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Abstract: The timely and effective control and repair of wound bleeding is a key research issue all
over the world. From traditional compression hemostasis to a variety of new hemostatic methods,
people have a more comprehensive understanding of the hemostatic mechanism and the structure
and function of different types of wound dressings. Electrospun nanofibers stand out with nano size,
high specific surface area, higher porosity, and a variety of complex structures. They are high-quality
materials that can effectively promote wound hemostasis and wound healing because they can imitate
the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and
angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not
only has high compatibility with the human body but can also be combined with a variety of drugs to
further improve the effect of wound hemostatic dressing. This paper summarizes the application of
different amino acid electrospun wound dressings, analyzes the characteristics of different materials
in preparation and application, and looks forward to the development of directions of poly(amino
acid) electrospun dressings in hemostasis.

Keywords: amino acids; hemostasis; electrospinning; wound dressing

1. Introduction

Coagulation is a complex process from unstable platelet embolism to stable insoluble
fibrin in plasma. The coagulation process requires a combined and integrated response
from all parts of the human body. In the initial hemostatic stage, platelets will form
an initial platelet plug [1,2]. Platelets interact with von Willebrand factor (VWF), first
binding to collagen, and then stably adhering to damaged vascular endothelial cells. When
platelets are activated, they trigger the aggregation of other locally activated platelets.
Platelets gather through the fibrinogen bridge, produce fibrin clots through the action of
thrombin, and finally contract to form a tightly packed thrombus [3,4], as shown in Figure 1.
Thrombin plays a central role in activating coagulation factors and platelets. When the
secondary hemostatic stage is reached, the coagulation cascade includes intrinsic and
extrinsic coagulation pathways, which are initiated by different substances and different
substances and factors and are two different response pathways.

The coagulation pathways of the human body mainly include intrinsic hemostasis and
extrinsic hemostasis. Intrinsic coagulation refers to that all the coagulation factors involved
come from the blood, which is usually activated due to the contact between the blood and
negatively charged foreign bodies. When blood comes into contact with a foreign body
surface, the coagulation factor FXII first binds to the foreign body surface and is activated
to FXIIa due to the negative charge of the foreign body surface. At the same time, the
generated FXIIa can activate FXI to become FXIa, thus initiating the intrinsic coagulation

Biomolecules 2022, 12, 794. https://doi.org/10.3390/biom12060794 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12060794
https://doi.org/10.3390/biom12060794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-8005-5460
https://orcid.org/0000-0001-7825-4498
https://orcid.org/0000-0002-4757-2159
https://doi.org/10.3390/biom12060794
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12060794?type=check_update&version=1


Biomolecules 2022, 12, 794 2 of 27

pathway. In addition, FXIIa can promote the formation of FXIIa by activating prekallikrein.
All coagulation factors involved in this clotting process come from the blood itself. On
the contrary, when vascular trauma exposes tissue factor (TF) to the blood, the external
pathway involving extrinsic coagulation factors begins [5,6].
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cantly improve hemostasis, they may cause systemic thrombosis. Metal ions, especially 
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Figure 1. Mechanism diagram of coagulation process. (A) Hemostatic simulation diagram of dam-
aged vascular model; (B) an overview of the coagulation cascade.

Extrinsic coagulation refers to that not all the coagulation factors involved exist in the
blood, and there are foreign coagulation factors involved in hemostasis. This process starts
from the exposure of tissue factors to blood to the activation of FX. Due to the presence
of calcium ions, TF is able to activate coagulation FVII. Then, the complex formed by the
combination of TF and active FVII is able to continue activating FX, from activation of FX
to the formation of fibrin clots. Then, the hydrolytic action possessed by thrombin is able to
cleave fibrinogen, resulting in the formation of fibrin monomers [7]. The fibrin monomers
are cross-linked with the involvement of Ca2+ and activated FXIII, eventually forming a
solid fibrin clot that enhances platelet embolization during the initial hemostasis [8]. In the
clinic, prothrombin time is used to reflect the status of the extrinsic coagulation pathway.
The time required for extrinsic coagulation is short and the reaction is rapid. The extrinsic
coagulation pathway is mainly regulated by tissue factor pathway inhibitor (TFPI). In
addition, studies have shown that intrinsic and extrinsic coagulation pathways can activate
each other [9].

Although materials that can directly activate the coagulation cascade can significantly
improve hemostasis, they may cause systemic thrombosis. Metal ions, especially Ca2+,
show a significant character in the coagulation process. Ca2+ is a cofactor that plays a
universal role in the coagulation cascade. Important coagulation cascade steps such as the
conversion of prothrombin to thrombin and the polymerization of monomers into fibrin
involve Ca2+. Ca2+ is an imported cofactor in the coagulation cascade, accelerating platelet
aggregation and activating the coagulation process, as well as enhancing material–wound
adhesion. In addition, Ca2+ has a high water absorption rate and can be used to improve the
plasticity of the material [10–13]. In addition, insufficient hemocompatibility can directly
activate the coagulation process. Therefore, materials with passive access hemostatic
mechanisms need to have surface properties such as hemocompatibility, antithrombotic,
and anti-infective properties [14–16].

