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Proteogenomic characterization of 2002 human
cancers reveals pan-cancer molecular subtypes
and associated pathways
Yiqun Zhang 1,8, Fengju Chen1,8, Darshan S. Chandrashekar2,3,8, Sooryanarayana Varambally2,3,4 &

Chad J. Creighton 1,5,6,7✉

Mass-spectrometry-based proteomic data on human tumors—combined with corresponding

multi-omics data—present opportunities for systematic and pan-cancer proteogenomic

analyses. Here, we assemble a compendium dataset of proteomics data of 2002 primary

tumors from 14 cancer types and 17 studies. Protein expression of genes broadly correlates

with corresponding mRNA levels or copy number alterations (CNAs) across tumors, but with

notable exceptions. Based on unsupervised clustering, tumors separate into 11 distinct

proteome-based subtypes spanning multiple tissue-based cancer types. Two subtypes are

enriched for brain tumors, one subtype associating with MYC, Wnt, and Hippo pathways and

high CNA burden, and another subtype associating with metabolic pathways and low CNA

burden. Somatic alteration of genes in a pathway associates with higher pathway activity as

inferred by proteome or transcriptome data. A substantial fraction of cancers shows high

MYC pathway activity without MYC copy gain but with mutations in genes with noncanonical

roles in MYC. Our proteogenomics survey reveals the interplay between genome and pro-

teome across tumor lineages.
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The central dogma of molecular biology states that DNA
makes RNA, and RNA makes protein. At the same time,
many regulatory mechanisms occur after mRNAs are

manufactured, and steady-state transcript abundances only par-
tially predict protein abundances1,2. Recent technological
advances in mass spectrometry have allowed for large-scale sur-
veys of the cancer proteome. The Clinical Proteomic Tumor
Analysis Consortium (CPTAC) is a National Cancer Institute
initiative to accelerate the understanding of the molecular basis of
cancer through the application of large-scale, mass spectrometry-
based proteomics. CPTAC has carried out individual studies for a
range of tissue-based cancer types3–16, integrating proteome with
genome, collectively known as proteogenomics, while efforts
outside of CPTAC have similarly studied additional cancer
types17–19. In these recent studies, proteogenomic analyses car-
ried out within specific cancer types have included protein-level
tumor versus normal adjacent tissue comparisons, cataloging the
functional consequences of somatic mutation and copy number
alteration (CNA) on the proteome, and defining tumor molecular
subtypes and associated pathways and immune cell infiltrates.

CPTAC and other studies have collectively made mass
spectrometry-based proteomic data on over 2000 human tumors
available in the public domain, with corresponding data at the
molecular levels of mRNA, copy number, and small mutation.
These data present an opportunity for systematic and pan-cancer
analyses of the entire cohort of tumors with proteomic data,
including defining molecular subtypes and associated pathways
relevant to multiple cancer types. A combined large pan-cancer
cohort of tumor proteomic profiles would allow for proteogenomic
analyses to identify commonalities, differences, and emergent
themes across tumor lineages20. In recent studies, we carried out
pan-cancer proteomic studies to define molecular subtypes21 and
protein correlates of more aggressive disease22, each of these studies
involving a more limited set of tumors and cancer types.

In this work, we comprehensively analyze proteomics data and
corresponding multi-omics data on 2002 primary tumors from 14
different tissue-based cancer types. We explore protein-level
versus corresponding mRNA-level associations, noting associa-
tions found in the transcriptome but not the proteome and vice
versa. We define pan-cancer, proteome-based subtypes that cut
across tumor lineages. Finally, we explore the interactions
between the cancer proteome and somatic DNA-level alteration
of cancer-associated pathways across tumors.

Results
Protein-level correlations. We assembled a compendium dataset
of mass spectrometry-based proteomics data of 2002 primary
tumors from 17 individual studies3–19 (Supplementary Data 1).
The cancer types represented in this proteomic compendium
dataset included breast (n= 230 tumors with proteomics data),
colorectal (n= 187), gastric (n= 80), glioblastoma (n= 100),
head and neck (n= 108), liver (n= 165), lung adenocarcinoma
(n= 111), lung squamous (n= 110), ovarian (n= 269), pan-
creatic (n= 137), pediatric brain (n= 219), prostate (n= 76),
renal (n= 110), and uterine (n= 100). For most of these tumors,
corresponding multi-omics data were available for mRNA
(n= 1899 out of the 2002 tumors), DNA somatic small mutation
(single nucleotide variants (SNVs), and insertions/deletions, i.e.,
indels; n= 1698), and DNA somatic CNA (n= 1837). For the
proteomic and transcriptomic compendium datasets, we nor-
malized expression values within each cancer type, whereby
neither tissue-dominant differences nor inter-laboratory batch
effects would drive the downstream analyses21,23–25. The total
proteomics compendium dataset consisted of 15,439 genes with
proteins measured in at least one tumor, including 10,129 genes

with proteins represented in half of the tumors for at least seven
cancer types profiled. The phospho-protein compendium con-
sisted of 199,284 phospho-protein features involving 11,671
genes, 5419 phospho-proteins represented in half of the tumors
for at least seven cancer types profiled. To facilitate access by
biomedical researchers, we integrated the above proteomic data
with the UALCAN data portal21,22,26, allowing users to query
proteins of interest for comparisons of interest (http://ualcan.
path.uab.edu/).

Overall, protein expression of genes broadly correlated with the
corresponding mRNA levels or CNA status across tumors, but
with notable exceptions (Supplementary Data 2 and 3). Across
1899 tumors and 10,129 genes, tumors displayed a median gene-
wise protein versus mRNA correlation r value of 0.40 (Fig. 1a, b),
with 97.1% of genes having significant positive correlations
(Pearson correlation p < 0.01). For specific functional categories
of genes, protein-mRNA correlations tended to be higher or
lower. For example, mRNA levels of genes involved27 in
ribosome, oxidative phosphorylation, electron transport chain,
and humoral immune response pathways tended to correlate
poorly with protein expression across tumors (Fig. 1c), consistent
with previous observations in individual cancer types6,12,15. Based
on 9744 genes with available data, gene-level correlations between
protein and CNA were broadly positive. However, protein versus
CNA correlations tended to be lower than the corresponding
mRNA versus CNA correlations (Fig. 1d). For the 13 cancer types
examined, median gene-wise protein versus CNA Pearson
correlation r values ranged from 0.04 (prostate) to 0.21 (lung
squamous) across the 9744 genes, while mRNA versus CNA
correlation r values ranged from 0.12 to 0.41 (p < 1E−7, paired t-
test, comparing median gene-wise correlation by cancer type for
protein versus mRNA). Taking a set of 756 genes with significant
positive correlations between protein and CNA but not between
mRNA and CNA (p < 0.001 and p > 0.05, respectively), these
genes were enriched for many gene categories, including
“protein-containing complex,” “mitochondrial,” “protein com-
plex,” “ribosomal subunit,” “translation,” “electron transport
chain,” “DNA repair,” and “regulation of cell cycle process”
(Fig. 1d). For individual genes of interest (e.g., genes involving the
PI3K/AKT/mTOR pathway, Fig. 1e), copy loss and indel
mutations could be associated with lower protein expression.

Proteomic signatures associated with higher tumor grade could
yield molecular clues as to processes underlying more aggressive
tumors. To identify proteomic correlates of grade, we followed an
approach previously demonstrated in a limited dataset of 558
tumors from five cancer types22. In this present study, we found
on the order of hundreds of total proteins and mRNAs
differentially expressed with higher grade (p < 0.01, Pearson
correlation) for each of ten cancer types (head and neck, liver,
lung adenocarcinoma, lung squamous, ovarian, pancreas, pedia-
tric glioma, prostate, renal, uterine), involving 1265 tumors for
which grade information was available (Fig. S1a, b). Significant
overlapping gene features were between the total protein
signatures and the mRNA signatures (Fig. S1c). Each cancer
type showed a proteomic and mRNA signature of grade
distinctive from the other cancer types. At the same time,
differential expression patterns involving a subset of genes were
also shared across multiple cancer types (Fig. 2a), with 1936
proteins being significant (p < 0.01) for any two or more cancer
types. Differentially expressed proteins and mRNAs were
enriched for specific pathways28 (Figs. 2b and S1d), with many
pathways significant for multiple cancer types. The set of top
enriched pathways uncovered here overlapped highly with the
pathways we uncovered previously22 based on five of the nine
cancer types represented in our compendium. This finding
suggests a core set of pathways associated with more aggressive
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tumors, even as the proteomic grade correlates differ by cancer
type. Additional pathways in this study include alpha 6 beta
4 signaling (liver, pancreas) and oxidative damage (prostate,
uterine). One example pathway of interest enriched within

proteins increased with higher tumor grade, significant (p < 0.05,
one-sided Fisher’s exact test) for four out of ten cancer types—
lung adenocarcinoma, ovarian, renal, and uterine—was type II
interferon signaling (Fig. 2c), involving JAK–STAT-signaling and
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antiviral and growth-inhibitory effects. Another enriched path-
way of interest—significant (p < 0.05) for liver, renal, and uterine
cancer types—was oncostatin M cytokine signaling (Fig. 3d),
known to play a significant role in inflammation, autoimmunity,
and cancers29.

