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Abstract

Remnants of native tallgrass prairie experience elevated atmospheric nitrogen (N) deposi-

tion in urban areas, with potential effects on species traits that are important for N cycling

and species composition. We quantified bulk (primarily wet) inorganic N (NH4
+-N + NO3

--N)

deposition at six sites along an urban development gradient (6–64% urban) in the Dallas-

Fort Worth metropolitan area from April 2014 to October 2015. In addition, we conducted a

phytometer experiment with two common native prairie bunchgrass species––one well stud-

ied (Schizachyrium scoparium) and one little studied (Nasella leucotricha)––to investigate

ambient N deposition effects on plant biomass and tissue quality. Bulk inorganic N deposi-

tion ranged from 6.1–9.9 kg ha-1 yr-1, peaked in spring, and did not vary consistently with

proportion of urban land within 10 km of the sites. Total (wet + dry) inorganic N deposition

estimated using bulk deposition measured in this study and modeled dry deposition was

12.9–18.2 kg ha-1 yr-1. Although the two plant species studied differ in photosynthetic path-

way, biomass, and tissue N, they exhibited a maximum 2-3-fold and 2-4-fold increase in

total biomass and total plant N, respectively, with 1.6-fold higher bulk N deposition. In addi-

tion, our findings indicate that while native prairie grasses may exhibit a positive biomass

response to increased N deposition up to ~18 kg ha-1 yr-1, total inorganic N deposition is well

above the estimated critical load for herbaceous plant species richness in the tallgrass prai-

rie of the Great Plains ecoregion and thus may negatively affect these plant communities.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251089 May 6, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ponette-González AG, Green ML,
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Introduction

Over the past decade, there has been a surge in research on nitrogen (N) deposition in cities

around the world (e.g., [1–6]). Although there are many urban areas for which data are still

sparse or nonexistent [7], research highlights three distinguishing characteristics of urban N

deposition. First, compared to nearby rural and remote sites, wet or bulk N deposition in

urban areas is, on average, twofold higher [3]. Second, N deposition can exhibit high intra-

urban (e.g., [8]) and intra-annual variability (e.g., [9]). Third, responses to urban N deposition

remain poorly documented: a recent meta-analysis found that just ~10% of studies concomi-

tantly measured N deposition and some biogeochemical metric (e.g., N mineralization) that

might be affected by N [3].

Indeed, much of the current understanding of plant responses to and recovery from N

addition is derived from experimental field manipulations which are most often conducted in

plant communities outside the influence of urban air pollution (e.g., [10–15]). These studies

show that individual plants exposed to elevated levels of N deposition often exhibit changes in

biomass, resource allocation (e.g., root:shoot ratio), and tissue quality in the form of decreased

carbon (C) to N ratio. In turn, lower C:N ratios have the potential to affect energy transfer to

higher trophic levels by increasing the palatability of tissues to herbivores (e.g., [16]).

While informative, experimental manipulations usually involve large N pulses (e.g.,>75 kg

N ha-1 yr-1; [17]), whereas natural ecosystems typically experience chronic N deposition at

rates well below these values [3]. However, because N accumulates within ecosystems, even

lower levels of N deposition can lead to ecological changes if N deposition is elevated above

background and persists over time [18–20]. The quantitative threshold above which atmo-

spheric N deposition is expected to have negative impacts on ecosystems is termed “critical

load” [21]. Observational and experimental studies show that critical load exceedances drive

altered plant community composition and decreased species richness across diverse biomes

(e.g., [22]), with changes often conditional on soil and climate characteristics [20]. In urban

areas, N deposition effects on ecosystems are likely also contingent on local gradients in heat,

rainfall, ozone, carbon dioxide, and their interactions [23].

Compared to research on N deposition impacts on urban forests [6, 24–27], urban grass-

land responses to N deposition are less well understood and warrant further attention. Grass-

lands play important roles in carbon sequestration, water quality protection, non-native

species suppression, and wildlife habitat provision [28, 29]. To begin to fill this gap, we quanti-

fied bulk inorganic N––ammonium (NH4
+-N) and nitrate (NO3

--N)––deposition effects on

two common native prairie grass species along an urban development gradient. We hypothe-

sized that (1) N deposition would increase with proportion of urban land (within 10 km) and

(2) plant biomass would increase, while root:shoot ratio and tissue C:N would decrease, over

the urban-induced deposition gradient. Our results expand current understanding of urban N

deposition and prairie grass responses to rising urban N; both types of observations are sparse

in the Southern Great Plains ecoregion and in numerous regions worldwide.

Materials and methods

Urban development and tallgrass prairie in Dallas-Fort Worth

The research was conducted in the Dallas-Fort Worth (DFW) metropolitan area, Texas (Fig

1). Settlement of DFW began in the mid-19th century, with ranching as the primary economic

activity [30]. The first major period of population growth in the cities of Dallas and Fort

Worth occurred in the late 1880s, while significant population growth in the intermediate cit-

ies did not occur until a half century later [31]. Since the 1960s, DFW has expanded rapidly:
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Fig 1. Study area map. Sites where bulk inorganic N deposition was measured in the Dallas-Fort Worth metropolitan area (municipal

areas in grey) and the L.B.J. National Grasslands National Atmospheric Deposition Program (NADP) site. Percent urban development

within a 10-km radius buffer [39] is indicated in parentheses and ranges from low (light pink border) to high (crimson red border).

https://doi.org/10.1371/journal.pone.0251089.g001
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between 2010–2018, DFW was the metropolitan area with the largest numeric population

growth in the U.S. [32]. Today, it is the fourth most populous metropolitan area, with a popu-

lation of>7 million [32]. Regionally, DFW is part of the greater “Texas Triangle” (Houston-

Austin-San Antonio-Dallas), one of several U.S. megapolitan regions (i.e., clustered networks

of cities) identified as important for research on urbanization across societal and environmen-

tal gradients [7].

