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Abstract

The intracellular protozoal parasite Toxoplasma gondii has been associated with worsened

cognitive function in animal models and in humans. Despite these associations, the mecha-

nisms by which Toxoplasma gondii might affect cognitive function remain unknown,

although Toxoplasma gondii does produce physiologically active intraneuronal cysts and

appears to affect dopamine synthesis. Using data from the UK Biobank, we sought to deter-

mine whether Toxoplasma gondii is associated with decreased prefrontal, hippocampal,

and thalamic gray-matter volumes and with decreased total gray-matter and total white-mat-

ter volumes in an adult community-based sample. The results from adjusted multivariable

regression modelling showed no associations between Toxoplasma gondii and prefrontal,

hippocampal, and thalamic brain gray-matter volumes. In contrast, natural-log transformed

antibody levels against the Toxoplasma gondii p22 (b = -3960, 95-percent confidence inter-

val, -6536 to -1383, p < .01) and sag1 (b = -4863, 95-percent confidence interval, –8301 to

-1425, p < .01) antigens were associated with smaller total gray-matter volume, as was the

mean of natural-log transformed p22 and sag1 titers (b = -6141, 95-percent confidence inter-

val, -9886 to -2397, p < .01). There were no associations between any of the measures of

Toxoplasma gondii and total white-matter volume. These findings suggest that Toxoplasma

gondii might be associated with decreased total gray-matter in middle-aged and older mid-

dle-aged adults in a community-based sample from the United Kingdom.

Introduction

Infecting approximately one-third of the world’s population [1], the neurotropic intracellular api-

complexan protozoal parasite Toxoplasma gondii can remain in the brain for the life of the host

[2]. The definitive hosts for Toxoplasma gondii are members of the cat family, which release

oocysts into the environment, from where they can infect humans via contact with cat feces, inges-

tion of undercooked meat containing Toxoplasma gondii oocysts, or congenital transmission [3].

Some research fails to identify associations of Toxoplasma gondii seropositivity and seroin-

tensity with cognitive impairment [4–6], and one study even found an association between
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Toxoplasma gondii and better action control and smaller P300 event-related potential, which

could indicate better cognitive function in certain cognitive tasks [7]. However, several studies

have found associations between Toxoplasma gondii and impaired cognitive function [8–14].

One recent study using data from the UK Biobank found that Toxoplasma gondii was associ-

ated with worse executive function in adults, even after adjusting for several potentially

confounding variables [15]. Furthermore, meta-analyses have identified associations of Toxo-
plasma gondii with dementia [16] and epilepsy [17]. Finally, in a sample of older adults, partici-

pants seropositive for Toxoplasma gondii had worse working memory, smaller P3b amplitude

with event-related potentials, and reduced evoked frequency in the theta range compared to

seronegative participants [18]. Together, these findings suggest that Toxoplasma gondii might

be adversely associated with brain function.

Despite mounting evidence suggesting that Toxoplasma gondii adversely affects brain func-

tion in humans, the mechanisms underlying these associations remain unknown, although

findings suggest several possible indirect mechanisms. Among potential indirect mechanisms,

Toxoplasma gondii can increase the permeability of the gastrointestinal-blood barrier [2],

which could enable increased toxin entry into the blood and from there into the brain. In addi-

tion, Toxoplasma gondii forms intraneuronal cysts that appear to be metabolically active [19],

possibly affecting brain dopamine, glutamate, gamma amino butyric acid, and serotonin [20],

neurotransmitters that could affect cognitive and brain function. Toxoplasma gondii also

appears to affect gene expression [21]. Therefore, there are several possible mechanisms

through which Toxoplasma gondii could affect brain function, potential mechanisms that

could operate simultaneously.

Given the associations between Toxoplasma gondii and evidence of adverse effects on brain

function and potential mechanisms by which it could affect neuronal function, Toxoplasma
gondii could be related to adverse brain and cognitive functioning by affecting brain volume.