De novo proteome-based subtypes. Molecular subtypes can
provide insights into the pathways and processes appearing
deregulated within tumor subsets21,23. The 2002 tumors in the
proteomics compendium dataset separated into 11 distinct
proteome-based pan-cancer subtypes based on unsupervised
clustering (Fig. S2). These subtypes, s1 through s11, each spanned
multiple tissue-based cancer types (Fig. 3a). Notably, the
s11 subtype was specific to brain tumors, spanning glioblastomas
and pediatric brain tumors. Previously, ten proteome-based pan-
cancer subtypes, referred to as k1 through k10, were identified
based on 532 tumors and five tissue-based cancer types21. Within
these 532 tumors, there were significant patterns of overlap
between the s1–s11 subtype assignments and the previous
k1–k10 subtype assignments (Fig. 3a). Specifically, the corre-
spondence between the current versus the previous subtyping
included s1 to k1 (previously associated with the proteasome
complex and ubiquitin21), s2 to k2 (associated with T cells and
the immune response), s3 to k4 (associated with basal-like breast
cancer), s4 to k5 (associated with epithelium and oxidative
phosphorylation and TCA cycle pathways), s5 to k6 (associated
with tumor stroma), s6 to k7 (associated with tumor stroma and
collagen VI), s8 to k9 (associated with hemoglobin complex),
and s9 to k10 (associated with endoplasmic reticulum and steroid
biosynthesis pathway). The s7, s10, and s11 subtypes did not
strongly correspond to the previous k1–k10 subtypes. The 11
proteome-based subtypes of the present study were each char-
acterized by widespread differential expression patterns at the
levels of both total protein and phospho-protein (Fig. 3b and
Supplementary Data 4). Of the 1073 proteins for which total
levels best distinguished the subtypes, 225 proteins had a drug
target association by DrugBank30 (Supplementary Data 4).

Previously compiled gene annotations27 and gene signatures21,23

helped characterize the proteome-based subtypes represented by the
compendium dataset (Supplementary Data 5). Within the top
differentially expressed proteins underscoring each proteome-based
subtype, specific gene categories (by Gene Ontology, or GO,
annotation) were over-represented (Fig. 3c), consistent with the
correspondences noted above with the previous k1–k10 subtyping21.
In addition, subtype s7 involved “axon guidance” and “frizzled
binding” genes; subtype s10 involved “DNA repair” and “chromatin
organization” genes; and subtype s11 involved “synapse,” “dendrite,”
and “axon” genes. As applied to the proteomic data (Fig. 3d), gene
signatures of immune cell types indicated the presence of T cells and
higher expression of immune checkpoint pathway genes within s2

tumors. In contrast, s5 and s6 tumors showed signatures of B cells,
eosinophils, and mast cells and higher expression of complement
pathway genes. The above observations would reinforce the notion
of different immune response pathways being active within different
tumor subsets21. Within s4 and s11 tumors, proteomic signatures of
metabolism indicated higher activation of pathways involving fatty
acid metabolism, glycolysis and gluconeogenesis, pentose phosphate,
TCA cycle, and oxidative phosphorylation, while s1, s6, and s8
tumors each showed higher signature levels of some but not all of the
above pathways (Fig. 3d). On average, protein expression of matrix
metalloproteinases (MMPs) was higher in s5, s6, and s8 tumors,
while protein expression of collagen VI family was higher in s6 and
s8 tumors (Fig. 3d). Canonical markers of neuroendocrine tumors,
previously found over-expressed in ~4% of tumors in The Cancer
Genome Atlas (TCGA) cohort23, were higher on average in s6 and
s11 tumors, the latter comprised of all brain tumors (Fig. 3d).

We examined proteomic datasets external to our proteomic
compendium dataset for evidence of the manifestation of our
proteome-based pan-cancer subtypes. Using a protein-based
classifier developed from the proteomics compendium dataset,
we classified 7694 TCGA tumors with Reverse-Phase Protein
Array (RPPA) data according to s1–s11 proteome-based pan-
cancer subtypes (Fig. 4a). The RPPA platform would be antibody-
based and independent of the mass spectrometry platform. We
had previously classified the TCGA RPPA profiles according to
k1 through k10 subtypes21, and the relationships between the
s1–s11 and k1–k10 subtype classifications in the TCGA RPPA
dataset mirrored the relationships observed in the proteomic
compendium dataset (Figs. 4b and 3a). Also consistent with the
proteomic compendium results, TCGA s3 tumors were highly
enriched for basal-like breast cancer (p < 1E−35, one-sided
Fisher’s exact test), TCGA s11 tumors were highly enriched for
brain tumors (TCGA GBM and LGG projects, p < 1E−50), and
TCGA s10 tumor were moderately enriched for brain tumors
(p < 0.005). Similarly, we classified 375 cancer cell lines with mass
spectrometry-based proteomic data according to s1–s11 subtypes
(Fig. 4c and Supplementary Data 4). Consistent with previous
results23, not all differential patterns observable in human tumor
proteomic data appeared as strong in the cell line proteomic data,
particularly regarding immune-associated or stroma-associated
subtypes, attributable to various factors including growth
conditions of cell lines lacking tumor microenvironmental effects.
For 301 of the 375 cell lines, CRISPR knockout screens globally
assessed gene essentiality31. In taking the global correlation
between differential protein expression profile versus gene
essentiality scoring profile for each cell line, s3 and s10 cell lines
had consistent negative correlations in contrast to the other
subtypes (Fig. 4d). This observation indicated that s3 and s10 cell
lines (and, by extension, their tumor counterparts) tended to
express essential genes highly (Fig. 4e).

Fig. 1 Correlations of proteomic abundances with transcriptomics, copy number alterations, and somatic mutations. a Heat map of gene-wise Pearson
correlations of mRNA and protein expression (10,129 genes, with protein data for >6 individual cancer types) across all tumors studied (n= 1899 with
available protein and mRNA data) as well by individual cancer type. Red, significant positive correlation. b Histogram of gene-wise Pearson correlations of
mRNA and protein expression in 1899 tumors, based on 10,129 genes. c Annotated gene sets (by Gene Ontology, or GO) across 10,129 genes ranked by
Pearson gene-wise correlation between protein and mRNA. Enrichment or anti-enrichment patterns are significant with p < 0.0001, FDR < 0.0001 by
GSEA71. d Heat maps of gene-wise Pearson correlations of both mRNA expression and copy number alteration (CNA) and protein expression and CNA
(9744 genes, out of the 10,129 with combined mRNA/CNA data for at least one cancer type), by individual cancer type. Red, significant positive
correlation. e Out of 9744 genes, 756 were significantly positively correlated between expression and CNA for mRNA (Pearson p < 0.001) but not for
protein (p > 0.05) for at least seven cancer types. Selected enriched GO terms for these genes are shown. p values by one-sided Fisher’s exact test.
“Expected,” estimated by probability. f Box plots of expression of selected proteins (PTEN, STK11, TSC1, TSC1) by somatic alteration class (“hom.,”
homozygous; “het.,” heterozygous; “SNV,” Single Nucleotide Variant; “indel,” insertion/deletion). p values by t-test. Box plots represent 5% (lower
whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). n= biologically independent tumors.
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The s10 and s11 subtypes (consisting of 350 and 441 tumors,
respectively) involved brain tumors, with s10 enriched for
pediatric brain tumors and s11 consisting entirely of brain
tumors (pediatric and adult glioblastoma). These subtypes did not
strongly correspond to any of the previous proteome-based
subtypes21, as the previous data did not involve brain tumors.