Situated at the southern end of the Great Plains ecoregion, a semi-arid grassland extending

from Canada through the central U.S. into Mexico, DFW straddles the Grand Prairie to the

west and the Blackland Prairie to the east. Climate is humid sub-tropical with hot summers,

cool winters, and intermediate rainfall (annual normal (1981–2010) ~918 mm yr-1; [33]).

Despite rapid urbanization, considerable land areas in DFW are being used for agriculture

[34], especially surrounding Tarrant and Dallas counties where the cities of Fort Worth and

Dallas, respectively, are located. Together, agriculture and urbanization have resulted in the

contraction of native prairie to just 1–2% of the landscape [35, 36]. Remnants of late-succes-

sional tallgrass communities––often intermixed with grazed grasslands––contain little blue-

stem (Schizachyrium scoparium), big bluestem (Andropogon gerardii), and Indiangrass

(Sorghastrum nutans) [37], with little bluestem the dominant plant species [38]. Associated

species include side-oats grama (Bouteloua curtipendula), tall dropseed (Sporobolus composi-
tus), and Texas wintergrass (Nasella leucotricha).

Site selection

Six sites were selected along an urban development gradient (Fig 1, Table 1) based on property

owners’ willingness to participate, accessibility, and suitability to the research study. All sites

were located in the Fort Worth Prairie, the northern portion of the larger vegetation unit

known as the Grand Prairie [38], where pasture, grassland and herbaceous cover occur along-

side and are inversely correlated with percent urban land. Three sites were located on college

or county campuses with nearby buildings and groomed landscapes. These included Tarrant

County College Northwest (TCNW), Tarrant County College Northeast (TCNE), and the

Resource Connection of Tarrant County, a campus of county services buildings and a demon-

stration garden (TCSO). Two properties were located within designated natural areas with few

nearby buildings and some restoration management on the landscape: Lewisville Lake Envi-

ronmental Learning Area (LLELA) and Clear Creek Natural Heritage Center in Denton

County (DENT). An additional agricultural site was located adjacent to a house and farm ani-

mals on private property in the community of Alvarado (ALVA). The National Atmospheric

Deposition Program (NADP) monitoring site at Lyndon B. Johnson National Grasslands (L.B.

J., TX56), located 78 km north-northwest of Fort Worth, was used as a non-urban reference

site since NADP monitoring sites are located distant from local pollution sources. Thus,

NADP measurements of wet N deposition underestimate deposition in urban-affected areas

but serve as useful estimates of background deposition [6].

Nitrogen deposition measurements

Bulk inorganic N (NH4
+-N + NO3

--N) deposition was measured from 4 April 2014 to 9 Octo-

ber 2015 at the six sites described above in open areas with no canopy cover and>30 m from

trees and buildings, with the exception of TCNW (~10 m). Two identical bulk collectors set on

PVC tubes 1 meter aboveground were established three meters apart at each of the sites

(n = 12 collectors total). Bulk collectors remain open between sampling periods and primarily

collect N ions dissolved in rainwater and some amount of coarse particles heavy enough to
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settle on collector surfaces between rainfall events [42]. Relative to total dry N deposition, gas-

eous and particulate N deposition to bulk collectors is often low (e.g., [9]).

Following the design of Simkin et al. [43], bulk collectors consisted of a 20-cm diameter

high-density polyethylene funnel attached to Tygon tubing, a HDPE connector, and a chro-

matograph column filled with 20 mL of ion-exchange resin. Before sampling, all components

were rinsed and then soaked in double deionized water for 24 hours. Components were rinsed

again and left to dry in a clean enclosed area. In this study, Amberlite IRN 150 mixed-bed ion

exchange resin (Rohm & Haas Company, Philadelphia, PA) was used to capture both posi-

tively and negatively charged ions as rainfall passed through the collectors [44]. To prepare the

resin, double-deionized water was added to the resin to create a slurry. Each column fitted

with a 30-μm pore size filter at the bottom was filled with 20 mL of resin. Prepared columns

were refrigerated before use.

We evaluated the efficiency of ion capture as well as the extraction efficiency of the resin

after Fenn et al. [45]. Columns were loaded with 0, 101, 138, 332, 664, 1665, and 6652 μeq of N

as NH4Cl and 0, 32, 250, 104, 208, 517, and 2080 μeq of N as KNO3. The efficiency of ion cap-

ture was>98% for NH4
+ and ~100% for NO3

-. Minimum extraction efficiency, the percentage

of ions loaded on the columns and recovered in sequential extractions, was 79% for NH4
+ and

86% for NO3
-. We also used the fixed exchange capacity of the resin (cation = 1.9 eq L-1,

anion = 1.2 eq L-1), rainfall amount, and chemical composition data (2011–2013) from the L.B.

J. NADP site to estimate the potential range of cation plus anion loading at our study sites (S1

Text). Based on our calculations and previous studies (e.g., [46]), we determined that resin col-

umns could be collected every three months.