Brain volume is weakly but consistently associated with cognitive function including intelli-

gence [22]. In a community-based sample, brain volume in later life was concurrently associ-

ated with cognitive function [23]. To date, however, only a few studies have investigated

associations between Toxoplasma gondii and brain volume. In a murine model, mice infected

with Toxoplasma gondii for at least a year after initial infection in early adulthood had

increased ventricular volume and elevated markers of neuron death [24]. In humans, a voxel-

based morphometry study of 44 participants with schizophrenia and 56 healthy controls [25]

found an association between Toxoplasma gondii and decreased gray-matter density among

the participants with schizophrenia but not in the control participants.

Based on findings of possible adverse brain function including cognition associated with

Toxoplasma gondii and preliminary evidence that it might alter brain volume, we sought to

investigate further whether Toxoplasma gondii might be associated with brain volume using a

larger sample than that used in the previously reported study [25], hypothesizing that Toxo-
plasma gondii would be associated with reduced brain volume. To test this hypothesis, we used

a community-based dataset from the UK Biobank of middle and late middle-aged adults that

contains data describing infection with Toxoplasma gondii, volumetric magnetic resonance

imaging data, and demographic data (http://www.ukbiobank.ac.uk).

Methods

Study sample

The participants in this study are from the UK Biobank, a community-based sample of about

500,000 adults enrolled at ages 40 to 69 years between 2006 and 2010 and sampled from popu-

lation-based registries (http://www.ukbiobank.ac.uk) [26]. In this database, there were 21,402
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participants who had magnetic resonance brain imaging data (UK Biobank Brain Imaging

Documentation, http://www.ukbiobank.ac.uk) and 9,431 participants who had serological

data for exposure to Toxoplasma gondii. Only 434 participants, however, were eligible for our

analyses in that they had both magnetic resonance imaging data and serological data for Toxo-
plasma gondii. Our final analytic sample was 385 due to missing data on our preidentified con-

trol variables. Although the UK Biobank sample is not representative of the UK population,

the dataset can still be used to establish valid exposure-outcome associations (http://www.

ukbiobank.ac.uk/wp-content/uploads/2017/03/access-matters-representativeness-1.pdf). The

UK Biobank received ethical approval to collect demographic and medical data (reference 11/

NW/0382), and all participants provided informed consent (http://biobank.ctsu.ox.ac.uk/

crystal/field/cgi?id=200). We received regulatory approval from the UK Biobank to use data

from the UK Biobank for our research (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200).

Brain volumes

We used pre-processed magnetic-resonance brain imaging data that the UK Biobank had

obtained between 30 April 2014 and 19 March 2019 acquired using a 3-Tesla, 32-channel coil

Siemens Skyra scanner (Siemens Medical Solutions, Germany; http://biobank.ctsu.ox.ac.uk/

crystal/label.cgi?id=100003) [27, 28]. In our analyses, we used brain-imaging data for gray

matter in mm3 for the left and right frontal pole, the left and right superior frontal gyrus, the

left and right medial frontal cortex, the left and right orbital frontal cortex, and the left and

right frontal operculum, the left and right hippocampus, and the left and right thalamus. We

also used brain-imaging data for total brain gray matter and white matter in mm3.

Toxoplasma gondii
The Toxoplasma gondii-related antibodies present in the UK Biobank were p22 and sag1 anti-

bodies, measured in units of median florescence intensity [29]. The UK Biobank guidelines

indicate a person is seropositive for Toxoplasma gondii if either the sag1 titer is greater than

160 or the p22 titer is greater than 100 (http://biobank.ndph.ox.ac.uk/showcase/field.cgi?tk=

BVm2NA8JqLsnU55EBZF5XntyJ9AnSZMB1000738&id=23062). In statistical models, we

included an indicator of Toxoplasma gondii seropositivity that was equal to 1 if participants

were seropositive based on these criteria or 0 if they were negative. To capture any linear rela-

tionship between these antibodies and brain size, we independently examined the natural log

of p22 and sag1 titers. We also examined the mean of standardized versions of natural-logged

p22 and sag1 titers.