Proteins high in s11 tumors were highly enriched for brain tissue-
specific genes by GTEX (Methods). By key somatic alteration
events, protein and phospho-protein features, and pathway-
associated proteomic signatures, s10 tumors showed increased
alteration of the MYC, Wnt, and Hippo pathways compared to
the rest of the tumors (Figs. 3d and 5a). Brain tumors of the
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Fig. 2 Proteomic and transcriptomic signatures of high-grade cancers. a Across ten cancer types with tumor grade information, heat map of differential t-
statistics (Pearson correlation on log-transformed data), by cancer type, comparing higher grade versus lower grade (red, higher expression with higher
grade; white, not significant with p > 0.05), for 1936 proteins significant for two or more cancer types (p < 0.01). Differential t-statistics by grade for the
mRNA corresponding to the 1936 proteins are also shown. Proteins significantly over-expressed (p < 0.01) with higher grade for four or more cancer types
are indicated by name. b Significance of enrichment (by one-sided Fisher’s exact test) for wikiPathway28 gene sets with the respective sets of proteins and
mRNAs over-expressed (p < 0.01, Pearson) with tumor grade for each cancer type represented. The pathways represented were significant within the over-
expressed proteins for at least one cancer type with FDR < 10% and for at least two cancer types with p < 0.01. c Pathway diagram representing type II
interferon signaling, with differential protein and mRNA expression patterns represented, correlating expression with increasing tumor stage for Lung AD
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denotes significantly higher expression with higher grade, and blue denotes significantly lower expression. d Similar to c, but for Oncostatin M signaling and
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s10 subtype appeared molecularly distinct from s11 brain tumors.
For example, s10 brain tumors showed lower expression of
proteins involved in metabolic pathways, while s11 tumors
showed higher average expression for these same pathways
(Fig. 5b). In terms of previously identified glioblastoma subtypes

at the protein level7, s10 glioblastomas associated with nmf3
classical tumors, while s11 glioblastomas associated with nmf1
proneural tumors (Fig. 5c). Concerning pediatric brain tumor
histologic types, s10 tumors were associated with ependymomas
and medulloblastomas, while s11 tumors were associated with
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gangliogliomas and low-grade gliomas (Fig. 5c). Our pediatric
brain tumors were divided primarily among s2, s5, s10, and
s11 subtypes (Fig. 3a). In pediatric brain tumors from the CBTTC
cohort14,32, the above subtypes involved differences in patient
survival, both among the patients with tumors in the proteomic
compendium and those with tumors having RNA-seq data only
(Fig. 5d).

The proteome-based subtypes also showed differences from
each other in overall CNA burden. The s10 and s3 subtypes had
the highest CNA burden on average, and the s11 and s1 subtypes
had the lowest CNA burden (Fig. 6a). A high rate of CNA within
a given tumor may result in an altered molecular profile due to
the extensive DNA damage involved33. Across all tumors, we
computed the correlation between the expression of each gene
and CNA burden at both protein and mRNA levels. We observed
most of the significant gene-level associations at both the protein
and mRNA levels. However, some genes were significantly
correlated with CNA burden at the protein level but not at the
mRNA level or vice versa (Fig. 6b). Genes increasing with higher
CNA burden at both protein and mRNA levels involved
chromatin, histone modification, transcription factor binding,
cell cycle checkpoint, DNA repair, and methyltransferase
complex (Fig. 6c). Genes increasing with higher CNA burden at
the protein level but not at the mRNA level involved nuclear
hormone receptor binding, histone deacetylation, and DNA
repair. Genes increasing with higher CNA burden at the mRNA
level but not at the protein level involved the electron transport
chain, the NADH dehydrogenase complex, gluconeogenesis, and
the nucleosome. Consistent with previous studies examining
molecular correlates of overall structural variation burden across
tumors32,33, tumors with high CNA burden showed both high
proteome-based signature scoring for DNA damage response
pathways and low scoring for immune cell infiltrates, though with
some genes in these signatures being significant by protein but
not mRNA (Fig. 6d).

Pathway-level somatic alterations. We hypothesized that
somatic alteration of well-characterized oncogenic or tumor
suppressor pathways would be reflected in the cancer proteome,
in terms of the downstream effects of altered pathway signaling.
Across the entire proteomic compendium tumor dataset, assess-
ment of genes within pathways demonstrated a high number of
somatic alterations (small mutation or CNA) involving chroma-
tin modification (73.4% of 1597 tumors involving 12 cancer types
with small mutation and CNA data available), p53/Rb-related
(73.1%), SWI/SNF complex (70.0%), PI3K/AKT/mTOR (69.2%),
Receptor Tyrosine Kinase signaling (RTK, 55.0%), Wnt/beta-
catenin (51.8%), MYC/MYCN (39.6%), NRF2 (8.2%), and Hippo
signaling (36.3%) (Fig. 7a). The above pathways were altered in
different ways involving different genes in different cancer types
(Fig. S3). Expected associations of cancer type with somatic
pathway alteration were observed, including MYC amplification

in breast cancer; Wnt pathway alterations via APC mutation in
colorectal cancer; NRF2 pathway alteration in squamous lung
cancer; KRAS mutations in colorectal, lung adenocarcinoma, and
pancreatic cancers; TP53 mutations in ovarian, lung squamous,
and head and neck cancers; and mTOR pathway alterations via
VHL mutation in renal cancer. As a means to integrate proteomic
with somatic DNA alteration data, gene expression signatures for
p53, k-ras, MTOR, Wnt/beta-catenin, MYC, Nrf2/Keap1, and
YAP1/Hippo—based on data from experimental models—were
applied to both the protein and the mRNA expression profiles of
the tumors. We scored each tumor sample profile for each of the
above pathways, with a higher signature score indicating a greater
level of pathway activation in cells. For each pathway considered,
relative levels of the corresponding signature—both at protein
and mRNA levels—were significantly different between somati-
cally altered versus unaltered tumors for that pathway, with the
differences being in the anticipated direction (Fig. 3c). The one
notable exception to the above was the p53 signature, where the
mRNA-based but not the protein-based signature scoring was
significantly associated with p53/Rb-related DNA alterations. The
p53 signature consisted of 27 canonical p53 transcriptional
targets23 represented in the proteomic compendium dataset. At
the mRNA level, 17 of the 27 p53 signature genes had a sig-
nificant negative expression correlation (p < 0.05) with TP53
mutation status, while at the protein level, only 9 of the 27 genes
had a similar negative correlation.

In addition to entire gene signatures, specific proteins could
show differential levels in according to somatic pathway
alteration. For example, we could define proteomic signatures
associated with mutant TP53 or mutant KRAS (Fig. 8a),
representing two well-established cancer genes for which small
mutation is the primary mode of pathway deregulation.
Interestingly, a substantial number of proteins differentially
expressed with TP53 mutation were not reflected at the mRNA
level (Fig. 8b). Out of 2752 proteins differential with TP53
mutation (false discovery rate, or FDR < 10%), 1134 (41%) were
not similarly altered significantly (p < 0.05) at the mRNA level
(Supplementary Data 2 and 3). Similarly, out of 5414 genes with
mRNA differential with TP53 mutation (FDR < 10%), 2272 (42%)
were not similarly altered at the protein level. TP53 mutation
associates with higher overall mutational burdens in cancer32, and
most of the proteomic signature of TP53 mutation overlapped
with the proteomic signature of CNA burden described above; at
the same time, 638 (23%) of the 2752 TP53 mutation-associated
genes (FDR < 10%) were not significant in the same direction
(p < 0.05) in the CNA burden analysis (Supplementary Data 2).
The KRAS mutant gene signatures involved 199 proteins and 580
mRNAs (FDR < 10%), with 109 of the significant proteins
showing the same trend (p < 0.05) at the mRNA level. Genes
with expression higher with TP53 mutation at both the protein
and mRNA levels included genes involved in cell division, while
genes higher specifically at the protein level involved SWI/SNF

Fig. 3 De novo pan-cancer proteomic subtypes. a By ConsensusClusterPlus55 of 2002 tumor proteomic profiles, ten proteomic-based subtypes—s1
through s11—were identified. Significance of overlap of these subtypes with tissue-based cancer types (left panel) and with previously identified pan-cancer
subtypes21 (k1–k10, right panel) is indicated. p values by one-sided Fisher’s exact test. Lung adeno lung adenocarcinoma, ped. brain pediatric brain tumors.
b Across 2002 tumor proteomic profiles, differential expression patterns (values normalized within each tissue-based cancer type; SD standard deviation
from the median) for a set of 1073 proteins (top heat map) and for a set of 1020 phospho-proteins (bottom heat map) found to best distinguish between
the ten proteome-based subtypes (see Methods, top ~100 over-expressed proteins for each subtype). c For the top over-expressed proteins associated
with each subtype (from b, top panel), represented categories by GO were assessed, with selected enriched categories represented here (UBQ ubiquitin,
reg regulation). p values by one-sided Fisher’s exact test. d Proteomic signatures according to pathway or functional gene group (using values normalized
within each cancer type). Red-blue heat maps denote t-statistics for comparing the given subtype versus the other tumors for each dataset. Selected
pathways surveyed by signatures23 included several related to metabolism (FA fatty acid, GNG gluconeogenesis, TCA tricarboxylic acid, OX-PHOS
oxidative phosphorylation). APM1/APM2, antigen presentation on MHC class I/class II, respectively. NET neuroendocrine tumors.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30342-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2669 | https://doi.org/10.1038/s41467-022-30342-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


complex, and genes higher specifically at the mRNA level
involved the proteasome, NF-kappaB signaling, and Wnt pathway
(Fig. 8c). Genes with expression higher or lower with KRAS
mutation at the mRNA level included genes involved in cell
adhesion or humoral immune response, respectively (Fig. 8c).