The general theory of wound healing is divided into four stages, namely the hemo-
static, inflammatory, proliferative, and remodeling stages of the wound. The barrier
function of the skin is very important, serving to insulate, retain moisture, and protect
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the body from pathogens, so damage to the integrity of the skin can pose serious health
risks to the body. In order to achieve rapid healing of damaged skin, the intrinsic healing
process at the wound site begins immediately. Platelets will accumulate at the wound site
and the fibrin clot will form at the same time, so blood flow will stop within a few minutes
(Figure 2A). At this time, inflammatory cells such as neutrophils and monocytes are re-
cruited to the wound site by locally released growth factors (GFs) and cellular mediators
(Figure 2B). Removal of foreign bodies, bacteria, and damaged intrinsic tissues is the main
task of the inflammatory response phase. When the phase is over, fibroblasts and epithelial
cells are induced by macrophage GFs, proliferate, and migrate into the wound (Figure 2C).
During the proliferative phase of the wound, new blood vessels gradually grow at the
wound site, gradually producing enhanced collagen fiber, and granulation tissue consisting
of epithelial cells, fibroblasts, and keratin-forming cells. However, complete wound healing
is still a long-term process, taking weeks or months depending on the wound condition
(Figure 2D). As the wound shrinks, granulation tissue is subsequently converted to a more
stable ECM. Overall, wound healing time depends largely on the patient’s age, health
status, and the presence of external factors such as the presence of an unremoved foreign
body in the wound or the occurrence of a recurrent infection. Healing of acute wounds
follows the above process and is completed within 8–12 weeks. However, for chronic
wounds that take longer, they tend to stagnate in the inflammatory phase with massive
exudation, severe infection, pain, and tissue necrosis, as in diabetic foot [17,18]. In such
cases, chronic wounds often take longer to heal, even by years.
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(D) remodeling.

There are two views on wound healing, traditional clinical wound care believes that a
dry environment with low humidity is conducive to wound healing and that oxygen in the
air participates in the reproductive repair of wound tissue to accelerate the healing process.
Therefore, the breathable dressing can achieve the purpose of more oxygen contact and
make oxygen contact and make the cells proliferate rapidly. In fact, the dry healing method
has obvious defects in theory: the cells in the wound do not react directly with oxygen
in the air, which needs to be chemically combined with hemoglobin in the blood to be
utilized [19,20]. Moreover, in actual clinical care practice, there are many disadvantages: the
surface of the bed is dry and dehydrated, and the crawling of epithelial cells is hindered; the
wound leaks rapidly, and the dressing needs to be changed frequently, so it cannot maintain
a mild environment for the wound, which affects the process of cell reproduction and
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differentiation and makes the wound healing slow; the dry dressing is easy for the newly
grown granulation tissue to stick to each other, and frequent changing is likely to cause
secondary damage to the wound. The contact time between wound surface and air is long,
and the dry healing dressing has large pores, which cannot effectively organize the invasion
of bacteria and other harmful substances in the air and is prone to infection [21–23].

An ideal wound dressing usually needs to be non-antigenic, biocompatible, semi-
permeable, biodegradable, flexible, and cost effective, and the wound dressing should
preferably not adhere to the wound bed but should act on the surface of the wound. It must
protect the wound from bacteria, infection, mechanical forces, and temperature, maintain
a moist wound environment and be able to load certain drugs and active substances.
Excellent wound dressings can effectively prevent wound infection and maintain the
wound at the proper temperature and moderation in order to better promote surface-
wound healing [24,25]. For severe burns, deep ulcers and other deeper wounds may not
heal adequately due to the quality of the skin appendages not being good enough to
produce a certain amount of regenerative buds. Dermal substitutes are an effective way
to treat partially deep wounds, including decellularized and cell-seeded substitutes that
can heal the defective site by promoting nearby cell migration. Full-layered wounds are
a major problem in treatment because they contain not only epidermis and dermis but
also subcutaneous fat and deep tissue, which can be more difficult to heal than superficial
and partial thickness wounds. For these types of wounds, it is usually necessary to use
autologous skin grafts or artificial skin substitutes for skin wound healing [26–28].

Electrospinning is able to structurally mimic the human ECM structure due to its
nanoscale structure. At the same time, due to the high specific surface area, high porosity,
and small size of nanofibers, they can be loaded with active ingredients that can promote
therapy and can provide air exchange to the wound site and keep the healing environment
moist. Electrospun nanofibers can also be personalized to the wound site, with handheld
electrospinning enabling immediate clinical coverage of the wound [29], further enhancing
the fit of the electrospun dressing to the wound [30,31]. The development of electrospinning
technology in the field of hemostasis and wound healing has good prospects, and selecting
amino acid-based polymers can largely enhance the biocompatibility of nanofibers for
better utilization in biomedical and other fields [32,33].