Bulk ion-exchange resin collectors were assembled and installed at the sites on 4 April

2014. A polywool filter was inserted into the neck of each funnel to prevent debris and insects

from falling into the resin column. Samples were collected on 11 July 2014, 11 October 2014, 9

January 2015, 10 April 2015, and 13 July 2015. The last columns were collected on 9 October

2015, for a total of six consecutive sampling seasons: Spring 2014 (Apr-Jun; 98 days), Summer

2014 (Jul-Sep; 92 days), Fall 2014 (Oct-Dec; 90 days), Winter 2014 (Jan-Mar; 91 days), Spring

Table 1. Study site characteristics.

Site ID Latitude, Longitude % Urbana % Cropsb % Pasturec % Grasslandd Rainfalle NH4
+-N NO3

--N Inorganic N

LBJ 33.3917, -97.6397 2 <1 9 57 2048 3.2 1.9 5.0

ALVA 32.3962, -97.2395 6 11 11 48 1421 4.0 2.2 6.1

DENT 33.2606, -97.0649 15 4 20 29 1921 6.0 2.6 8.6

LLELA 33.0629, -96.9884 44 <1 1 11 1490 4.0 2.4 6.4

TCNW 32.8315, -97.3917 47 1 2 19 1161 6.2 3.7 9.9

TCSO 32.6743, -97.3082 56 2 4 12 1100 5.1 2.1 7.2

TCNE 32.8509, -97.1906 64 <1 1 7 1347 4.1 2.4 6.5

Land cover within a 10-km radius buffer [39], rainfall (mm), and bulk nitrogen deposition (kg ha-1 yr-1) for six sites along an urban development gradient in the Dallas-

Fort Worth metropolitan area and the NADP L.B.J. National Grasslands network site [40]. Rainfall, bulk NH4
+-N, NO3

--N, and inorganic N (NH4
+-N + NO3

--N)

deposition are for the period 4 April 2014 to 9 October 2015 (this study). Numbers do not always sum due to rounding.
a Urban: sum of Developed High Intensity, Developed Medium Intensity, and Developed Low Intensity categories.
b Cultivated crops: areas used for the production of annual and perennial woody crops. This class also includes actively tilled land.
c Pasture/Hay: areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops.
d Grassland/Herbaceous: areas dominated by graminoid or herbaceous vegetation. These areas are not subject to intensive management such as tilling but can be

utilized for grazing.
e Rainfall measured using tipping-bucket rain gauges at meteorological stations closest to the study sites [41].

https://doi.org/10.1371/journal.pone.0251089.t001
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2015 (Apr-Jun; 94 days), and Summer 2015 (Jul-Sep; 88 days). Upon collection, funnels, tub-

ing, connectors, and polywool filters were replaced with new, clean components, and new ion-

exchange resin columns were attached. In addition to field samples, two blank resin columns

were prepared for each sampling period.

Resin columns were transported to the Ecosystem Geography Laboratory at the University

of North Texas where they were refrigerated at 4˚C until sample extraction. Bulk deposition

and blank samples were extracted three times with 100 mL 2 M KCl [27, 44], frozen and then

shipped to the Cary Institute of Ecosystem Studies where NH4
+-N and NO3

--N were deter-

mined on a Lachat QuickChem Flow Injection Analyzer +8000 Series (Lachat Instruments,

Loveland, Colorado). Ammonium concentrations were determined using the phenate method,

while NO3
--N concentrations were determined using the cadmium diazotization method.

Detection limit for both methods was 0.02 mg L-1. A series of standards was included with

each instrument run.

Calculation of bulk deposition

Bulk NH4
+-N and NO3

--N concentrations (mg L-1) were multiplied by extractant volume

(0.3 L), converted to kg, and then divided by collector surface area to obtain deposition rate

(kg ha-1 sampling period-1). Lab blank concentrations were all below detection limit (<0.02

mg L-1). At each site, values for the two bulk collectors were similar (S1 Fig) and averaged for

each sampling period. Twelve samples (~15%) were deemed invalid because samplers: were

knocked over, had visual evidence of bird droppings and samples with NH4
+-N values more

than two times higher than those of the paired collector, were clogged, or were attached to col-

umns with missing labels. In these cases, values from the remaining collector were used. For

the NADP L.B.J. site, weekly wet deposition was calculated for each sample period by multiply-

ing NH4
+-N and NO3

--N concentrations times rainfall amount.

Accumulated deposition per site was calculated by summing the values for the six sample

periods. Deposition values were also normalized (i.e., divided) by rainfall amount at each site

to assess the relative effect of urban exposure (i.e., urban atmospheric N pollution) on N depo-

sition. To obtain annual N deposition, accumulated deposition over the entire study period

was divided by the total number of days sampled (553 days) and the daily deposition value

multiplied by 365.

Phytometer experiment

A phytometer experiment was conducted to investigate the effects of N deposition on plant

biomass and tissue quality of two native prairie grass species. Phytometer experiments involve

placing plants from one population into multiple locations and then monitoring their growth

[47]. The focal plant species were little bluestem (Schizachyrium scoparium) and Texas winter-

grass (Nasella leucotricha). Little bluestem, a C4 warm-season perennial, was selected because

of its adaptation to the ecoregion and dominance in the native prairie landscape. Little blue-

stem begins active growth in late spring and grows through the summer until the first frost in

fall [48]. Texas wintergrass is a cool-season C3 perennial that thrives in disturbed areas. This

species experiences the most rapid growth in early fall and grows through winter and spring

[49]. Texas wintergrass was chosen to serve as counterpart to little bluestem for two reasons:

(1) C3 and C4 plants may respond differently to N additions due to varying sensitivity to sea-

sonal water and N availability [50] and (2) it is a little-studied species compared to little blue-

stem, but one that represents an important component of the Fort Worth prairie. Both little

bluestem and Texas wintergrass are bunchgrasses, which reproduce vegetatively via the growth

of new tillers from buds on existing tillers. This results in a dense bunch of grass with the oldest
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tillers towards the center. Sexual reproduction occurs in each grass species with the formation

of specialized flowering tillers that are wind pollinated.