Individual genes of interest associated with TP53 or KRAS
mutation at the protein but not mRNA levels would have known
functional roles with the respective pathways (Supplementary
Data 2 and 3). For example, protein levels for p53 and HEATR1
were higher with TP53 mutation (Fig. 8d), where depletion of
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HEATR1 would lead to impaired proliferation and induction of
p53-dependent cell cycle arrest34. Proteins higher with KRAS
mutation included INSR (insulin receptor)—where insulin can
promote invasion and migration of KRAS mutant cells35—and
ERBIN (erbb2 interacting protein)—which can regulate KRAS
mutant-induced tumorigenesis36.

Phospho-proteins are a component of pathway signaling, and,
across the proteomic compendium, specific phospho-proteins of
interest could be associated with pathway-level somatic alteration
or pathway signature across tumors. Overall, phospho-proteins
tended to be significantly positively correlated with the
corresponding total protein, as expected (Supplementary Data 6).
We considered a set of 106 phospho-proteins representing 25
genes involved in the pathway-level somatic alteration classes
(from Fig. 7a), which phospho-protein features had sufficient data
(>50% of tumors for seven or more cancer types). Many other
phospho-proteins of interest, e.g., canonical pathway members of
PI3K/AKT/mTOR37, were not detected in enough tumor
numbers across the proteomic compendium. On the other hand,
58 of the 106 phospho-proteins represented a phosphosite not
cataloged in the Human Protein Reference Database (HPRD)38.
Of the 106 phospho-proteins, 36 significantly correlated (p < 0.05,
Pearson correlation) with the corresponding pathway-level DNA
somatic mutation class (Fig. 9a, 15 of these representing
uncatalogued phosphosites), and 24 significantly correlated with
the corresponding pathway-level gene signature (Fig. 9b, 10 of
these representing uncatalogued phosphosites), nine of which
significantly correlated with pathway-level mutation class. Of the
nine phospho-proteins, four, including PI3K/AKT/mTOR-related
PTEN:s294 and RTK-related ERBB2:t671 and ERBB2:s968, were
not found in HPRD (Fig. 9c).

A wide range of pathway gene signature levels was evident
within somatically altered and unaltered groups for a given
pathway. In addition to biological and technical noise that would
be inherent in the data, there is the possibility that alterations in
other genes may help drive a given pathway, even if that gene may
not have a well-established or canonical role in that pathway37. In
our proteomic compendium dataset, we examined the set of
tumors with high pathway signature scoring but with no
canonical mutations (see Methods). We aimed to identify any
enrichment patterns for somatic small mutation events involving
a set of 190 genes significantly mutated in pan-cancer studies39,40

(Fig. 10a). We evaluated each of the MYC/MYCN, Hippo,
mTOR, NRF2, p53/Rb-related, RTK, and Wnt/beta-catenin
pathways in this way. We also carried out this analysis across
10,224 tumors in TCGA pan-cancer dataset (with signature
scoring based on mRNA data). We looked for overlap in the
respective results between the proteomic compendium and
TCGA. In the proteomic compendium, 41 genes were signifi-
cantly enriched for mutation events within pathway-activated

tumors with no canonical mutations (p < 0.01, one-sided Fisher’s
exact test), while 45 genes were significantly enriched for TCGA
datasets (p < 0.001). Between the two tumor cohorts, we observed
significant overlap between the respective gene-level associations
(p < 5E−8, one-sided Fisher’s exact test), involving 12 genes, all of
which were enriched for mutation events in tumors with high
MYC signature (Fig. 10b). For each dataset, somatic mutations in
any of the 12 genes would account for a substantial number of
tumors in addition to tumors with MYC or MYCN copy gain
alone (Fig. 10c), on the order of an additional 14–18% of tumors
surveyed. For each dataset, mutations in each of the 12 were
associated with elevated MYC pathway signature scoring, like
what we had observed above regarding MYC and MYCN copy
gain or amplification (Fig. 10d). For several of the 12 genes,
previous experimental studies have demonstrated a role for loss of
the gene leading to increased MYC expression or activity, including
ARID1A41, ATM42, EP30043, PTEN44, RB145, SMARCA446, and
ZFHX347.

Discussion
Across a large pan-cancer cohort of primary tumors, we observed
general correspondence between protein and mRNA differential
expression patterns, but with notable exceptions. Genes with
proteins having less correlation across tumors with the corre-
sponding mRNA or CNA patterns included genes involved in
ribosomes, translation, electron transport chain, humoral
immune response, DNA repair, or cell cycle regulation. Genes
with expression increasing with higher CNA burden at only the
protein level included genes involved in nuclear hormone
receptor binding, histone modification, and DNA repair. Path-
ways associated with high-grade cancers at the protein but not the
mRNA level included type II interferon and Oncostatin M sig-
naling. A gene signature of p53 transcriptional targets applied to
mRNA data showed an expected association with p53 pathway-
associated mutations, while the signature applied to protein data
did not show a similar result. Widespread differential protein
expression patterns could be associated with somatic mutation of
TP53 or KRAS, with some patterns not reflected at the mRNA
level. A lack of correlation or association represents a negative
result, inherently difficult to prove using statistics, and technical
issues regarding the data platforms might conceivably be at play.
At the same time, the fact that the sets of genes involved in the
overall differences observed between protein and mRNA are
significantly enriched for specific functional groups and anno-
tated pathways would suggest that true biology is involved here.
Our study reinforces the notion that cancers should be compre-
hensively surveyed at the protein level, where expression profiling
on tumors has historically been mostly limited to the
transcript level.

Fig. 4 Observation of pan-cancer proteome-based subtypes in independent proteomic datasets. a The 7694 TCGA tumors with reverse-phase protein
array (RPPA) data were classified according to proteome-based pan-cancer subtype (from Fig. 3b). Expression patterns for a top set of 134 proteins
distinguishing between the 11 subtypes based on the proteomic compendium dataset (see the section “Methods”, based on available data) are shown for
the TCGA RPPA proteomic dataset. Gene patterns in the RPPA sample profiles sharing similarities with a subtype-specific signature pattern are
highlighted. Cancer type represents TCGA project name. b For the TCGA dataset results, the significance of overlap of the s1–s11 proteomic subtypes with
previously identified pan-cancer subtypes21 (k1–k10) is indicated. p values by one-sided Fisher’s exact test. c Cancer cell lines with mass spectrometry data
in the Cancer Cell Line Encyclopedia (CCLE)72 were classified according to proteome-based pan-cancer subtype (378 profiles representing 375 cell lines).
Expression patterns for the top set of 1081 subtype-specific protein isoforms (based on the 1073 total proteins from Fig. 3b) are shown for the CCLE
dataset. d For 301 of the 375 cell lines, based on the 1081 proteins in c, Pearson correlation between differential protein expression patterns versus gene
effect scores based on Cancer Dependency Map (DepMap) CRISPR assays31 (with low scores denoting essential genes), whereby s3 and s10 cell lines tend
to have high expression of essential genes. e For s3 and s10 cell lines, associated patterns for the sets of genes having both high expression and low gene
effect scores across cell lines (with at least half of cell lines having normalized expression >0.5 SD from the median and gene effect scores <−0.5). Cancer
type color bar legend defined in c. SD standard deviation from the median.
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The proteome-based molecular subtypes identified using our
tumor cohort reinforce the notion of pan-cancer molecular
classes cutting across tumor lineages and cancer types21,23. Most
of the proteome-based subtypes identified previously in a more
limited cohort21 were re-discovered here by unsupervised ana-
lyses of a larger cohort with additional cancer types. We again
observed multiple distinct subtypes involving the immune system,
one involving the adaptive immune response and T-cell activa-
tion, and others associated with the humoral immune response
and complement pathway. We also again observed tumor stroma-
associated subtypes, one involving collagen VI network. This
present study extends the previously reported subtype-related
findings to additional cancer types. Importantly, we could also
identify additional proteome-based subtypes, including one
enriched for brain tumors and associated with MYC, Wnt, and
Hippo pathways and with high CNA burden, and another con-
sisting entirely of brain tumors and associated with increased
expression of genes in metabolic pathways and with low CNA
burden. As shown here, proteome-based subtyping can provide
insights into the pathways and processes appearing deregulated
within tumor subsets, suggesting therapeutic opportunities. Dif-
ferences in subtyping assignments between the present study and
previous studies could involve differences in the respective
cohorts, including represented cancer types. As more human
tumors and additional cancer types are profiled by mass
spectrometry-based proteomics, additional subtypes may be
uncovered and explored in future studies.