A search of the literature in recent years on “Electrospun wound dressing” and “Amino
acid electrospun wound dressing” was carried out on the “Web of Science” platform. As
shown in Figure 3, the number of publications on the topic of “Electrospun wound dress-
ings” has been increasing year by year and has been maintained at more than 100 articles
in recent years, indicating that the preparation of wound dressings by electrospinning has
become a hot spot for research. The number of publications on the topic of “Amino acid
electrospun wound dressings” is small but also on the rise, indicating that the development
of amino acid materials in the field of electrospun wound dressings has certain prospects.
This paper reviews the research progress of amino acid electrospinning materials in wound
hemostasis and modification, and introduces the preparation technology of amino acid
nanofibers and their latest applications in wound hemostasis and modification.
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2. Electrospinning Technology
2.1. Introduction to Electrospinning Technology

Electrospinning differs from other spinning technologies, mainly in that the polymer
solution or melt under the action of a high voltage electric field produces flow and deforma-
tion, generating a Taylor cone at the tip of the spinneret, and when the electric field strength
is large enough to enable the droplets to overcome surface tension, a high-speed jet is
generated, which is deposited on the receiving device to obtain fibers after a short distance
electric field force of high speed stretching, solvent volatilization, and curing [34–36]. There
are four main components in the electrospinning device, a high-voltage power supply
that can generate up to 30 kV to higher voltages, a high-precision micro-pump with flow
control, a nozzle, and an aluminum foil collector for fiber collection. The principle is that a
polymer solution of a certain viscosity is loaded into a syringe with a metal nozzle, fixed
to a metering pump, and a high-voltage electrostatic field is applied to the nozzle and
the collector. When the voltage exceeds the critical value and the electrostatic force is
greater than the surface tension of polymer droplets, a jet is generated at the spinneret,
and the polymer solution is injected into the collector from the tip of the nozzle to form a
nanofiber film. Fiber prepared by electrospinning is generally in the nanometer size and
has extremely important applications in various fields due to its small size, large specific
surface area, high porosity, large aspect ratio, and continuous uniformity stability.

Nanofibers have gained wide attention and applications in drug release, trauma
recovery, and biological tissue engineering because of their small nanoscale size, large
porosity, and high specific surface area. The diameter of nanofibers is smaller than that
of cells, which can simulate the natural ECM in terms of structure and physiological
function. It is also because of the nanoscale size of nanofibers that most tissues and
organs in the human body are similar in form and structure to nanofibers, which also
provides the possibility of biological tissue and organ repair [37,38]. At the same time,
we also need to focus on the relationship between hemostatic materials and human body
reactions. The use of materials with good biocompatibility allows better treatment without
rejection, and materials with good biodegradability can reduce the pain of patients when
removing dressings.

Electrospinning, as a technology that makes nanotechnology possible, allows not only
the preparation of single polymer nanofibers but also the blending of multiple polymers
and loading them with bioactive substances, and is widely used in wound healing. The
extracellular matrix of the skin is composed of collagen, elastin, laminin, and various
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polysaccharides and proteoglycans together as fibrous structural proteins. Nanofibers with
a composition and structure/system similar to that of ECM in skin tissue can be fabricated
by electrospinning. Electrospun nanofibers can modulate skin cell proliferation, migration,
differentiation, and extracellular matrix deposition responses [39–41]. Because of these
unique properties, the nanofibers can be used as surgical sutures, wound dressings, and
other fields, as well as wound healing and tissue engineering. Infection prevention is
achieved by antimicrobial agents to nanofiber dressings or sutures since bacteria have
developed some resistance to most antimicrobial agents such as antibiotics [42–44].

For synthetic or natural polymers with biodegradability electrospinning, nanofibers
have been used to prepare nanofibrous membranes. These nanofibrous membranes have
an extracellular matrix-like structure that provides a template for the proliferation of skin
cells, thereby stimulating tissue regeneration. Electrospun nanofiber membranes have
high porosity and large specific surface area, which can absorb the wound exudate in time,
promote the transfer of nutrients in the wound environment, maintain the gas exchange
at the wound site, and prevent the wound from dehydration [45,46]. In addition, the
nanofiber membrane is soft, can be tailored to the size and shape of the wound, and is
highly pliable; the nanofiber membrane protects the wound on a physical level and is able
to protect the wound from other injuries and invasion by foreign microorganisms [47–51].
Electrospun nanofiber membranes can also be used as drug carriers to load anesthetics,
antibacterial agents, bioactive molecules, etc., depending on different types of skin wounds
(e.g., burns, trauma, chronic disease ulcers, etc.) [52,53]. It is made to function while
controlling the release of drugs and promoting the wound healing process [54,55]. In
addition, nanofiber film as a wound dressing needs to be in direct contact with the wound
surface and can be sterilized by radiation or UV to ensure its sterility. By immobilizing
blood cells, platelets, and other clotting factors, the nanofiber matrix, which has a structure
similar to that of natural fibers, provides control of bleeding [56,57]. There are many ways
to prepare nanofiber matrices, but the most traditional method is electrospinning.

2.2. Electrospinning Classification

Electrospinning can be classified into single fluid electrospinning, double fluid elec-
trospinning, and multi-fluid electrospinning based on the type of spinning solution used
in electrospinning. According to the geometry of the spinneret or nozzle that controls
the production of nanofibers with different morphological structures, single-fluid electro-
spinning can be divided into blend electrospinning and emulsion electrospinning, and
double-fluid electrospinning into coaxial electrospinning and Janus electrospinning and
multi-fluid electrospinning. It is also possible to selectively load functional drugs during
the preparation of spinning solutions, as shown in Figure 4.