Covariates

To control for variables that potentially could confound associations between Toxoplasma gon-
dii and brain volume, we adjusted our statistical models for several variables that have been

associated with cognitive function [30–32] or that plausibly could affect an association with

brain volume, including age in years, sex (female, male), race/ethnicity (White, non-White),

and educational attainment (having obtained a college degree compared to having obtained

less than a college degree). Annual household income was originally recorded in five catego-

ries: (less than ₤18,000, ₤18,000 to ₤30,999, ₤31,000 to ₤51,999, ₤52,000 to ₤99,999, and

greater than ₤100,000). We recoded responses to the middle value of each category, repre-

sented in ₤10,000 units (i.e. ₤18,000 to ₤30,999 became 2.45). We also included self-rated

health (four-point scale ranging from poor to excellent), body-mass index (weight in kilo-

grams/height in meters squared), smoking history (non-smoker, past, current), and frequency

of alcohol use (six categories ranging from never to almost daily or daily). Statistical models of
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the five regions in the prefrontal cortex, hippocampus, and thalamus included an additional

control of total brain volume, which was the volume of gray and white matter normalized for

head size.

Statistical analysis

We estimated a series of models for each of the left and right brain regions (i.e., five prefrontal

regions, the hippocampus, and the thalamus), with each model including a different focal inde-

pendent variable (i.e. Toxoplasma gondii seropositivity, natural-log transformed sag1 antibod-

ies, natural-log transformed p22 antibodies, and the mean of the standardized natural-log

transformed sag1 and p22 antibodies). Each model included all covariates as well as total brain

size. Subsequently, using these models as a baseline, we estimated additional models, each with

a separate interaction of one measure of Toxoplasma gondii with age, sex, educational attain-

ment, or race/ethnicity.

In total, this represents 56 statistical tests of interest in models without interactions and an

additional 224 statistical tests for the interactions (i.e., 56 for each of four Toxoplasma gondii
by control interactions). Consequently, to protect against alpha inflation due to multiple test-

ing, we estimated a series of multivariate tests in which we tested a single independent variable

and multiple dependent variables [33]. In doing this, we submitted all models where Toxo-
plasma gondii seropositivity was the focal independent variable in the absence of interactions

(see Table 2) to a multivariate test that encompassed the joint covariance between the indepen-

dent variable (i.e., Toxoplasma gondii) and dependent variables (i.e., the combination of left

and right brain region volumes). We did this using Stata’s suest command [34], which pro-

duces a single parameter vector for all of the models that takes into account the joint covari-

ance of the dependent variables and therefore allows a test whose null hypothesis is that the

joint relationship between the predictor and the dependent variables is zero. If the multivariate

test was not significant, we did not consider any significant individual test to be significant.

Conversely, if the multivariate test was significant, we concluded that any significant individual

estimate was indeed valid.

In a second set of analyses, we estimated a series of models of total gray-matter and total

white-matter volume for the seropositivity, p22, sag1, and mean of p22 and sag1 variables. We

also estimated subsequent models, each with an interaction term of each of the measures of

Toxoplasma gondii with age, sex, educational attainment, and income. Although there were far

fewer models in the second set of analyses compared to the first, we again estimated multivari-

ate tests to protect against type-1 errors due to multiple testing [33].

We used Stata 16.1 (StataCorp, Stata Statistical Software, Release 16. College Station, Texas)

for all analyses.

Results

The average age of the sample was 62.02 years, and 55 percent of the sample were women.

Fifty-three percent of the sample had attained a college degree, and 96 percent were White.

Twenty-six percent of the sample were seropositive for Toxoplasma gondii (Table 1). Table 1

also shows means, standard deviations (for continuous variables), and minimum and maxi-

mum values for all demographic, brain imaging, and Toxoplasma gondii variables that we

included in the statistical models. By visual inspection, the prefrontal, hippocampal, and tha-

lamic brain regions and the total gray-matter and total-white matter volumes were normally

distributed.

There were no significant associations between any of the measures of Toxoplasma gondii
serology and prefrontal, hippocampal, or thalamic volumes (Table 2). Because of the uniform
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Table 1. Descriptive statistics of study variables.