We found that somatic alterations of cancer-associated path-
ways are reflected in the cancer proteome, whereby tumors with
somatic alteration involving genes in a pathway tend to show
higher levels of protein-based signature scoring for that pathway.
Our study took advantage of the large number of tumors repre-
sented in our proteomic compendium dataset, whereby we could
carry out tumor subset analyses involving sparse mutation events.
As cataloged previously, the gene signatures represent the
downstream effects of altered pathway signaling, e.g., the upre-
gulation of transcriptional targets in a cell line or mouse model.
The proteomic and genomic data integration represents ortho-
gonal information pointing to a common tumor subset deregu-
lated for a given pathway. Our collective knowledge of molecular
pathways has been largely derived from experimental models. The
signature analyses allow us to explore experimentally inferred
cause-and-effect relationships in the human disease setting,
whereby these relationships manifest in tumors as significant
correlations. Phospho-proteins can denote pathway signaling,
though current mass spectrometry-based datasets may not cap-
ture all phospho-protein features of interest regarding a pathway.
However, post-translational modifications, including phosphor-
ylation events, may be detected by mass spectrometry. Pathway
activity, as measured using gene signatures applied to proteome
data, reflects known mutations or copy alteration in most but not
all tumors examined, suggesting additional, unexplained, or
underappreciated mechanisms of pathway activation. In the case
of the MYC pathway, we identified several genes, many of which
would have an underappreciated role in the MYC pathway, for
which somatic mutation involved higher pathway activation.
Through proteogenomics, additional members or connections
may be incorporated into the standard pathway model.

Our study results provide a framework for understanding the
molecular landscape of cancers at the proteome level. The asso-
ciated datasets and gene-level associations represent a resource
for the research community, including helping to identify gene
candidates for functional studies. Beyond the additional tumors
and cancer types represented in our proteomic compendium of
2002 tumors, the pan-cancer datasets compiled here involve
multiple levels of molecular data in addition to the proteome,
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Fig. 5 Pan-cancer proteomic subtypes involving brain tumors. a Across
s10 tumors, as compared to other subtypes, selected molecular features
involving MYC, Wnt/beta-catenin, and Hippo pathways. Enrichment p
values by one-sided Fisher’s exact test for amplification (“amp.”) and
deletion features. p values for higher expression of protein, phospho-
protein, and proteomic signatures by t-test. SD standard deviation from
the median. b Across s10 and s11 tumors, as compared to other subtypes,
selected proteomic signatures involving metabolic pathways. c For the
proteomic-based pan-cancer subtypes involving glioblastomas (left
panel) and pediatric brain tumors (right panel), the respective
significances of overlap with previously identified glioblastoma subtypes7

and with pediatric brain tumor histologic types (atrt atypical teratoid
rhabdoid tumor, cranio craniopharyngioma, epmt ependymoma, gng
ganglioglioma, mbl medulloblastoma, phgg high-grade glioma/
astrocytoma, plgg low-grade glioma/astrocytoma). p values by one-sided
Fisher’s exact test. d In the CBTTC pediatric brain tumor datasets,
differences in patient overall survival among the pediatric brain-
associated proteomic-based subtypes. Left panel represents tumors in
CBTTC with proteomic data. Right panel represents the remaining
CBTTC tumors with RNA-seq data but not proteomic data, whereby
RNA-seq profiles were assigned a proteomic subtype. p values by log-
rank test. For the RNA-seq results, differences remain significant
(p= 0.002) after correcting for histologic type (by stratified log-
rank test).
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including mRNA-level and DNA-level data on the same set of
tumors. In contrast, due in part to the timing of data releases, our
first pan-cancer proteomic tumor subtyping study focused mainly
on proteomic data in CPTAC tumors21, while our recent study
examining tumor grade correlates incorporated both protein and
mRNA data but no somatic DNA-level data on CPTAC tumors22.
Our present proteogenomics survey enabled us to explore the
interplay between genome and proteome, including aspects not
represented in the transcriptome. When previously surveying
proteomic correlates of tumor grade, we identified specific protein
kinases having functional impact in vitro in uterine endometrial
cancer cells, which provides a template for other researchers to
utilize the gene-level associations provided in the present study.
In addition to correlates of tumor grade, proteomic correlates
of somatic alteration of pathways, including TP53 or KRAS

mutation, may be of interest for further study. Regarding the pan-
cancer proteome-based subtypes, a number of these appear
manifested in cancer cell lines, and additional data, such as
DepMap gene dependency data, may be leveraged to help select
targets of interest to examine in these cell lines. RPPA profiling
data can classify tumors according to subtype, where RPPA
antibody-based features may also lend themselves to relevant
immunohistochemistry studies. For all cancer types studied, we
have added the proteomic datasets to the user-friendly UALCAN
data portal26,48, facilitating differential analyses by protein, giving
the research community ready access to our results.

Methods
Proteomic datasets. We assembled a compendium dataset of mass spectrometry-
based proteomics data of primary tumors from 14 cancer types and 17 individual

Fig. 6 Global proteomic alterations associated with the overall CNA burden across cancers. a Overall CNA burden index (standard deviation of CNA
values across all genes) by proteome-based molecular subtype. Box plots represent 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper
box), and 95% (upper whisker). n= biologically independent tumors. p value by ANOVA. Data points are colored according to cancer type (legend in d).
b Protein and mRNA features correlated with CNA burden index (FDR < 1%) across all cancers studied (n= 1837 tumors with protein and CNA data;
n= 1748 with RNA and CNA data), including genes with associations by protein but not mRNA (“protein-specific”), genes with associations by mRNA but
not protein (“mRNA-specific”), and genes with associations by both protein and mRNA (“both protein and mRNA”). c For the protein and mRNA signature
from b, represented categories by GO were assessed, with selected enriched categories represented here. p values by one-sided Fisher’s exact test.
d Across the 1837 tumors with protein and CNA data, with tumors ranked high to low by global CNA index quartiles, selected molecular features are
represented, including top protein correlates with CNA burden, proteome-based signatures scoring for DNA damage response pathways52, and proteome-
based scoring for immune cell infiltrates67. Proteins highlighted by name have GO annotation “double-strand break repair” or “immune response” and were
significant for protein but not mRNA.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30342-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2669 | https://doi.org/10.1038/s41467-022-30342-3 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


studies3–19 (Supplementary Data 1). Most of these previous studies were led by
either CPTAC or the International Cancer Proteogenome Consortium (ICPC). The
cancer types represented in the proteomics compendium dataset were the fol-
lowing: Breast Invasive Carcinoma (n= 230 tumors with proteomics data)3,4,
Colorectal Adenocarcinoma (n= 187)5,6, Gastric Cancer (n= 80)18, Glioblastoma
(n= 100)7, Head and Neck Squamous Cell Carcinoma (n= 108)8, Hepatocellular
Carcinoma (n= 165)17, Lung Adenocarcinoma (n= 111)9, Lung Squamous Cell
Carcinoma (n= 110)10, Ovarian Serous Cystadenocarcinoma (n= 269)11,12, Pan-
creatic Ductal Adenocarcinoma (n= 137)13, Pediatric Brain Tumors (n= 219)14,
Prostate Adenocarcinoma (n= 76)19, Renal Cell Carcinoma (n= 110)15, and
Uterine Corpus Endometrial Carcinoma (n= 100)16. The 2002 tumors in the
compendium represented 1982 patients, with the pediatric brain tumor dataset
involving 219 tumors from 199 patients. The above studies analyzed the tumors
using global proteomic and phosphoproteomic profiling by liquid
chromatography-tandem mass spectrometry (LC-MS/MS). We obtained processed
protein expression data from the CPTAC Data Portal49 or the associated pub-
lications’ supplementary tables. Proteomic data, as provided by the CPTAC Data
Portal and related publications, were processed at the gene level rather than at the
protein isoform level; as a simplification, we did not consider different isoforms for
the same protein in the present study.