2.2.1. Single Fluid Electrospinning

Single-fluid electrospinning is the most basic production method of electrospinning,
usually one or several polymers used are co-blended and dissolved in a solvent, and then in-
organic nanoparticles, drugs, etc., that need to be added are added for
electrospinning [58,59]. Single-fluid electrospinning is limited by the presence of only
one spinning solution, thus also limiting the application of some good performance but
non-spinnable polymer solutions [60]. Nasser et al. [61] loaded the antibiotic gentamicin
sulfate and the local anesthetic lidocaine hydrochloride on PLLA nanofibers using poly(L-
lactic acid) (PLLA) as the spinning solution substrate. In addition, the loading of aluminum
chloride with a hemostatic effect on PLLA nanofibers can better utilize the hemostatic
effect of nanofibers. Habiba et al. [62] co-blended chitosan, polyvinyl alcohol (PVA), and
zeolite and performed electrospinning to obtain nanofibers with good adsorption and
desorption rates, which can be well applied to wastewater treatment for the adsorption and
purification of metal ions, etc. Single-fluid electrospinning is the most basic electrospinning
method, on the basis of which two fluids and even multi-fluid electrospinning methods
have also been developed, extending the application of electrospinning in various fields.
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Emulsion electrospinning is a special single-fluid electrospinning method for obtaining
nanofibers with a core-shell structure by only one solution. Electrospinning of emulsions
produces nanofibers with a core-shell structure because the water and oil phases in the
emulsion are delaminated, and when loaded with hydrophilic drugs, the drugs dissolved
in the aqueous phase gradually diffuse into the emulsified oil phase and are contained in
the core layer, eventually forming nanofibers with a core-shell structure. Parin et al. [63]
firstly dispersed psyllium husk (PSH) in PVA and then blended it with D-limonene,
which has a natural antibacterial effect, to prepare nanofibers by emulsion electrospinning.
Hosseini et al. [64] used polyethylene glycol (PEG) as the aqueous phase and ethyl cellulose
(EC) in ethyl acetate as the oil phase and encapsulated α-amylase in it to prepare nanofibers
by the emulsion electrospinning method. This storage method of enzyme fixation has
high stability, which can reach 20 times that of common free enzyme, and it is a novel and
efficient enzyme immobilization system.

2.2.2. Double Fluid Electrospinning

The biggest difference between the Janus structure and the core-shell structure is that
both sides of the spinning solution in the Janus structure make direct contact with air, and
the two spinning solutions are in contact but with relatively little interfacial interaction,
and this structure also suggests a new direction for the development and application of
new nanomaterials. However, Janus fibers are not easy to prepare because the two parallel
working solutions are introduced into the electric field with the same charge and usually
repel and separate from each other. Therefore, the spinning solution and spinning condi-
tions are carefully modulated. Yang et al. [65] prepared Janus wound dressings composed
of polyvinylpyrrolidone (PVP) and ethyl cellulose (EC) polymers by parallel electrospin-
ning, and the ciprofloxacin (CIP) and silver nanoparticles (AgNPs) were loaded on both
sides. Firstly, the two-phase structure of the nanofibers could be clearly demonstrated by
morphological observation, and then both in vitro dissolution experiments and antibacte-
rial experiments could show that the added drug and metal nanoparticles could exhibit
the advantages brought by the Janus structure in the prepared electrospun nanofibers.
Zheng et al. [66] used ethyl cellulose (EC) and polyvinyl pyrrolidone K60 (PVP) as a two-
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phase solution and loaded with tamoxifen citrate (TAM) as the active drug component,
and electrospinning was performed using eccentric spinneret. As shown in Figure 5A,
a distinct Janus structure with one side round and one side crescent can be observed by
scanning electron microscopy. Due to the presence of Janus nanostructure, it can release
TAM rapidly in the first stage and slowly in the latter phase. This nanofiber with a Janus
structure provides a new drug release system, which has a promising future in the field of
controlled drug release and further applications.

Coaxial electrospinning technology was developed on the basis of electrospinning.
The emergence of coaxial electrospinning technology can make up for certain polymers
due to its electrospinning limitations, which cannot be stretched into fibers by ordinary
electrospinning defects. Coaxial electrospinning has the advantage of further molding, can
be easy to spin a polymer solution as the shell layer, cannot be spun or is difficult to spin a
polymer solution as the core layer, in the electrospinning process, and the outer layer of the
solution. In the electrospinning process, the outer layer solution acts as a template and the
core layer solution is spun into fibers [67–69]. Coaxial electrospinning is mostly used in the
medical field for the controlled release of drugs, many of which have poor water solubility
and low dissolution rates. Combined with the small diameter, large porosity, and large
specific surface area of nanofibers, it provides a rapid drug release method to promote
the rapid dissolution of insoluble drugs [70,71]. To improve the viability of lactobacillus,
Yu et al. [72] used polylactic acid (PLA) as the main raw material to produce nanofibers by
coaxial electrospinning method, using PLA and fructooligosaccharides (FOS) as the shell
solution, and lactobacillus plantarum was cultured in Man–Rogosa–Sharpe (MRS) agar
to obtain the nucleation solution, which successfully encapsulated Lactobacillus into the
nanofibers. This method successfully improved the viability of lactobacillus and proposed a
novel encapsulation method for active substances. Li et al. [73] designed and prepared core-
shell nanofibers with an ultrathin shell layer using the coaxial electrospinning technique,
as shown in Figure 5B, with polyvinylpyrrolidone (PVP) K90 or polycaprolactone (PCL)
as the core solution and selected drug and PVPK10 as the shell solution. The in vitro
dissolution test confirmed that the core-shell nanofibers with ultrathin shells have good
solubility and the drug in the fibers can be released within 1 min. This study can be used to
prepare structured nanocomposites with ultrathin shells to enhance the rapid dissolution
of insoluble drugs. Coaxial electrospinning has been intensively investigated in the fields
of drug delivery and sustained release.