Mean SD Minimum Maximum

Prefrontal brain volume (mm3)

Pole (left) 23449.58 2861.91 16896.00 33728.60

Pole (right) 26515.12 3158.09 18330.40 36951.10

Superior gyrus (left) 11118.54 1689.33 6940.39 17040.00

Superior gyrus (right) 9700.46 1599.00 5946.68 15202.90

Medial cortex (left) 1914.28 334.54 1137.32 2934.77

Medial cortex (right) 1923.88 341.08 1121.24 3296.26

Orbital cortex (left) 6678.90 882.68 4417.84 10268.60

Orbital cortex (right) 6026.93 776.97 4045.75 8493.09

Operculum cortex (left) 1507.08 256.05 805.67 2357.56

Operculum cortex (right) 1351.52 250.79 630.69 2145.18

Hippocampus volume (mm3)

Hippocampus (left) 3800.28 500.21 1811.00 5287.00

Hippocampus (right) 3906.89 502.13 2332.00 5163.00

Thalamus volume (mm3)

Thalamus (left) 7780.30 750.59 5499.00 9896.00

Thalamus (right) 7592.70 729.83 5254.00 9566.00

Total brain volume (mm3) 1508803.82 73428.04 1299110.00 1700560.00

Gray matter 800991.22 47779.65 672942.00 919510.00

White matter 707812.52 40316.62 598262.00 830308.00

Toxoplasma gondii
Seropositive .26 .00 1.00

ln(p22) 3.34 1.37 .00 8.88

ln(sag1) 4.39 1.04 .00 6.70

Mean of ln(p22) & ln(sag1) -.06 .94 -3.59 2.28

Age 62.02 7.42 47.00 78.00

Female .55 .00 1.00

White .96 .00 1.00

College degree .53 .00 1.00

Income (in 10,000 ₤) 4.43 .90 12.50

Overall health 2.98 .67 1.00 4.00

Body-mass index 26.26 4.20 16.68 46.88

Smoking status

Non-smoker .63 .00 1.00

Past .34 .00 1.00

Current .03 .00 1.00

Drinking frequency

Daily or almost daily .18 .00 1.00

3–4 times/week .25 .00 1.00

Once or twice/week .27 .00 1.00

1–3 times/month .12 .00 1.00

Special occasions .13 .00 1.00

Never .04 .00 1.00

Note: N = 385. Source: UK Biobank.

https://doi.org/10.1371/journal.pone.0245994.t001
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absence of statistically significant relationships in these analyses, we considered whether the

analyses were underpowered because of the small sample size. Accordingly, we estimated post-

hoc power analyses for each model to determine the sample size needed to identify a statisti-

cally significant result. We anticipated a biologically and clinically meaningful effect size to be

close to the size of brain volume change typical for a one-year increase in aging [35]. The

power analysis compared the model R2 of the model reported in Table 2 (i.e., a "full" model)

with a "reduced" model that excluded age. The results of these comparisons are the sample

sizes that would be needed to identify a statistically significant coefficient for age with 80-per-

cent power and an alpha of .05.

The power analyses (Table 3) showed that our sample of 385 individuals did contain

enough power to identify a significant effect with 80-percent power and an alpha of .05 for

Toxoplasma gondii if the effect were as large as the age effect for the left frontal pole, the left

and right orbital frontal cortex, the left frontal operculum, the left hippocampus, and the left

and right thalamus. However, the analyses for the right frontal pole, the left and right superior

frontal gyrus, the left and right medial frontal cortex, the right frontal operculum, and the

right hippocampus were underpowered. The sample size estimates for the superior frontal

gyrus were substantial. This suggests that age was not a useful variable to assess the power of

our statistical model of superior frontal gyrus volumes.

Table 2. Relationship between Toxoplasma gondii and prefrontal brain volume (mm3): Unstandardized coefficients and 95% confidence intervals from linear

regressiona.

