OHCA event 99m and 1m away from an AED location get the same

weight, of 1, and an AED 101m away gets a weight of 0—it is marked as being not covered.

Although accessibility score in this paper uses a exponential decay, an approach that considers

continuous distance has not been considered in AED placement. Continuous distance could

be incorporated, using what is known as the continuous coverage problem, described in [40,

41]. This could perhaps incorporate factors such as spatial risk or lives saved through AED

placement, so that that spatial areas with higher OHCA risk could have more AEDs.

Fig 4. Posterior mean, 95% credible intervals, and probability of effect being> 0 for the model covariates.

https://doi.org/10.1371/journal.pone.0218310.g004
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Fig 5. Top Left: Posterior mean estimates of the number of OHCA events in each spatial area, Top Right: Posterior Estimates of Standard

Deviation of the number of OHCA events in each spatial area, Bottom Left: Error as measured by the observed—posterior mean of the number

of OHCA events in each spatial area. Bottom Right: Access score areas with predicted OHCA count of less than 1 are ignored (grey).

https://doi.org/10.1371/journal.pone.0218310.g005
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Table 3. Top 20 priority ranks, access scores, model predictions, the number of AEDs added, and whether the areas were rural or urban.

Priority Rank Access Model Predicted # AEDs Added Urban / Rural

1 0 32.22 3 rural

2 0 23.24 1 urban

3 0 21.33 2 rural

4 0 18.77 2 rural

5 0 17.51 1 urban

6 0 14.74 1 urban

7 0 14.14 1 rural

8 0 11.10 1 rural

9 0 10.40 1 rural

10 0 10.40 1 rural

11 0 10.30 1 rural

12 0 9.57 0 urban

13 0 9.00 1 urban

14 0 8.91 1 rural

15 0 8.58 0 rural

16 0 8.31 0 rural

17 0 8.21 0 urban

18 0 8.06 1 rural

19 0 7.83 0 rural

20 0 7.79 1 rural

https://doi.org/10.1371/journal.pone.0218310.t003

Table 4. Top 20 number of AEDs added, along with priority ranks, access scores, model predictions, and whether the areas were rural or urban.

Priority Rank Access Model Predicted # AEDs Added Urban / Rural

229 0.07 74.37 6 urban

261 0.18 43.60 5 urban

240 0.10 46.35 4 urban

1 0.00 32.22 3 rural

244 0.10 42.22 3 urban

284 0.50 44.79 3 urban

312 3.83 42.41 3 urban

3 0.00 21.33 2 rural

4 0.00 18.77 2 rural

209 0.02 24.99 2 rural

221 0.05 19.65 2 rural

223 0.06 32.32 2 rural

235 0.09 32.45 2 urban

237 0.09 19.75 2 urban

252 0.13 34.14 2 urban

255 0.15 25.86 2 rural

260 0.18 20.36 2 rural

281 0.49 33.89 2 rural

302 1.19 38.04 2 urban

2 0.00 23.24 1 urban

https://doi.org/10.1371/journal.pone.0218310.t004
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Information on risk of death from an OHCA event, or perhaps some measures of accessibility,

could also be included so that areas with greater risk are given more weight.

In our work and in previous literature [1], the accessibility models only used the mean pos-

terior values from the geospatial model. The Bayesian framework can be used to recover distri-

butions of accessibility for each spatial region, which would account for uncertainty in

accessibility, and allow for calculation of probabilities of spatial regions being ranked as the

lowest access, and calculation of regions in the lowest/top 10% accessibility of a region. This

could be useful when determining priority rankings, allowing for questions regarding not just

the access score, but the certainty of access.

In practical cases, there are many more rural areas with low access and high demand com-

pared to urban areas, and so additional approaches are needed for servicing rural regions with

low access. One response to this need is the use of drone deployed AEDs [42, 43]. These differ-

ent uses of AED deployment could in the future be combined with current deployment meth-

ods, potentially included as an additional cost to regular AEDs, and also constrained,

according to areas with lower access scores. Deploying AEDs and drone delivery services is an

expensive endeavour, so future methods could, in addition, incorporate the use of AED

deployment methods, into a relocation-type model. This could, for example, explore the use of

relocating several AEDs in particular regions to one central node containing an AED delivery

drone.

Alternative arrival vectors, such as those by an ambulance, may be considered for AED

delivery. However, their modelling requires answering a different set of questions, concerning

placement of ambulances and of ambulance stations, and accounting for additional external

features such as traffic at a given time of day. Additionally, an ambulance may take up to 7 or 8

minutes to arrive on scene, which is beyond a reasonable survival time, which may mean other

arrival vectors such as motorcycles may be considered.

Future research could explore different distances (100m–1km) for different modes of trans-

port, such as healthy runners, motorcycles, and ambulances. The arrival and approach of

healthy runners and an ambulance should be addressed in a different framework that assesses

the full combinations of these events. This might include situations such as race conditions,

where someone starts at 100m, someone runs 400m, and an ambulance arrives. This is a com-

plex analysis, and is partially discussed in Chan et al 2016 [2], where many different optimisa-

tion formulations account for different scenarios of arrival. Furthermore, larger distances

should account for available paths/routes instead of assuming a straight line of travel. Path dis-

tances are typically challenging to calculate, but modern tools such as dodgr provide accessi-

ble calculations of many-to-many pairwise distances for flow via networks, providing realistic

routing through streets [44].

This paper creates priority rankings comprised of spatial risk factors and coverage informa-

tion from OHCA and AED events. This information could be used to create a table of ranks

and access scores that consider changes in access for different AED placements. It also pro-

vides a different perspective for evaluating AED placement methodology, allowing for different

questions and decisions to be made in AED placement.
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