All plants for the phytometer experiment were obtained from one population grown at a

local nursery in Mansfield, Texas. Clumps of little bluestem were divided into smaller clumps,

each possessing 1–4 tillers and weighing between 0.5 g and 2 g. Texas wintergrass plants were

divided into clumps of 2–10 tillers each and similarly weighed between 0.3 g and 1.5 g. Divided

clumps were potted individually in black plastic pots (3785 cm3) with weed barrier on the bot-

tom and sandy loam topsoil sourced from Mansfield.

A total of 20 little bluestem and 20 Texas wintergrass plants were randomly assigned to

each of the N deposition measurement sites. Adjacent to the bulk deposition collectors, black

weed barrier was attached to the ground in a 6 x 7.5 m rectangle to prevent competition from

established plants and minimize weed invasion. A water barrel was installed at each site to

facilitate watering. Little bluestem plants were placed at the sites between 27–29 September

2013, while Texas wintergrass plants were placed at the sites on 5–6 April 2014. During the

experiment, all plants grew in full sun and were watered biweekly with 500 ml of water per pot.

Local potable water was used and therefore did not represent a source of nitrogen for the

plants. Little bluestem plants were harvested on 22 July 2014. Due to human disturbance and

significant loss of plants at three sites, data for little bluestem are presented for the ALVA,

TCNW, and TCSO sites only. Texas wintergrass plants were harvested between 20 May and 1

June 2015.

Following harvest, plants were returned to the lab where they were separated into tillers

(vegetative and reproductive) and roots, dried at 52˚C for 72 hours, and then weighed to

obtain tiller (hereafter shoot) and root biomass. Biomass values were divided by the total num-

ber of days plants were in the ground to enable species comparisons. Subsamples (~5–10 g) of

shoot and root biomass were ground using a Wiley Mill, weighed, placed in a tin capsule, and

analyzed for total C and N on a Perkin-Elmer 2400 CHN analyzer. Total plant (shoot + root)

N for little bluestem and Texas wintergrass was estimated by multiplying shoot and root bio-

mass by percent N of each and then summing the values.

Statistical analyses

All variables were tested for normality using the Shapiro-Wilk test. Variables with non-normal

distributions were log-transformed to meet assumptions of normality and homogeneity of var-

iance. Nonparametric tests were used when sample data did not meet these assumptions.

We examined relationships of urban development with N deposition using simple linear

regressions, and we tested for seasonal differences in N deposition using the Kruskal-Wallis

Test with the Dunn Method for joint ranking. For each of the plant traits measured, t-tests

were used to examine contrasts between species within each of the three sites (ALVA, TCNW,

TCSO) along the gradient where both species were present. Site-to-site differences in little

bluestem and Texas wintergrass traits were assessed using the Kruskal-Wallis test followed by

the Steel-Dwass test for multiple comparisons. Plant trait relationships with N deposition from

planting date to harvest date were also evaluated with simple linear regression. All statistical

analyses were performed in JMP v.14 [51]. Significance was set at p< 0.1.

Results

Nitrogen deposition along an urban development gradient

Bulk inorganic N deposition measured in DFW ranged from 6.1 to 9.9 kg ha-1 yr-1 across sites

(Table 1). Sites with�15% urban land received 30–100% more N than the L.B.J. reference site
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(5 kg ha-1 yr-1). Ammonium-N was higher than NO3
--N deposition at all sites and during all

seasons sampled. Ammonium-N constituted 63–70% of inorganic N.

Urban development was not correlated with absolute or normalized bulk NH4
+-N or inor-

ganic N deposition (Fig 2; S1 Table). Nitrate-N deposition also did not increase with propor-

tion of urban land (Fig 2). When normalized by rainfall, NO3
--N deposition increased along

the urban development gradient in Spring 2015 (p = 0.12) and Summer 2015 (p = 0.13), but

the relationships were not significant.

Significant seasonal effects on N deposition were evident, with peaks in spring. In the spring of

2014 and 2015, bulk NH4
+-N deposition was 4-6-fold higher compared to Fall 2014 and 6-9-fold

higher compared to Summer 2015. Similarly, in both years, Spring NO3
--N deposition was 4–5

times the level measured in Summer 2015, and Spring 2015 NO3
--N deposition was double that

in Fall 2014. Nitrate-N deposition in Winter 2014 was also 2.5-fold higher than in Summer 2015.

Seasonal differences in inorganic N deposition were identical to those of NH4
+-N deposition.

Little bluestem and Texas wintergrass plant traits

Little bluestem and Texas wintergrass plants growing at ALVA, TCNW, and TCSO differed in

their root biomass accumulation, biomass allocation, tissue C and N, and total plant N. Shoot

biomass was similar for both species, but little bluestem accumulated four to eight times more

root biomass than Texas wintergrass, resulting in higher mean root:shoot ratios for little blue-

stem (Fig 3a). Shoot and root C differed significantly but less markedly between species (Fig

3b) than did shoot and root N. Shoot and root N were approximately two-fold higher in Texas

wintergrass compared to little bluestem (Fig 3c). Given the higher tissue N, Texas wintergrass

had lower tissue C:N ratios than little bluestem across all sites and higher overall total plant N

at the two more urban sites (Table 2).