Frontal

Pole Superior gyrus Medial cortex Orbital cortex Operculum cortex Hippocampus Thalamus Multivariate p
Seropositive .063

Left -403.87 -103.53 -34.68 -10.40 -10.31 -103.62 75.98

-974.50,166.76 -465.60,258.54 -108.69,39.34 -191.75,170.94 -65.01,44.40 -211.35,4.11 -58.18,210.15

Right -339.43 -312.21 -24.90 63.28 -33.86 -69.67 52.47

-961.72,282.85 -664.64,40.22 -100.23,50.43 -90.92,217.48 -88.12,20.41 -178.78,39.45 -77.82,182.76

ln(p22) .078

Left -82.80 -11.56 -.63 -18.43 2.55 -27.44 33.24

-268.26,102.66 -129.10,105.97 -24.67,23.42 -77.25,40.38 -15.20,20.30 -62.46,7.57 -10.24,76.71

Right -90.88 -80.15 3.14 21.50 -7.25 -8.38 24.34

-292.91,111.15 -194.69,34.39 -21.31,27.60 -28.53,71.54 -24.88,10.38 -43.85,27.09 -17.90,66.58

ln(sag1) .163

Left -151.30 21.44 -6.94 -26.92 .72 -21.94 33.88

-396.65,94.05 -134.19,177.07 -38.77,24.89 -104.79,50.96 -22.79,24.23 -68.40,24.52 -23.77,91.52

Right -54.08 -60.81 14.28 4.74 5.48 -27.42 23.98

-321.83,213.68 -212.75,91.12 -18.08,46.63 -61.57,71.06 -17.88,28.84 -74.32,19.49 -32.00,79.96

Mean of ln(p22) & ln(sag1) .124

Left -159.89 4.46 -4.86 -31.34 2.44 -35.24 47.28

-429.14,109.36 -166.32,175.24 -39.79,30.08 -116.78,54.11 -23.35,28.24 -86.15,15.67 -15.90,110.45

Right -105.00 -100.87 11.44 19.78 -2.21 -23.80 34.10

-398.66,188.65 -267.39,65.66 -24.08,46.96 -52.96,92.51 -27.85,23.42 -75.30,27.70 -27.28,95.49

Note:
a Each coefficient and associated confidence interval is from a different model that includes controls for age, sex, race, educational attainment, household income, self-

rated health, body-mass index, smoking status, drinking frequency.

^b Multivariate tests test the multivariate significance of each pollutant on all of the brain volume outcomes. N = 385. Source: UK Biobank. � p < .05. �� p < .01. ��� p <

.001.

https://doi.org/10.1371/journal.pone.0245994.t002
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Table 4 presents the p-value of the multivariate tests of interaction terms in models examin-

ing whether age, sex, education, or income, moderate the relationship of Toxoplasma gondii
and the five regions in the prefrontal cortex, the hippocampus, and the thalamus. The results

indicate significant multivariate interactions between the four Toxoplasma gondii variables

and age as well as between Toxoplasma gondii seropositivity and education.

The model-specific results presented in S1 through S4 Tables in S1 File indicate that none

of the univariate interactions between Toxoplasma gondii and age was significant. Of the 224

interaction terms from adjusted models represented in the S1 File, only the interactions

between Toxoplasma gondii seropositivity and educational attainment associated with gray-

matter volume in the left superior frontal gyrus and in the left thalamus were statistically sig-

nificant (S3 Table in S1 File). These two significant interactions represent less than one percent

of the interaction models estimated. Therefore, although the associated multivariate test was

significant (p = .020), the preponderance of evidence suggests that the relationship between

Toxoplasma gondii and these brain volume regions does not vary by age, sex, education, or

income.

Table 3. Power analyses: Required sample size for age effect on brain size to be significant.

Frontal

Pole Superior gyrus Medial cortex Orbital cortex Operculum cortex Hippocampus Thalamus

Seropositive

Left 244 32315 501 170 275 386 141

Right 628 5769494 495 120 840 2626 169

ln(p22)

Left 231 26567 495 166 280 341 152

Right 574 126582 503 126 759 2315 181

ln(sag1)

Left 240 29333 493 170 273 377 142

Right 615 9458555 486 121 815 2499 171

Mean of ln(p22) & ln(sag1)

Left 232 30084 488 167 276 358 147

Right 596 464343 502 122 811 2294 175

Note: N = 385. Source: UK Biobank.

https://doi.org/10.1371/journal.pone.0245994.t003

Table 4. Multivariate p-values from adjusted modelsa of the interactions of Toxoplasma gondii of the five left and right prefrontal regions, the left and right hippo-

campus, and the left and right thalamus with age, sex, education, and income.