2.2.3. Multi-Fluid Electrospinning

To adapt to more complex applications and to exhibit more diverse functions, multi-
fluid electrospinning is gradually being widely studied. In the multi-fluid electrospinning
process, at least one solution is required for electrospinning, which greatly enriches the
variety and number of polymers involved in electrospinning and thus brings a new re-
search boom [74,75]. One of the triaxial electrospinning processes is similar to coaxial but
can further extend the capability of electrospinning in creating complex nanostructures.
Yang et al. [76] used a spinnable ibuprofen and alcohol soluble protein mixture as the core
solution, the nonspinnable cellulose acetate (CA) solution was used as the middle layer, and
a nonspinnable acetone/acetic acid solvent as the outermost layer. The spinning solution
flowing from the core layer of the spinneret is spinnable and can be electrospun to form
nanofibers, while the CA in the middle layer is a non-spinnable solution that is deposited as
a thin “nano-coat” on the core solution, while the external solvent has the characteristic of
ensuring a stable and continuous spinning process. The presence of multi-fluids provides
the possibility of more structural combinations for spinning, while the complex spinning
conditions and spinning equipment require further in-depth study. Xu et al. [77] used a
mixture of acetone, DMAc, and ethanol as solvent and dissolved different concentrations
of metformin hydrochloride (MET) and CA as core and middle layer fluids, respectively,
and the pure solvent was used as the outer layer fluid to prepare nanofibers by a modified
three-layer electrospinning process, as shown in Figure 5C. This nanofiber was able to
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achieve a slow release of MET for drugs with water solubility and prolong the adminis-
tration time of water-soluble drugs. Chang et al. [78] fabricated a novel tri-fluid spinning
head with a shell enveloping two separate cores, as shown in Figure 5D. One shell solution
consists of Eudragit® E100 (EE) and paracetamol (PAR), and the two core solutions consist
of Eudragit® L100-55 (EL), PAR and Eudragit® S100 (ES), PAR, respectively. Eudragit® E100
(EE), Eudragit® L100-55 (EL) and Eudragit® S100 (ES) were purchased from Rohm GmbH
& Co. KG (Darmstadt, Germany). This sheath-separate-core nano-structure combines
the three spinning solutions, as shown in Figure 5E, and the characteristic structure can
be observed by SEM images. This new electrospinning structure is able to release drugs
according to different pH and is an intelligent responsive three-phase drug release system,
which has good prospects for application in the field of controlled drug release. Along this
way, some brand-new electrospun nanostructures can be further developed for biomedical
applications [79].
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Figure 5. Nanofibers and spinnerets with different structures. (A) SEM pictures of nanofibers with
Janus structure [66]; (B) production process diagram of coaxial electrospinning [73]; (C) schematic
diagram of three-layer coaxial electrospinning spinneret [77]; (D) new three-fluid electrospinning
spinneret [78]; (E) SEM images of nanofibers with sheath-separate-core nano-structure, as indicated
by the red (The PEL-PAR core) and blue arrows (The ES-PAR core) [78].

2.3. Electrospinning Influence Factors

The factors affecting electrospinning are mainly divided into the nature of the spinning
solution itself, spinning parameters, and environmental parameters. The nature of the
spinning solution itself includes the molecular weight of the polymer, molecular structure,
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the nature of the solvent, the viscosity of the spinning solution, electrical conductivity,
etc. [80–82], as shown in Table 1. The molecular weight of the polymer largely affects the
viscosity and rheological properties of the polymer, which is intuitively reflected in the
diameter of the nanofibers; generally speaking, the higher the molecular weight of the
polymer, the larger the diameter of the nanofibers. A faster solvent evaporation rate will
cause the fibers to not completely split and refine, and the fiber diameter will increase; while
a slow solvent evaporation rate will also make the fibers stick to each other on the collection
plate, and no complete nanofibers will be obtained; the faster the solvent evaporation rate,
the larger the fiber porosity and specific surface area; the slower the solvent evaporation
rate, the less easy to remove the solvent residue. In a certain range, the higher the viscosity
of the spinning solution, the more likely a bead structure will be produced and block the
spinneret; the lower the viscosity, the smaller the fiber diameter, but too low will produce
an electrospray. The dielectric constant of the spinning solution will also have an impact on
the nanofibers; in general, the higher the dielectric constant the smaller the diameter of the
nanofibers, while a dielectric constant that is too small is also likely to produce bead fibers,
which is not conducive to the preparation of nanofibers [83–85].

Table 1. Key parameters affecting electrospinning.