For each study, taking the expression values provided in the associated data
table, we normalized proteomic data for downstream analyses in the following

manner and as previously described21,22. First, within each proteomic profile, we
normalized logged expression values to standard deviations from the median.
Next, we normalized expression values across samples to standard deviations
from the median. Similarly, we separately normalized both total protein and
phospho-protein datasets for a given cancer type and dataset. For datasets where
two different data centers generated values on the same tumors, we averaged
normalized values from the respective data centers in instances of duplicate
profiles for the same tumor sample. As intended, by normalizing expression
within each cancer type and within each proteomic dataset, neither tissue-
dominant differences nor inter-laboratory batch effects would drive the
downstream analysis results, including unsupervised subtype discovery. For the
compendium dataset of total proteins, a total of 15,439 unique genes by Entrez
Identifier were represented in at least one of the individual datasets. For the
compendium dataset of phospho-proteins, a total of 199,284 phospho-proteins,
involving 11,671 unique genes, were represented in at least one of the individual
datasets. Of these phospho-proteins, 5419 had available data for >50% of
samples in at least seven cancer types.

Transcriptomic datasets. Of the 2002 human tumors with proteomics data, 1899
had corresponding RNA-seq data. For CPTAC projects utilizing tumors from
TCGA, we obtained TCGA data RNA-seq data from the Broad Institute’s Firehose
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data portal [https://gdac.broadinstitute.org], and we obtained RNA-seq data for the
other CPTAC projects from the Genome Data Commons [https://gdc.cancer.gov/].
We obtained RNA-seq data on CBTN pediatric brain tumors through the public
project on the Kids First Data Resource Portal and Cavatica [https://cbtn.org]. We
obtained data for the non-CPTAC projects from links or accession numbers
provided with the associated publications. We normalized expression values across
samples to standard deviations from the median within each cancer type and
dataset, as we carried out above for proteomic data.

Copy number alteration (CNA) datasets. Of the 2002 human tumors with
proteomics data, 1837 had corresponding gene-level CNA data. No gene-level CNA
data were available for the ICPC Gastic Cancer project (as these were not a part of
the original study). For CPTAC projects utilizing tumors from TCGA, we obtained
SNP array-based CNA “thresholded” values (−2, −1, 0, 1, 2) from the Broad
Institute’s Firehose data portal [https://gdac.broadinstitute.org]. We obtained gene-
level absolute copy data (0, 1, 2, 3, 4, 5) for the other CPTAC projects from the
Genome Data Commons [https://gdc.cancer.gov/]. We first normalized the abso-
lute copy data according to ploidy (dividing gene copy value by average copy value
for all genes), then thresholded to values approximating homozygous deletion
(−2), heterozygous deletion (−1), wild-type (0), gain of 1–2 copies (+1), and
amplification with at least 5 copies (2). We obtained gene-level copy data from
CBTN pediatric brain tumors from Cavatica [https://cbtn.org] and thresholded
similarly to the CPTAC copy data. For the prostate cancer dataset, gene-level copy

data based on WGS data was previously generated by the Pan-cancer Analysis of
Whole Genomes consortium from a consensus of multiple CNA callers50. For the
hepatocellular carcinoma project, we obtained whole-exome-based gene-level
thresholded CNA calls from the National Omics Data Encyclopedia [https://www.
biosino.org/node/project/detail/OEP000321].

We computed an overall CNA burden index for each CNA profile, defined as the
standard deviation of thresholded CNA values across all genes. The CNA burden
index was high in tumors with many copy gain/amplification or loss/deletion events.
Across all samples, we computed the Pearson correlation of each protein or mRNA
feature (using normalized values) with the CNA burden index. The method of
Storey and Tibshirani51 estimated FDR for genes significantly associated with the
overall CNA burden. Using an alternative regression model incorporating cancer
type did not improve the overall results, as these did not depend on cancer type
differences (as we normalized all gene expression features within each cancer type,
removing cancer type-specific differences). In considering proteins versus mRNA
features significantly associated with CNA burden, we considered the 10,315 genes
for which there were both protein and mRNA data for more than 500 tumors. For
gene signatures of DNA damage response pathways, we obtained curated gene sets
from ref. 52 and took the average of the normalized gene values.

Small mutation datasets. Of the 2002 human tumors with proteomics data, 1698
had corresponding small somatic mutation data (SNVs and indels) by whole-exome
or whole-genome sequencing. No small mutation data were available for the ICPC
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Fig. 9 Phospho-proteins associated with pathway alteration. a For 106 phospho-proteins (with data for >50% of samples for seven or more cancer
types) with genes involved in curated pathway sets23,25,57,68, the Pearson correlation with each pathway-level DNA mutation class from Fig. 7a was
computed. Shown are 36 of the 106 phospho-proteins for which a significant association (p < 0.05) with its corresponding pathway mutation class was
found. b For the 106 phospho-proteins, the Pearson correlation with each pathway gene signature from Fig. 7b was computed. Shown are 24 phospho-
proteins for which a significant association (p < 0.05) with its corresponding pathway signature was found. Nine phospho-proteins are shared between
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Fig. 10 Noncanonical somatic mutation associations with MYC family alterations. a Schematic of approach to identify somatic mutations (SNVs or
indels) associated with a given pathway. Taking the set of tumors with high pathway signature scoring but with no canonical mutations (based on Fig. 7),
we consider noncanonical genes for enrichment of mutations. Results are compared between the proteomic compendium and The Cancer Genome Atlas
(TCGA), where we observed significant overlap between the respective gene-level associations (p < 5E−8, one-sided Fisher’s exact test). b List of top
mutated genes overlapping between proteomic compendium and TCGA results (p < 0.01 and p < 0.001, respectively, one-sided Fisher’s exact test). Results
involve 12 genes with mutation events enriched within tumors with high MYC signature but noMYC orMYCN copy gain or amplification. c Across both the
proteomic compendium (left) and TCGA (right) tumor datasets, heat maps of MYC/MYCN copy alteration and of somatic mutation (SNV or indel) in
genes from b. SD standard deviation from the median. Cancer type color bar legend defined in d. d Box plots of MYC/MYCN signature scores by alteration
class in proteomic compendium (left) and TCGA (right) tumor datasets. p values versus unaligned group (tumors with none of the listed alterations) by t-
test. Box plots represent 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). n= biologically independent
tumors. Cancer type represents TCGA project name.
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Liver Cancer project. For CPTAC projects utilizing tumors from TCGA, we
obtained somatic mutation calls by whole-exome sequencing from the publicly
available “MC3” TCGA MAF file [https://www.synapse.org/#!Synapse:syn7214402];
variants called by two or more algorithms were used in this study. For the other
CPTAC projects, we obtained whole-exome somatic mutation calls from the
Genome Data Commons [https://gdc.cancer.gov/]; variants called by two or more
algorithms were used in this study. For the prostate cancer dataset, we obtained
whole-genome somatic mutation calls from the supplemental of ref. 53. Somatic
SNV calls from the ICPC Gastic Cancer project were kindly provided by the authors
of the associated study18.

In considering proteins versus mRNA features significantly associated with
small mutation status of TP53 or KRAS, we considered the 8734 genes for which
there were both data for more than 1000 tumors and for >50% of samples in at
least seven cancer types. For TP53, any somatic SNV or indel were considered. For
KRAS, somatic SNVs occurred in “hotspot” residues reported by ref. 54 were
considered. Differential expression between comparison groups was determined
using t-test on the expression levels as normalized within each study, with FDR
estimated using the method of Storey and Tibshirani51.