Prairie grass responses to nitrogen deposition

Both little bluestem and Texas wintergrass plants exhibited site-to-site differences in plant

traits (Table 2). All measures of little bluestem biomass were highest at TCNW and lowest at

TCSO. At harvest, plants at TCNW had twice the shoot and total biomass as plants at the other

sites. Root C:N was also lowest at TCSO due to elevated root N compared to the other sites.

Although little bluestem plants at TCNW did not have higher shoot or root N compared to the

other sites, total plant N was nearly double that measured at other sites there given the higher

total plant biomass.

Similar to little bluestem, Texas wintergrass plants accumulated the most shoot, root, and

total biomass at TCNW, as much as three times more than plants at the other sites. Plants

grown at TCSO had the highest root:shoot ratio of all sites. Although patterns for tissue C and

N were less clear, the highest shoot C, shoot C:N, root C, and root N were recorded at TCNE,

the most urban site.

Both species showed a significant increase in total biomass (Fig 4) and total plant N with inor-

ganic N deposition (Fig 4; S2 Table). For Texas wintergrass, changes in total biomass and plant

N were most pronounced at sites receiving>0.025 kg ha-1 d-1 of inorganic N (~9 kg ha-1 yr-1).

Discussion

Nitrogen deposition in Dallas-Fort Worth: Magnitude, seasonality, and

form

Here we provide a first estimate of inorganic N deposition in Dallas-Fort Worth, the fourth

largest U.S. metropolitan area and a major node in the Texas Triangle megapolitan area. We
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find that bulk inorganic N deposition in this semi-arid city is relatively high, 6.1–9.9 kg ha-1

yr-1, and more comparable to bulk N deposition measured in wetter cities such as Boston (5.2

kg ha-1 yr-1; [52]) than in arid cities such as Phoenix (1.9 kg ha-1 yr-1; [9]).

Moreover, N deposition in DFW varies seasonally with lower rates in fall and pulsed depo-

sition in spring. Several factors contribute to temporal variability in urban atmospheric wet

deposition, including changes in the source and strength of emissions, meteorological condi-

tions, and the rate of chemical reactions in the atmosphere (e.g., [9, 53–56]). At our study sites,

43% of NH4
+-N, 34% of NO3

--N, and 40% of the bulk inorganic N measured between April

2014 and March 2015 occurred in spring compared to 30% of rainfall, suggesting that both

increased rainfall and N concentrations contributed to elevated deposition during this season.

In 2015, we captured a month of record-breaking rainfall, in which DFW received nearly half

its mean annual rainfall in May alone. As a result, spring N deposition was 1.5 to 4.5-fold

higher compared to Spring 2014 depending on the site. Long-term data from the L.B.J.

National Grasslands NADP site confirm that spring deposition peaks are typical for this

Fig 2. Relationships between urban development, rainfall, and absolute and precipitation-normalized bulk nitrogen deposition for six

consecutive sampling seasons. Nitrogen deposition was sampled in Spring 2014 (Apr-Jun), Summer 2014 (Jul-Sep), Fall 2014 (Oct-Dec), Winter 2014

(Jan-Mar), Spring 2015 (Apr-Jun), and Summer 2015 (Jul-Sep). Percent urban development within 10 km of each site in the Dallas-Fort Worth

metropolitan area ranges from low (light pink) to high (crimson red).

https://doi.org/10.1371/journal.pone.0251089.g002
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Fig 3. Little bluestem (LBS) and Texas wintergrass (TW) plant traits. Differences in (a) mean (±1SE) biomass

accumulation, allocation, (b) tissue C, and (c) tissue N between native prairie grass species at three sites characterized

by low (pink) to high (crimson red) urban development in the Dallas-Fort Worth metropolitan area. �p< 0.1, ��

p< 0.05, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0251089.g003
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region. From 1983 to 2019, spring accounted for 30% of annual rainfall and 40% of inorganic

N at L.B.J. [40].

During all seasons and across all sites, the majority of N deposited was in the form of

NH4
+-N (63–70%). This is in line with previous studies that show NH4

+-N comprising 70–

77% of bulk inorganic N in Boston [6, 8], 69% of wet deposition in Providence [57], ~53% in

Phoenix [9], ~59% of wet inorganic N deposition across the continental U.S. [58], and 60% of

N in urban areas globally [3]. The dominance of NH4
+-N in the DFW area is consistent with

an observed shift over time from NO3
-- to NH4

+-dominated N deposition in U.S. urban areas

likely resulting from increased NOx regulations and lack of NH3 regulations [8, 58, 59], as well

as NOx reduction technologies that produce NH3 [60].

Myriad local emission sources contribute to elevated NH4
+-N deposition within urban

areas. Lawn and greenspace fertilizer application [8, 53], industrial and fossil fuel combustion

[58] and wastewater treatment [61] represent important sources of gaseous ammonia to the

atmosphere. Off-site emissions from crop and livestock production also influence urban N

deposition [9]. In a recent study, measured and estimated on-road and agricultural NH3

emissions in Dallas and Tarrant counties––where the cities of Dallas and Fort Worth are

Table 2. Plant traits (mean±1SE) for the six phytometer sites along an urban development gradient (indicated in parentheses).