Spinning
solution

properties

Polymer molecular weight The fiber diameter increases with the increase in polymer
molecular weight

Solvent evaporation rate

The faster the solvent evaporates, the greater the fiber diameter; the faster
the solvent evaporates, the greater the fiber porosity and specific surface

area; the slower the solvent evaporates, the less easy to remove the
solvent residue

Spinning solution viscosity
The higher the viscosity of the spinning solution, the easier it is to block
the spinneret; the lower the viscosity, the smaller the fiber diameter, but

too low will produce electrospray

Conductivity of spinning solution The larger the dielectric constant, the smaller the fiber diameter; the
smaller the dielectric constant, the easier it is to produce beads of fiber

Spinning
parameters

Spinning voltage
The higher the spinning voltage, the smaller the fiber size; too much

voltage will lead to unstable spinning; too little voltage fiber diameter
will be coarse, or even produce droplets

Liquid feeding speed The larger the flow rate, the larger the fiber diameter, too large will
produce droplets; low feed rate spinning process is easy to interrupt

Collector Influence the three-dimensional structure and arrangement of the product

Distance between spinning head and collecting plate
Spacing is too small solvent cannot be fully evaporated; spacing is too

large to affect the electric field strength, but also make the fiber is not easy
to deposit and fly into the air

Environmental parameters
Spinning environment temperature Increasing the temperature increases the rate of solvent volatilization, and

hollow nanofibers can be obtained by increasing the temperature

Spinning environment humidity Elevated humidity reduces the rate of solvent evaporation, and
nanocrystalline films can be obtained by increasing humidity

Spinning parameters include spinning voltage, liquid feed rate, collection distance,
etc. [86]. The higher the spinning voltage, the higher the tensile strain rate, and the smaller
the nanofiber size will be; too much voltage will increase the speed of the fiber ejection so
that the solvent cannot be fully volatilized, which will also lead to spinning instability; too
little voltage will cause the appearance of solution droplets, and the fiber diameter will be
coarse [87]. For the feed rate, generally speaking, the greater the flow rate the larger the
fiber diameter; a feed rate that is too low will easily interrupt the spinning process; and
a feed rate that is too large will produce an unstable Taylor cone, and the droplets will
directly drop down. The distance from spinneret to collector also affects nanofibers, the
fiber cannot be fully stretched, and the solvent cannot be completely evaporated; a distance
that is too large will affect the electric field strength and will also affect the tensile strain of
the fiber, but is also not conducive to the collection of fibers.

The environmental parameters of electrospinning mainly include the temperature and
humidity of the spinning environment. With the increase in temperature, the evaporation
rate of the solvent in the spinning solution will also increase; generally, the viscosity of
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the spinning solution will also decrease with the increase in temperature, and it is also
possible to obtain hollow nanofibers by increasing the temperature [88]. Humidity affects
the evaporation rate of the solvent, and too high humidity will lead to incomplete drying
of the solvent in the nanofibers.

3. Amino Acid
3.1. Introduction to Amino Acids

Amino acids are the basic unit of biological functional macromolecular proteins and the
basic material of proteins required by animal nutrition. Amino acids are classified according
to their side-chain groups and can be divided into polar amino acids and non-polar amino
acids, of which polar amino acids can be divided into basic amino acids, acidic amino acids,
and neutral amino acids [89], as shown in Figure 6. Poly amino acids are a kind of natural
protein mimic, which have the same primary structure as natural proteins and polypeptide
materials, and some poly amino acids can also simulate their secondary structure. With
the diversity of amino acid structures, unique self-assembly structures and conformational
transformation, high bioactivity, and good biocompatibility, they are widely used in the
field of biomaterials. With the rapid increase in the application of polymer materials in
the biomedical field, amino acid-derived functional polymers with the characteristics of
degradability and high biocompatibility have also been vigorously developed. Because
amino acids have bioactive side groups and diverse functional groups, they can realize a
variety of functional polymerization, so they also have potential applications in imaging,
drug delivery, cell adhesion, biodegradation, and so on [90,91].
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3.2. Polar Amino Acids
3.2.1. Basic Amino Acid

Basic amino acids are amino acids with hydroxide negative ions generated by hydrol-
ysis with multiple hydrogen positive ions, including arginine, lysine, and histidine. The
side chains of this class of amino acids contain protonatable basic groups

Lysine (Lys) is a common amino acid. Lys, which is water-soluble, biodegradable, and
non-cytotoxic, is able to effectively promote cell adhesion and proliferation at the interface
of biomaterials and improve tissue regeneration. In biological media, as the amine group
on the Lys molecule is susceptible to protonation, it interacts with negatively charged
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cell membranes. Lys and its derivatives play an important role in biomedicine and tissue
engineering [92–94]. Poly ε-lysine (ε-PL) can be produced by Streptomyces albus and has a
variable number of L-lysine residues that are chemically bonded through an amide bond
between the ε-amino and α-carboxyl groups. Broad-spectrum antibacterial activity is an
important characteristic of poly-L-lysine, which can act as an antibacterial agent against bac-
teria, fungi, and even viruses. ε-PL was introduced into polyacrylic acid (PAA)/polyvinyl
alcohol (PVA) electrospun nanofibers by Amariei et al. [95] for electrospinning together.
Based on the antibacterial properties of ε-PL, the bacterial colonization rate of the ε-PL
was reduced by several hundred times compared to unfunctionalized dressings, which
later also showed good biocompatibility after cytotoxicity testing. Lin et al. [92] blended
poly-L-lysine with gelatin and glycerol to make nanofiber mats by electrospinning, and
the preparation process is shown in Figure 7A, where the addition of glycerol improved
the mechanical strength of gelatin nanofibers and the addition of poly-L-lysine not only
inhibited the growth of microorganisms but also extended the shelf life of food products,
which is a promising food packaging material. Hyperbranched poly-L-lysine (HPLys) with
low shrinkage can be used as a 3D scaffold because of its special properties, and it can be
used in heart tissue engineering, promotion of cell adhesion, and good biocompatibility.
As a scaffold material used in the heart, polyaniline nanofibers are widely used, but their
biocompatibility is insufficient. Fernandes et al. [96] used HPLys to modify polyaniline and
blended them together for electrospinning to prepare nanofibers.