Pan-cancer molecular subtype discovery. ConsensusClusterPlus R-package55

(using R version 4.1.1) was used to identify the structure and relationship of the
samples. For unsupervised clustering analysis, we selected the top 2000 most
variable proteins from the proteomic compendium dataset of total protein
(taken from the set of 3976 unique proteins represented in at least half of
samples for all 14 cancer types represented), according to average standard
deviation (using log-transformed expression values centered to standard
deviations from the median within each cancer type) across the 14 cancer types.
Consensus ward linkage hierarchical clustering identified k= 2 to
k= 20 subtypes, with the stability of the clustering increasing with increasing k.
We considered multiple subtype solutions, as described in Fig. S2. Beyond
k= 13, we observed no further meaningful separation of the tumors as repre-
sentative of distinctive biology. When further examining the 13-subtype solu-
tion, some subtypes appeared similar to each other on a visual inspection of the
differential expression patterns. Therefore, we consolidated these subtypes into
one, which resulted in a final 11 subtype solution. Our previous proteome-based
molecular subtyping study21 had referred to its set of subtypes as k1 through
k10, based on the “k” in the k-means algorithm used in ConsensusClusterPlus.
In this present study, we referred to the second set of subtypes of s1 through
s11—the “s” representing “subtype”—as we wanted to draw distinctions between
the respective sets of cluster assignments.

We examined an RNA-seq dataset of pediatric brain tumors from CBTTC,
classifying each tumor RNA-seq profile by pan-cancer proteome-based subtype. Of
the 909 unique patients represented in the CBTTC dataset, 696 did not have
proteomic data. Where multiple tumors were taken from the same patient, we
considered only one tumor profile in the downstream survival analyses. For the
RNA-seq profiles being classified, we first normalized log2-transformed genes or
proteins to standard deviations from the median. As a classifier, we used the top set
of 1073 proteins (from the present study, Fig. 3) distinguishing between the pan-
cancer subtypes. For each pan-cancer subtype, we computed the average
normalized value for each protein, based on the centered expression data matrix.
We then computed the Pearson correlation between each CBTTC RNA-seq profile
and each pan-cancer subtype averaged profile. We assigned each RNA-seq profile
to a pan-cancer subtype, based on which subtype profile showed the highest
correlation with the given external dataset profile.

Differential expression analyses. We assessed differential expression between
comparison groups using t-tests on expression values log2 transformed and nor-
malized within cancer type as described above. For the top pan-cancer proteome-
based subtype correlates (both for total protein and phospho-protein), normalized
expression levels of each subtype were compared with the rest of the tumors by t-
test. For defining the top over-expressed protein features for each subtype were first
compared with the rest of the tumors. For a given subtype, a top protein had the
highest differential expression by t-statistic compared to that of the other subtypes
and a higher t-statistic compared to the other proteins that did not make the top
list. When defining the top 100 over-expressed proteins for each subtype, in some
cases, a subtype may have fewer than 100 top proteins (e.g., for the s7 subtype,
where more under-expressed total proteins versus over-expressed proteins were
associated with the subtype). For the differential analysis of phospho-proteins, we
focused on the 5419 phospho-proteins with available data for >50% of samples in
at least seven cancer types.

To determine differential levels for a given protein or mRNA according to
increasing tumor grade, we took the Pearson correlation between the log-
transformed gene-level molecular values and the grade translated into a numerical
value. When converting tumor grade into a numerical variable, grade categories
such as “G1”, “G2”, and “G3”, for example, were translated as 1, 2, and 3,
respectively, for differential analyses. For each cancer type, we selected for
downstream analyses the set of differential proteins or mRNAs with Pearson p
value <0.01. Even in instances of nominally significant proteins that moderately
exceed chance expectations by estimated FDR, the top proteins may still contain
molecular information representing real biological differences. For example, most

of the top protein lists examined showed significant enrichment patterns by
wikiPathways analysis. For the pediatric brain tumor dataset, grade comparisons
were restricted to pediatric gliomas (comparing high-grade versus low-grade
tumors).

We evaluated enrichment of GO annotation terms27 and wikiPathways28 within
sets of differentially expressed genes using SigTerms software56 and one-sided
Fisher’s exact tests, with FDRs estimated using the method of Storey and
Tibshirini51. GO annotation gene sets with less than ten genes were not considered
for top results by FDR. Gene sets for each wikiPathway were downloaded in July
2019 (“20190710” version). For GO term enrichment analysis, we used all 10129
unique proteins represented in half of the tumors for at least seven cancer types
profiled as the reference population. We searched each proteomic signature of the
total proteins for enriched GO terms, with “high” proteins evaluated separately
from “low” proteins. For wikiPathways enrichment analysis, we used all 6597
unique proteins represented in at least one wikiPathway as the reference
population.

Proteins high in s11 tumors were highly enriched for brain tissue-specific genes
by GTEX [https://www.gtexportal.org]. Taking the GTEX dataset, the 11,311 genes
with average TPM values greater than 5 and with Entrez ID represented in our
proteomic compendium dataset were considered. From GTEX, we selected the top
10% of genes with the most significant expression in brain tissues versus other
tissues (by t-test using log2-transformed data). Of the top 100 proteins highest in
the s11 subtype, 58 were among the top 10% brain tissue-specific genes, a highly
significant overlap (p < 1E−35, one-sided Fisher’s exact test).

Classification of external proteomic datasets. We examined external, multi-
cancer proteomic profiling datasets, classifying each external tumor or cell line
profile by pan-cancer subtype as defined using our proteomic compendium dataset
(see above). Within each cancer type of the external dataset being classified, we
normalized log-transformed proteins to standard deviations from the median. As a
classifier, we used the top set of proteins distinguishing between the pan-cancer
subtypes. For each pan-cancer subtype, we computed the average normalized value
for each protein, based on the centered expression data matrix. We then computed
the Pearson correlation between each external profile and each pan-cancer subtype
averaged profile. We assigned each external cancer case to a pan-cancer subtype,
based on which subtype profile showed the highest correlation with the given
external dataset profile. Supplementary Data 4 provides example calculations in
Excel, by which the TCGA and CCLE proteomic profiles are classified according to
proteome-based pan-cancer subtype. For the RPPA dataset, we used as a classifier
the set of represented total protein features from which a significant association
with a particular subtype was observable in the proteomic compendium dataset
(p < 0.001 by t-test, based on logged and centered protein expression values).
Where multiple RPPA features referred to the same protein, we randomly selected
one feature.

Gene signature analyses. Our group previously collected gene signatures
involving pathways of interest21,23,57. We computed pathway-associated gene
expression signature scores (e.g., scores for EMT, hypoxia, KEGG: Glycolysis/
Gluconeogenesis, KEGG: Pentose Phosphate pathway, KEGG: Fatty Acid
metabolism, KEGG: TCA Cycle, and KEGG: Oxidative Phosphorylation or OX-
PHOS, k-ras, MYC, Notch, NRF2/KEAP1, PI3K/mTOR, p53, Wnt, and YAP1)
as follows, with all genes previously associated with the given signature used in
the scoring calculation. We used the normalized values within the proteomic
and transcriptomic compendium datasets (values normalized to standard
deviations from the median within each dataset and cancer type). For NRF2/
KEAP1, hypoxia, Notch, p53, KEGG, and GO term signatures, we computed the
average expression of the set of genes within a given signature. For k-ras, MYC,
PI3K/mTOR, Wnt, and YAP1 signatures, normalized expression profiles were
scored for the above signatures using our t-score metric58. We generated gene
signature scores of NRF2/KEAP1 pathway as described59, based on four dif-
ferent signatures57. The hypoxia signature was the set of canonical HIF1A tar-
gets from Harris60. We generated gene transcription signature scores of YAP1
pathway, based on four different signatures57. The MYC signature (from data by
ref. 61) was from ref. 62. The Settleman k-ras sensitivity signature was from
ref. 63. The Wnt signature was taken directly from ref. 64. NOTCH signature was
defined previously65. The PI3K/ mTOR signature was defined in ref. 37, invol-
ving mRNAs modulated in vitro by inhibitors to PI3K or mTOR, according to
CMap dataset (p < 0.01, comparing PI3K/mTOR-inhibited cells with the rest of
the Cmap profiles). While we had previously developed PI3K/AKT/mTOR
proteomic signatures, based on phosphorylation levels of canonical pathway
members as measured by reverse-phase protein arrays37, these proteins were not
measured consistently in sufficient numbers of tumors across our mass
spectrometry-based proteomic compendium. Gene targets of p53 were from
ref. 66. Scores for signatures of canonical nueroendocrine (NET) and epithelial-
mesenchymal transition markers were computed as previously described23. Gene
signatures for complement activation pathway, MMPs, collagen VI, hemoglobin
complex, endoplasmic reticulum, and steroid biosynthetic pathway were defined
using GO. Canonical markers of neuroendocrine tumors considered were CDX2,
CHGA, ENO2, NCAM1, and SYP23.
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To computationally infer the infiltration level of specific immune cell types
using proteomic data, we used a set of 501 genes specifically over-expressed in
one of 24 immune cell types from ref. 67. For each Bindea immune cell type
signature, we computed the average expression of the set of genes within the
given signature. For T cells, we computed a signature score based on the average
normalized values of five canonical markers (LCK, CD3E, CD3D, CD3G, CD2).
For cytotoxic T cells, we computed a signature score based on canonical markers
CD8A and CD8B. For T helper and regulatory T cells, we considered CD4
marker expression. For an immune checkpoint pathway signature, we computed
the average of normalized protein values for a set of previously defined genes
representing targets for immunotherapy57, including PDCD1 (PD1), CD247
(CD3), PDCD1LG2 (PDL2), CTLA4 (CD152), TNFRSF9 (CD137), and
TNFRSF4 (CD134). In addition, sample profiles were scored for average
normalized expression of Antigen Presentation MHC class I (APM1) genes
(HLA-A/B/C, B2M, TAP1/2, TAPBP) and for average normalized expression of
Antigen Presentation MHC class II (APM2) genes.