ALVA (6%) DENT (15%) LLELA (44%) TCNW (47%) TCSO (56%) TCNE (64%)

Little bluestem (Schizachyrium scoparium)

n = 10 n = 10 n = 10

Shoot biomass (g d-1) 0.16±0.02b - - 0.32±0.04a 0.15±0.03b -

Root biomass (g d-1) 0.04±0.004ab - - 0.05±0.005a 0.03±0.004b -

Total biomass (g d-1) 0.20±0.03b - - 0.37±0.05a 0.18±0.03b -

Root:shoot 0.28±0.05a - - 0.18±0.01a 0.27±0.05a -

Shoot C (%) 44.0±0.64ab - - 44.7±0.37a 42.8±0.32b -

Shoot N (%) 0.76±0.05a - - 0.67±0.04a 0.72±0.04a -

Shoot C:N 60.3±4.27a - - 69.1±3.76a 61.2±3.41a -

Root C (%) 44.5±0.58a - - 45.9±0.59a 44.5±0.78a -

Root N (%) 0.52±0.03b - - 0.54±0.04b 0.70±0.05a -

Root C:N 101±5.99a - - 103±5.89a 78.6±5.95b -

Total plant N (g) 0.42±0.05b - - 0.72±0.10a 0.37±0.05b -

Texas wintergrass (Nasella leucotricha)

n = 10 n = 15 n = 15 n = 19 n = 14 n = 14

Shoot biomass (g d-1) 0.11±0.03b 0.16±0.02ab 0.08±0.01b 0.25±0.03a 0.12±0.02b 0.08±0.01b

Root biomass (g d-1) 0.005±0.001c 0.01±0.001bc 0.005±0.001c 0.01±0.001a 0.01±0.001ab 0.005±0.001c

Total biomass (g d-1) 0.11±0.03b 0.17±0.02ab 0.08±0.01b 0.26±0.03a 0.13±0.02b 0.09±0.01b

Root:shoot 0.07±0.011ab 0.05±0.005b 0.08±0.012ab 0.05±0.005b 0.08±0.007a 0.05±0.004b

Shoot C (%) 39.9±2.1ab 42.4±1.1a 38.4±1.1b 44.6±3.9a 40.1±1.3ab 42.3±0.6a

Shoot N (%) 1.50±0.06a 1.21±0.06bc 1.20±0.06bc 1.46±0.11ab 1.46±0.09ab 1.25±0.05bc

Shoot C:N 31.2±1.7b 41.6±1.7a 38.5±2.0ab 35.9±1.1ab 33.4±2.3b 40.2±1.9a

Root C (%) 37.4±2.1b 42.1±0.9ab 42.0±0.4a 41.0±0.9ab 38.5±3.1ab 43.0±0.6a

Root N (%) 1.13±0.09ab 0.98±0.05bc 0.85±0.04c 1.09±0.05ab 1.09±0.07ab 1.29±0.05a

Root C:N 40.1±3.0bc 51.4±1.8ab 59.4±2.8a 45.3±1.9bc 44.7±1.4bc 39.4±1.3c

Total plant N (g) 0.69±0.20b 0.86±0.13ab 0.41±0.06b 1.54±0.17a 0.73±0.09b 0.42±0.04b

Different letters denote statistically significant differences among sites (p< 0.1).

Hyphen (-) indicates missing data due to human disturbance and significant loss of plants.

https://doi.org/10.1371/journal.pone.0251089.t002
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located––were notably high [58]. Although we cannot apportion sources of N at our study

sites, high levels of traffic congestion [62], intensive and extensive landscaping [63], and grow-

ing proportions of land under agriculture [64] likely contribute to the prevalence of NH4
+-N

deposition in DFW.

Urban development effects on N deposition

Bulk inorganic N deposition in DFW was high compared to the L.B.J. reference site but did

not, contrary to our hypothesis, increase with urban development within 10 km of the sites.

Fig 4. Prairie grass responses to nitrogen deposition. Increase in total plant biomass (g d-1) and total plant N (g) with inorganic nitrogen deposition

(kg ha-1 d-1) from planting date to harvest date for little bluestem and Texas wintergrass plants at six phytometer sites in the Dallas-Fort Worth

metropolitan area.

https://doi.org/10.1371/journal.pone.0251089.g004
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We expected such a relationship given previous studies in arid cities, which show positive rela-

tionships between N deposition and urbanization proxies. For example, at sites in the Denver-

Boulder metropolitan area and at oak savanna sites in central California, either bulk N concen-

trations or deposition exhibited positive relationships with population density [56] and prox-

imity to urban core [55]. In contrast, Lohse et al. [54] found that neither distance to urban

core nor land use were related to rainwater N concentrations, while Cook et al. [9] found little

variation in bulk N deposition along an urban-rural gradient in the Phoenix metropolitan

area.

There are several possible reasons why we did not detect a relationship between annual N

deposition and urban development. First, estimates indicate that 74–84% and 51–61% of total

(wet + dry) inorganic N deposition to our study sites in 2014 and 2015 [65, 66], respectively,

was in the form of dry deposition. Although bulk collectors capture varying amounts of dry N

deposition [67, 68], this amount is likely low relative to total dry inputs (e.g., [54]). Second,

urban land within 10 km may not serve a good proxy for NH4
+-N or NO3

--N deposition.