Arginine is often used as an additive to produce a facilitative effect on wound healing
rather than a polymeric scaffold. Studies have shown that wound dressings loaded with
arginine produce proline, which is required for collagen synthesis, promote the production
of biologically active molecules in the body [97]. The biocompatibility and longevity of
wound dressings can be enhanced by doping with arginine and controlling its sustained
release. Hussein et al. [98] loaded arginine onto nanofibers made from a blend of PVA
and hyaluronic acid to improve the uniformity of nanofiber diameter, and the SEM size
and morphology of the prepared nanofibers are shown in Figure 7B. Exhibiting excellent
hemocompatibility and outstanding proliferation and adhesion potential, especially against
Klebsiella pneumonia showing sufficient antibacterial activity, this composite nanofiber could
be further developed as a promising multifunctional wound dressing.

3.2.2. Acidic Amino Acid

Poly(γ-glutamate) (γ-PGA) is an anionic poly(amino acid) and can be naturally pro-
duced by microorganisms such as Bacillus subtilis. γ-glutamyl transpeptidase in the human
body can degrade γ-PGA to glutamate, which is non-toxic to the human body and widely
present in the human body. γ-PGA has been gradually studied in biomedical fields, such
as drug delivery, bioadhesion, and so on, because of its good biocompatibility, versatility,
biodegradability, and high water retention [99–101]. However, the high solubility and fast
dissolution rate of γ-PGA in water are not favorable for application in fields such as tissue
repair scaffolds. So, in this case, cross-linking agents are needed to enhance the physical
properties of γ-PGA for better application in the human body and biomedical field. Several
common cross-linking agents such as ethylene glycol diglycidyl ether, cystamine [102],
oxazoline (OXA) [103], and L-lysine [104] are able to cross-link γ-PGA and improve its
stability in water. In addition, several studies have shown that electrostatically spun γ-PGA
or γ-PGA-based composite fiber mats have good cell adhesion and proliferation ability.
Lee et al. [105] innovatively co-blended PGA, polyethylene glycol (PEG), and TritonX-100
and were the first to successfully prepare PGA nanofibers by the electrospinning method.
To overcome the water solubility of PGA, they chose to use butyl PGA for electrospinning
and finally obtained water-insoluble nanofibers. Tajima et al. [103] chose OXA as the
cross-linking agent; when the ratio of γ-PGA/OXA was 60/40% wt, the prepared nanofiber
films could achieve skin-like tensile properties. Lower crosslinker blending ratios lead to
higher hygroscopicity or water absorption, and due to the good mechanical properties and
hygroscopicity of γ-PGA, the nanofibers prepared from it can be used in agrochemicals to
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biomedical products, which have a wide scope of application. Xu et al. [106] synthesized
γ-PGA with L-cysteine and norbornene to synthesize photocrosslinkable γ-PGA-Nor. Due
to the good mechanical properties and spinnability of PEO, it was introduced as a carrier
polymer to facilitate the formation of electrospun fibers. The non-crosslinked fibers were
prepared by electrospinning and finally crosslinked by UV irradiation to functionalize the
fiber surface. This special nanofiber network has a structure and size similar to natural
ECM, with ideal mechanical strength to support cell adhesion and promote growth on it,
and has a significant inhibitory effect on proliferative scarring. The drug release curve of
ginsenoside Rg3 (GS-Rg3) loaded on the fiber is shown in Figure 7F.