Pathway-level somatic alteration categories. For the pathway-centric view of
somatic alterations across the proteomic compendium tumors (Fig. 7), we focused on
key pathways and genes previously annotated across multiple cancer types based on
domain knowledge (see Methods)23,25,57,68. Of the 2002 human tumors with proteomics
data in our compendium, 1597 tumors had combined whole-exome and CNA data. Key
pathways and genes considered included: RTK pathway (BRAF, EGFR, ERBB2, ERBB3,
ERBB4, FGFR1, FGFR2, FGFR3, FGFR4, HRAS, KIT, KRAS,MET, NF1, NRAS), Hippo
pathway (NF2, SAV1, WWC1), chromatin modification (CREBBP, EHMT1, EHMT2,
EP300, EZH1, EZH2, KAT2A, KAT2B, KDM1A, KDM1B, KDM4A, KDM4B, KDM5A,
KDM5B, KDM5C, KDM6A, KDM6B, KMT2A, KMT2B, KMT2C, KMT2D, KMT2E,
NSD1, SETD2, SMYD4, SRCAP), SWI/SNF complex (ACTB, ACTL6A, ACTL6B,
ARID1A,ARID1B,ARID2, BCL11A, BCL11B, BCL6, BCL6B, BRD7, BRD9,DPF1,DPF2,
DPF3, PBRM1, PHF10, SMARCA2, SMARCA4, SMARCB1, SMARCC1, SMARCC2,
SMARCD1, SMARCD2, SMARCD3, SMARCE1), mTOR pathway (AKT1, AKT2, AKT3,
MTOR, PIK3CA, PIK3R1, PTEN, RHEB, STK11, TSC1, TSC2, IDH1, IDH2,VHL), MYC
family (MYC, MYCN), Wnt/beta-catenin (APC, AXIN1, CTNNB1, FGF19, NCOR1),
p53/Rb-related (ATM, CCND1, CCNE1, CDK4, CDKN1A, CDKN2A, E2F2, E2F3,
FBXW7,MDM2, RB1, TP53), and NRF2 pathway (NFE2L2, KEAP1, CUL3, SIRT1, FH).
For known oncogenes with hotspot mutations (e.g., AKT1, MTOR, PIK3CA, RHEB,
BRAF, EGFR, ERBB2, ERBB3, FGFR2, HRAS, KRAS, NRAS, NFE2L2), if an SNV
occurred in “hotspot” residues as reported by ref. 54, we considered the SNV in the
analysis. At both the gene and pathway levels, we tabulated somatic alterations in the
following order: SNV or indel, homozygous copy loss, heterozygous copy loss, high-level
amplification (approximating five or more copies), copy gain (approximating 3–4
copies). WE considered heterozygous copy loss events for pathways RTK, Hippo,
chromatin modification, SWI/SNF, mTOR, Wnt/beta-catenin, and p53/Rb-related. For
MYC/MYCN, we considered copy gain in addition to high-level amplification. We did
not include silent or synonymous SNVs in cataloging somatic alterations.

Oncogene negative enrichment analyses. TCGA datasets were compiled pre-
viously, with tumors assigned pathway-associated gene signature scores based on
RNA-seq data and annotated according to pathway-centric somatic alterations as
described above23. For TCGA tumors, we obtained somatic mutation calls from the
publicly available “MC3” TCGA MAF file [https://www.synapse.org/#!Synapse:
syn7214402]; variants called by two or more algorithms were used in this study.
Analyses focused on the 10,224 tumors with RNA-seq data.

For both the proteomic compendium and TCGA datasets, we sought to identify
enrichment patterns of small mutations within tumors that showed high pathway-
associated expression signature but without a canonical alteration identified by pathway
annotation. For this analysis, we focused on the 190 genes in both the COSMIC Cancer
Consensus Gene List39 and the set of significantly mutated genes from the TCGA
PanCanAtlas project40. We evaluated each pathway for which both mutation
annotation and expression signature scores were available (MYC/MYCN, Hippo,
mTOR, NRF2, p53/Rb-related, RTK, Wnt/beta-catenin). Taking the set of tumors with
high signature scoring for a given pathway (SD> 0.5 from the sample median) but with
no canonical mutations (based on Fig. 7), we looked for statistical enrichment of SNV or
indel events (by one-sided Fisher’s exact test) involving any of the 190 genes. We
compared results between the proteomic compendium and TCGA, and we selected for
downstream analyses the genes with enrichment of mutation events for both datasets
(p < 0.01 and p < 0.001, respectively, one-sided Fisher’s exact test).

Statistical analysis. All p values were two-sided unless otherwise specified.
Nominal p values do not involve multiple comparison adjustments, while FDRs
involve p values adjusted for multiple gene feature comparisons. We performed all
tests using log2-transformed expression values. Visualization using heat maps was
performed using both JavaTreeview (version 1.1.6r4)69 and matrix2png (version
1.2.1)70. Figures indicate the exact value of n (number of tumors), and the statistical
tests used are noted in the figure legends and next to reported p values in the
Results section. Box plots represent 5% (lower whisker), 25% (lower box), 50%
(median), 75% (upper box), and 95% (upper whisker).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Proteomics data are available for
CPTAC and ICPC studies at the Proteomic Data Commons (https://pdc.cancer.gov/).
For CPTAC studies, transcriptome data, copy number data, and small somatic mutation
data are available at the Genomic Data Commons (https://gdc.cancer.gov/). Raw
genomic and transcriptomic CPTAC data can be accessed via dbGap Study Accession:
phs001287.v13.p5. Raw data may be obtained once authorized access is granted via Data
Use Certification (DUC) agreement. Genomic and transcriptomic liver cancer data are
available at https://www.biosino.org/node/project/detail/OEP000321. Genomic and
transcriptomic prostate cancer data are available at found on European Genome-
Phenome Archive (EGA), under accession EGA: EGAS00001000900. Genomic and
transcriptomic gastric cancer data are available in NCBI SRA (PRJNA505380) and GEO
(GEO: GSE122401) databases, respectively. TCGA data RNA-seq data are also available
from the Broad Institute’s Firehose data portal (https://gdac.broadinstitute.org). The
TCGA RPPA dataset is available from the TCPA portal (http://tcpaportal.org/tcpa/).
Cancer Cell Line Encyclopedia (CCLE) datasets are available from the CCLE website
(http://www.broadinstitute.org/ccle). For other published studies, molecular data
availability information is provided in the associated publication. The compendium
datasets of molecular profiles for total protein, phospho-protein, and mRNA—compiled
as part of our study—are available through GitHub (https://github.com/chadcreighton/
cancer-proteomics-compendium-n2002). Each molecular dataset is uploaded on GitHub
as a series of separate project files, using a common protein feature set with the same
ordering across files. One can concatenate the files together. Each molecular dataset has a
common sample set, allowing one to derive correlations between datasets (e.g., between
mRNA and protein). The phospho-protein datasets consist of 5419 phospho-protein
features that had available data for >50% of samples in at least seven cancer types. Any
remaining data are available within the Article or Supplementary Information. Source
data are provided with this paper.

Code availability
Source code in R (written using version 4.0.3) for identifying de novo pan-cancer
proteomic subtypes, using ConsensusClusterPlus method (version 1.59.0), with an
example data table of proteomic expression for the top ~2000 variable genes across 2002
tumor, is available at Github (https://github.com/chadcreighton/cancer-proteomics-
compendium-n2002).
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