Strong concentration gradients in atmospheric N due to localized emissions near roads and

lower emissions in park areas [69] may have obscured spatial variation in N deposition. For

example, one of the more urban (44%) sites sampled in this study was located within a desig-

nated natural area (LLELA) and had comparatively low deposition compared to most of the

other sites. Gaseous ammonia has a short atmospheric lifetime (on the order of hours) and

tends to deposit close to the source [70]. Thus, the location of this site relative to emissions

source (e.g., roads) may have affected deposition rates there. In the case of NO3
--N, the longer

atmospheric lifetime (~1 day; [71]) and potential for long-range transport of NOx in the tropo-

sphere [72] might prevent us from observing relationships between deposition and urban

development within a 10-km buffer. Third, variation in atmospheric mixing processes due to

variability in wind speed, surface roughness, and heat island effects could have contributed to

heterogeneous patterns of N deposition [69].

Prairie grass responses to N deposition

Although the relationship between N deposition and level of urban development was not what

we anticipated, our findings show that two common native prairie grass species in the South-

ern Great Plains exhibit a positive biomass response, and in turn higher plant N, with greater

N deposition. This response is consistent with previous research indicating that N additions

increase grassland primary productivity [73–75] and the expectation that as N becomes less

limiting, plants allocate a greater proportion of biomass aboveground. In a global meta-analy-

sis of 42 plots in the Nutrient Network Global Research Cooperative (http://www.nutnet.unm.

edu), where N deposition ranged from <1 to 36 kg N ha-1 yr-1, Stevens et al. [75] found a 3%

increase in aboveground net primary production with each additional unit of N deposition.

In this study, sites receiving 7.2–9.9 kg inorganic N ha-1 yr-1, the high end of the deposition

range we found, exhibited the most pronounced changes in total biomass and plant N. As

these values do not include dry deposition, we extracted wet and dry N deposition (2014–

2015) from NADP total deposition maps. NADP total deposition estimates were developed

using a hybrid approach that combines measured and modeled data [65]. The estimates indi-

cate that our DFW sites receive a total (wet + dry) N deposition load of 11–13 kg N ha-1 yr-1. If

we sum bulk deposition measured in this study with estimates of dry deposition from NADP

total deposition maps, N deposition rates are even higher, 13–18 kg N ha-1 yr-1. Thus, native

prairie grasses may exhibit a positive biomass response to increased urban N deposition up to

~18 kg ha-1 yr-1. Moreover, both ranges of total inorganic N deposition surpass the critical

load limit for herbaceous plant species richness in the DFW area, which we estimated to be 8.9
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kg N ha-1 yr-1 after Simkin et al. [20]. Nevertheless, larger scale and longer-term monitoring in

the DFW are needed to assess the effects of N deposition on shifts in plant community

composition.

Implications for native prairie grass species

At levels above N critical loads, grassland ecosystems experience changes in species composi-

tion which may include loss of N-sensitive and native species, shifts in dominance, and

decreased species richness [18, 20, 76, 77]. Thus, increased rates of ambient urban N deposi-

tion could affect native prairie grass remnants in the Southern Great Plains. Consistent with

previous studies [78, 79], little bluestem plants in our phytometer experiment had low tissue N

compared to Texas wintergrass but allocated a higher proportion of biomass belowground.

The high N-use efficiency and more extensive root network of little bluestem are traits that

make this species a good competitor on N-poor soils [79]. In contrast, Texas wintergrass had

higher tissue N but invested less in root biomass, potentially indicating a higher N uptake rate

[80].

Texas wintergrass is unique among cool-season grasses in that its range is restricted south

of 35˚ N latitude [81], yet it is an important component of the prairie in the Southern Great

Plains. We know of only one study in which little bluestem and Texas wintergrass responses to

light and nitrogen were assessed, both in monoculture and in mixture [81]. In that study, both

species grew best under high light and high N––similar to our phytometer experiment in

which both species accumulated the most biomass at the highest N deposition site. However,

Texas wintergrass accumulated more biomass when grown in mixture, suggesting that this

species may be able to better use additional N in a community setting. Little bluestem, on the

other hand, is vulnerable to loss at high N levels [76]; a recent study reported a N critical load

range of 9–14 kg ha-1 yr-1 for this species [18]. Using data specific to our study area and the

model presented by Clark et al. [18], the critical load for little bluestem in DFW is 13.9 kg ha-1

yr-1. Little bluestem thus appears to be near or at the critical load limit for N, meaning this spe-

cies is potentially vulnerable to loss.

Future work is needed to determine the effect of N on these species especially in the context

of Great Plains drought [82], precipitation variability [83], and urban pollution and heat

effects. In the Southern Great Plains ecoregion, little bluestem is the dominant while Texas

wintergrass is a common component of late-successional tallgrass prairie communities. Loss

of one or both of these species could therefore have significant negative implications for plant

community composition and higher trophic levels. As urbanization continues to have multiple

effects on local vegetation, the role of N deposition in affecting individual species and commu-

nities warrants additional study.
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Formal analysis: Alexandra G. Ponette-González, Michelle L. Green.
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1. Carnelos DA., Portela SI, Jobbágy EG, Jackson RB, Di Bella CM, Panario D, et al. A first record of bulk

atmospheric deposition patterns of major ions in southern South America. Biogeochemistry. 2019; 144:

261–271. https://doi.org/10.1007/s10533-019-00584-3
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14. Storkey J, Macdonald AJ, Poulton PR, Scott T, Köhler IH, Schnyder H, et al. Grassland biodiversity

bounces back from long-term nitrogen addition. Nature. 2015; 528(7582), 401–404. https://doi.org/10.