T. gondii seropositive ln(p22) ln(sag1) Mean of ln(p22) & ln(sag1)

Age x T. gondii .016 .002 .049 .005

Female x T. gondii .546 .441 .119 .605

College degree x T. gondii .020 .189 .132 .086

Income x T. gondii .167 .242 .346 .220

Note:
a Each p-value represents a multivariate test which is a test of the null hypothesis considered within the joint covariance of the dependent variables (i.e., the left and right

side of the five prefrontal regions, the hippocampus, and thalamus) and the respective interaction between one of the T. gondii variables and a predictor (e.g., Age x T.

gondii seropositive).

Results of the corresponding univariate statistical tests of these sixteen multivariate tests are presented in S1 through S4 Tables in S1 File. N = 385. Source: UK Biobank.

https://doi.org/10.1371/journal.pone.0245994.t004
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In contrast to the findings for associations between the measures for Toxoplasma gondii
infection and prefrontal, hippocampal, and thalamic gray-matter volumes, Table 5 shows that

the natural-log transformed p22 antibody titers (b = -3960, 95-percent confidence interval,

-6536 to -1383, p< .01) and the natural-log transformed sag1 antibody titers (b = -4863,

95-percent confidence interval, –8301 to -1425, p< .01) were associated with smaller total

gray-matter volume, as was the mean of natural-log transformed p22 and sag1 titers (b =

-6141, 95-percent confidence interval, -9886 to -2397, p < .01). There were no significant asso-

ciations between any of the measures of Toxoplasma gondii infection and total white-matter

volume.

Table 6 presents results of the multivariate tests of the interaction of Toxoplasma gondii
with age, sex, education, and income with total gray-matter and total white-matter volumes as

the dependent variables (individual models are presented in S5 Table in S1 File). Interactions

between Toxoplasma gondii seropositivity and sex and between Toxoplasma gondii (all four

measures) and income were associated with total gray-matter and total white-matter volumes.

Out of 32 interaction models, seven were statistically significant, each of which withstood mul-

tivariable testing for multiple comparisons.

Table 5. Relationship between Toxoplasma gondii and total brain volume (mm3): Unstandardized coefficients and 95% confidence intervals from linear

regressiona.

Gray Matter White Matter Multivariate p
b 95%CI b 95%CI

Seropositive -6074 -14155,2007 583 -8217,9382 .295

ln(p22) -3960�� -6536,-1383 -1828 -4654,998 .008

ln(sag1) -4863�� -8301,-1425 92 -3679,3864 .014

Mean of ln(p22) & ln(sag1) -6141�� -9886,-2397 -1375 -5495,2746 .004

Note:
a Each coefficient and associated confidence interval is from a different model that includes controls for age, sex, race, education, income, self-rated health, body-mass

index, smoking status, drinking frequency.

N = 385. Source: UK Biobank.

� p < .05.

�� p < .01.

��� p < .001.

https://doi.org/10.1371/journal.pone.0245994.t005

Table 6. Multivariate p-values from adjusted modelsa of the interactions of Toxoplasma gondii of total brain gray-matter volume and total brain white-matter vol-

ume with age, sex, education, and income.

T. gondii seropositive ln(p22) ln(sag1) Mean of ln(p22) & ln(sag1)

Age x T. gondii .203 .419 .089 .154

Female x T. gondii .022 .255 .877 .663

College degree x T. gondii .232 .137 .503 .285

Income x T. gondii .010 .007 .006 .003

Note:
a Each p-value represents a multivariate test which is a test of the null hypothesis considered within the joint covariance of the dependent variables (i.e., total brain gray-

matter and white-matter volumes) and the respective interaction between one of the T. gondii variables and a predictor (e.g., Age x T. gondii seropositive).