1038/nature16444 PMID: 26633635

15. Wedin DA, Tilman D. Influence of nitrogen loading and species composition on the carbon balance of

grasslands. Science. 1996; 274:1720–1723. https://doi.org/10.1126/science.274.5293.1720 PMID:

8939865

16. Throop HL, Lerdau MT. Effects of nitrogen deposition on insect herbivory: implications for community

and ecosystem processes. Ecosystems. 2004; 7(2), 109–133. https://doi.org/10.1007/s10021-003-

0225-x

17. Bejarano-Castillo M, Campo J, Roa-Fuentes LL. Effects of increased nitrogen availability on C and N

cycles in tropical forests: a meta-analysis. PLoS ONE 10(12): e0144253. https://doi.org/10.1371/

journal.pone.0144253 PMID: 26633681

18. Clark CM, Simkin SM, Allen EB, Bowman WD, Belnap J, Brooks ML, et al. Potential vulnerability of 348

herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat Plants.

2019; 5(7), 697–705. https://doi.org/10.1038/s41477-019-0442-8 PMID: 31263243

19. Phoenix GK, Emmett BA, Britton AJ, Caporn SJ, Dise NB, Helliwell R, et al. Impacts of atmospheric

nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in

long-term field experiments. Glob Change Biol. 2012; 18: 1197–1215. https://doi.org/10.1111/j.1365-

2486.2011.02590.x

20. Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, et al. Conditional vulnerability of

plant diversity to atmospheric nitrogen deposition across the United States. P Natl Acad Sci USA. 2016;

113: 4086–4091. https://doi.org/10.1073/pnas.1515241113 PMID: 27035943

21. Nilsson J. Critical loads for sulphur and nitrogen. In: Mathy P, editors. Air Pollution and Ecosystems.

Dordrecht: Springer; 1988. pp. 85–91. https://doi.org/10.1007/978-94-009-4003-1_11

22. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of

nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl. 2010; 20: 30–59. https://

doi.org/10.1890/08-1140.1 PMID: 20349829

23. Carreiro MM, Tripler CE. Forest remnants along urban-rural gradients: examining their potential for

global change research. Ecosystems. 2005; 8(5), 568–582. https://doi.org/10.1007/s10021-003-0172-

6

24. Fang Y, Yoh M, Koba K, Zhu W, Takebayashi Y, Xiao Y, et al. Nitrogen deposition and forest nitrogen

cycling along an urban-rural transect in southern China. Glob Change Biol. 2011; 17: 872–885. https://

doi.org/10.1111/j.1365-2486.2010.02283.x

PLOS ONE Prairie grass responses to urban nitrogen deposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0251089 May 6, 2021 16 / 19

https://doi.org/10.1007/s10533-013-9861-1
https://doi.org/10.1007/s10533-013-9861-1
https://doi.org/10.1890/070147
https://doi.org/10.1016/j.scitotenv.2017.07.166
http://www.ncbi.nlm.nih.gov/pubmed/28800694
https://doi.org/10.1016/j.envpol.2018.04.013
https://doi.org/10.1016/j.envpol.2018.04.013
http://www.ncbi.nlm.nih.gov/pubmed/29705717
https://doi.org/10.1038/s41559-017-0118
https://doi.org/10.1038/s41559-017-0118
http://www.ncbi.nlm.nih.gov/pubmed/28812706
https://doi.org/10.1002/eap.1783
https://doi.org/10.1002/eap.1783
http://www.ncbi.nlm.nih.gov/pubmed/30179279
https://doi.org/10.1111/j.1461-0248.2007.01053.x
http://www.ncbi.nlm.nih.gov/pubmed/17542938
https://doi.org/10.1046/j.1469-8137.2001.00114.x
https://doi.org/10.1046/j.1469-8137.2001.00114.x
https://doi.org/10.1038/nature16444
https://doi.org/10.1038/nature16444
http://www.ncbi.nlm.nih.gov/pubmed/26633635
https://doi.org/10.1126/science.274.5293.1720
http://www.ncbi.nlm.nih.gov/pubmed/8939865
https://doi.org/10.1007/s10021-003-0225-x
https://doi.org/10.1007/s10021-003-0225-x
https://doi.org/10.1371/journal.pone.0144253
https://doi.org/10.1371/journal.pone.0144253
http://www.ncbi.nlm.nih.gov/pubmed/26633681
https://doi.org/10.1038/s41477-019-0442-8
http://www.ncbi.nlm.nih.gov/pubmed/31263243
https://doi.org/10.1111/j.1365-2486.2011.02590.x
https://doi.org/10.1111/j.1365-2486.2011.02590.x
https://doi.org/10.1073/pnas.1515241113
http://www.ncbi.nlm.nih.gov/pubmed/27035943
https://doi.org/10.1007/978-94-009-4003-1_11
https://doi.org/10.1890/08-1140.1
https://doi.org/10.1890/08-1140.1
http://www.ncbi.nlm.nih.gov/pubmed/20349829
https://doi.org/10.1007/s10021-003-0172-6
https://doi.org/10.1007/s10021-003-0172-6
https://doi.org/10.1111/j.1365-2486.2010.02283.x
https://doi.org/10.1111/j.1365-2486.2010.02283.x
https://doi.org/10.1371/journal.pone.0251089


25. Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, et al. Ecological effects of nitrogen

deposition in the western United States. BioScience. 2003; 53(4), 404–420. https://doi.org/10.1641/

0006-3568(2003)053[0404:EEONDI]2.0.CO;2

26. Gregg JW, Jones CG, Dawson TE. Urbanization effects on tree growth in the vicinity of New York City.

Nature. 2003; 424: 183–187. http://dx.doi.org/10.1038/nature01728 PMID: 12853954
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