Results of the corresponding univariate statistical tests for total brain gray matter and white matter that are represented in these multivariate tests are presented in S5

Table in S1 File. N = 385. Source: UK Biobank.

https://doi.org/10.1371/journal.pone.0245994.t006
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Discussion

The main finding from this community-based sample of middle-aged and late-middle-aged

adults in the United Kingdom is an association between Toxoplasma gondii serointensity and

smaller total gray-matter volume but no associations with total white-matter volume. Further,

there were no associations between Toxoplasma gondii seropositivity and serointensity and

gray-matter volume in five regions of the prefrontal cortex we evaluated, the hippocampus,

and the thalamus.

The finding of a negative association between Toxoplasma gondii and total gray-matter vol-

ume suggests that changes (i.e., reductions) in gray-matter volume could be a mechanism of

the relationship between Toxoplasma gondii and previously reported evidence of abnormal

brain function, including worse cognitive functioning. While the smaller total gray-matter vol-

ume associated with Toxoplasma gondii serointensity could be a mechanism by which Toxo-
plasma gondii influences brain and cognitive function, we did not find that gray-matter

volume in five different prefrontal regions, the hippocampus, or the thalamus was associated

with either Toxoplasma gondii seropositivity or serointensity. Therefore, to the extent that

reductions in gray-matter volume could be a mechanism of the relationship between Toxo-
plasma gondii and brain and cognitive functioning based on the association between Toxo-
plasma gondii and total gray-matter volume, the locale of the effect may be in brain regions we

could not explore here, or a diffuse loss of gray matter might be associated with the decrease in

brain and cognitive function associated with Toxoplasma gondii that some previous studies

[8–14] have found. Further, even if reductions in brain volume is a mechanism of the relation-

ship between Toxoplasma gondii and brain and cognitive functioning, other mechanisms

could operate as well.

Few previous studies have investigated associations between Toxoplasma gondii serointen-

sity and seropositivity and brain volume. Our results, however, are consistent with a previous

study that found increased ventricular volume in mice infected with Toxoplasma gondii [24]

and somewhat consistent with those of one previous study that found an association between

Toxoplasma gondii and gray-matter density in schizophrenia, although they differ from other

findings from the latter study that showed no association between gray-matter density and

toxoplasmosis in healthy controls [25]. Possible reasons for these differences could be due to

different samples, different control variables, and differences in statistical power, as the previ-

ous study included only 56 healthy controls of whom only 13 were infected with Toxoplasma
gondii, [25] and might have been underpowered to detect associations between Toxoplasma
gondii and brain volume in the healthy control group.

We found no meaningful interactions between Toxoplasma gondii and age, sex, educational

attainment, and income associated with gray-matter volume in the five regions of the prefron-

tal cortex, the hippocampus, and the thalamus. Because only 2 out of 224 interaction models

(less than one percent) were significant, the overwhelming pattern in this set of results suggests

that there were no statistically significant interactions. In contrast, seven out of 32 (22 percent)

interactions between Toxoplasma gondii and sex and between Toxoplasma gondii and income

were significantly associated with total gray-matter and total white-matter volumes even after

multivariate correction for multiple testing. There were significant interactions between Toxo-
plasma gondii seropositivity and sex and both total gray-matter and total white-matter vol-

umes, between Toxoplasma gondii seropositivity and income and both total gray-matter and

total white-matter volumes, between the natural-log transformed p22 titer and income and

total white-matter volume, between the natural-log transformed sag1 titer and income and

total white-matter volume, and between the mean of the natural-log transformed p22 and sag1

titers and income and total white-matter volume. Together, the significant interaction models
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associated with total gray-matter and total white-matter volumes suggest that sex and income

might moderate associations between Toxoplasma gondii serointensity and total gray-matter

and total white-matter volumes.

Based on the results of the regression modeling, every one-unit increase in the natural-log

transformed p22 titer was associated with a 0.26 percent decrease in total gray-matter volume

or a 1.31 percent decrease in total gray-matter volume for a five-unit increase in the natural-

log transformed p22 titer. Similarly, every one-unit increase in the natural-log transformed

sag1 titer was associated with a 0.32 percent decrease in total gray-matter volume or a 1.6 per-

cent decrease in total gray-matter volume for every five-unit increase in the natural-log trans-

formed sag1 titer. While small, the differences in gray-matter volume associated with a five-

unit increase in p22 or sag1 titers is consistent with the amount of volume loss associated with

one year of aging [35]. Nonetheless, the clinical significance of the association between Toxo-
plasma gondii and gray-matter volume is unknown. Further, because of limitations associated

with the cross-sectional design of our study, it is unknown whether the smaller gray-matter

volume associated with Toxoplasma gondii is static or progressive.

An important consideration regarding our findings showing no associations between Toxo-
plasma gondii and gray-matter volume in the prefrontal cortex, hippocampus, and thalamus is

that of sample size. To better interpret these negative findings, we conducted post-hoc power

analyses to show the sample size needed to detect an effect on gray-matter volume from one

year of aging in elderly subjects, reasoning that this would be a meaningful effect size from

Toxoplasma gondii. The results of these power analyses showed that our study had 80 percent

power to detect an effect size equal to the size that previous studies have associated with the

effect of one year of aging in older adults [35, 36] for the left frontal pole, the left and right

orbital frontal cortex, the left frontal operculum, the left hippocampus, and the left and right

thalamus but not for the right frontal pole, the left and right superior frontal gyrus, the left and

right orbital frontal cortex, the right frontal operculum, and the right hippocampus. As such,

based on our sample size, several of the analyses were underpowered, and, accordingly, we do

not know if in the underpowered analyses that there was no association or whether the lack of

a significant association was due to lack of power from small sample sizes. In the analyses that

were adequately powered, we are more confident concluding that there was no association.

In addition to the small sample size of our study, several other factors require consideration

when interpreting our findings. One is that in the analyses of the prefrontal region, the hippo-

campus, and the thalamus, we examined only gray matter and do not know whether Toxo-
plasma gondii could be associated with white-matter volume. Similarly, we did not investigate

gray matter in other individual regions. Gray-matter volume in other brain regions could be

vulnerable to Toxoplasma gondii. An additional consideration is whether different strains of

Toxoplasma gondii could affect gray-matter volume, as different strains might differ in viru-

lence [37]. The sample we used was from the United Kingdom, whereas Toxoplasma gondii
strains in other regions could have different effects on gray-matter volume, and inadequate

data currently address this issue. Further, our study is cross sectional. In addition to not know-

ing whether the possible loss of total gray-matter volume associated with Toxoplasma gondii is

progressive, we do not know when the initial infection from Toxoplasma gondii occurred.

Infection during critical developmental periods could affect gray matter differently from infec-

tion during middle age or late middle age. The cross-sectional design also precludes definitive

cause-and-effect determinations in the association between Toxoplasma gondii and total gray-

matter volume. While we tested for several interactions, we did not test for interactions with

other infectious diseases. It is feasible that interactions between Toxoplasma gondii and other

infectious diseases could influence gray-matter volume. While we included several covariates

in our models that potentially could confound the association between Toxoplasma gondii and
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brain volume, other variables that we did not include potentially could confound the associa-

tion between Toxoplasma gondii and gray-matter volume, resulting in the possibility of resid-

ual confounding.

In conclusion, in this study of community-dwelling middle-aged and late middle-aged

adults in the United Kingdom, Toxoplasma gondii serointensity was associated with total gray-

matter volume but not with total white-matter volume. There were no associations between

Toxoplasma gondii seropositivity and serointensity and gray-matter volume in the prefrontal

cortex, the hippocampus, or the thalamus, although several of these analyses were underpow-

ered. Together, these findings suggest that Toxoplasma gondii in humans might be associated

with smaller total gray-matter volume, although whether there is progressive loss of gray-mat-

ter volume is unknown. Additional research investigating associations between Toxoplasma
gondii and brain volume including in other regions of the world is needed.
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