Poly(aspartic acid) (PASP) is synthesized by thermal polymerization of aspartic acid, a
polyamino acid with carboxylic acid side chains, which is biodegradable, chelating, and
dispersing. It has good solubility in most pH solutions, including the oral cavity with
pH = 6.8, and is a degradable polymer with good water solubility [107]. It has been shown
that poly(aspartic acid) is a polymer that can replace acrylic acid and is greener and more
economical [108–110]. Due to its versatility such as water solubility and biodegradability,
PASP has great applications in water treatment, wound dressing, stent material, drug
delivery and release, etc. In addition, PSAP has functionalized carboxylic acid residues,
which can be grafted with some polymers to improve the surface properties of the materials
and can be applied to the fields of targeted regulation, antifouling, tissue engineering, and
so on [111]. Figure 7C is a summary of some characteristics of PASP and its application areas.
PASP nanofibers are generally prepared by choosing polysuccinimide (PSI), obtained from
L-Asp catalyzed by phosphoric acid, as the precursor, and then cross-linking PSI nanofibers
by hydrolysis to obtain PASP nanofibers. Zhang et al. [112] used the excellent adsorption
of metal ions by PASP, combined with the high specific surface area of nanofibers, to
design a sensor that can detect metal ions and can be reused, as shown in Figure 7E, and
designed an electrospun nanofiber hydrogel membrane (ENHM) using PASP, which can be
used as an aqueous solution colorimetric sensor for applications such as water treatment.
Monlar et al. [113] electrospun PSI to obtain homogeneous nanofibers, which were then put
into an imidazole-based buffer solution with pH = 8 for hydrolysis to obtain PASP gel fibers.
This method produced PASP nanofibers similar to human ECM with desirable mechanical
and biological properties. In 2017, Monlar et al. [114] again used coaxial electrospinning
to improve the crosslinking process, using PSI as the shell polymer and adding PEO co-
blending to improve the viscosity of the spinning solution and improve the stability of the
jet. The crosslinking of 2,2,4 (2,4,4)-trimethyl-1,6-hexanediamine (THD) in the core layer of
the nozzle occurs when the two solutions come into contact at the nozzle tip, forming PASP.
This core-shell structure of nanofibers can effectively control the crosslinking time of the
two solutions and complete the crosslinking with maximum efficiency, without clogging
the nozzle, which is an effective method to prepare PASP nanofibers. The SEM image
of nanofiber is shown in Figure 7D. This insoluble gel fiber is pH responsive and can be
further applied in the future in the fields of drug release and tissue engineering.
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Figure 7. Preparation and application of polar amino acid electrospun nanofibers. (A) Electrospun
gelatin-glycerin-ε-poly-lysine nanofibers [95]; (B) SEM images of selected PVA/HA, PVA/HA/CNCs,
and PVA/HA/CNCs/L-arginine NFs scaffolds [98]; (C) properties and biomedical applications
of poly(aspartic acid) and its derivatives [111]; (D) SEM image of electrospun nanofiber [114];
(E) application of procedure of PASP [112]; (F) Release curve of GS-Rg3 from fiber [106].

3.2.3. Neutral Amino Acid

Glycine is an important amino acid in the human body and is involved in the pro-
duction of many important reactions and substances in the human body, including the
production of DNA, proteins, and heme, as well as playing an important role in lipid
metabolism, immune regulation, and neurotransmission. For this reason, glycine is often
used to improve immunity and anti-inflammation, promote wound healing, and even im-
prove neurological function, and has good biocompatibility, biodegradability, and excellent
mechanical properties [115]. Alazzawi et al. [116] prepared nanofibers by electrospinning
by blending PVA with an aqueous glycine solution. Such nanofibers with high specific
surface area can be well used in applications such as bio-scaffolds and drug transport.

The electrospinning conditions and characteristics of several polar amino acids are
shown in Table 2.
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Table 2. Electrospinning conditions and characteristics of common polar amino acids.

Amino Acids Additional
Polymer Solvent Electrospun Technique Characteristic Ref.

Lysine

Gelatin/glycerin Acetic acid Blend
Excellent antibacterial ability against Listeria
monocytogenes, a promising food packaging

material
[92]

PAA/PVA Distilled water Blend Long-lasting antibacterial activity with good
biocompatibility [95]

PAN DCM/DMF Blend High biocompatibility and potential for culturing
heart cells [96]

PAA Distilled water Blend The addition of polylysine enhances the mechanical
strength and stability of PAA [117]

PLLA/PPY HFIP Coaxial Stable electrical properties, good biocompatibility,
high cell adhesion rate [118]

Glutamic acid

PLGA TFA Blend Promotes wound healing and prevents tissue
adhesions [101]

Cystamine
(aftertreatment) TFA Blend Good water stability [102]

OXA Ethanol/water/
hydrochloric Blend Good mechanical properties and similar to skin,

with certain moisture absorption properties [103]

PEG Distilled water Blend Uniform nanofiber diameter [105]

PEO Distilled water Blend Promotes cell adhesion and proliferation and
inhibits proliferative scarring [106]

PVA Distilled water Blend Promotes cell adhesion and can be used as a tissue
engineering scaffold [119]

PCL HFIP Blend Improves the solubility of florfenicol (FF) and
promotes the in vitro release of the drug [120]

Aspartic acid

PSI — Blend
Strong adsorption of metal ions and reduced water

solubility after cross-linking, can be used as a
colorimetric sensor for aqueous solutions

[112]

PSI DMF Blend A biocompatible fiber scaffold [113]

PSI/PEO/THD DMF Coaxial pH sensitive for smart drug release applications [114]

Arginine PVA/HA Distilled water Blend Accelerates wound healing and tissue regeneration [98]

Glycine PVA Distilled water Blend High specific surface area for bio-scaffold and drug
transport applications [116]

3.3. Nonpolar Amino Acids

Phenylalanine is the most hydrophobic amino acid, and biodegradable superhy-
drophobic nonwoven materials can be obtained by electrospinning polyphenylalanine.
Poly(L-phenylalanine) (PolyPhe) has a stable chemical structure and exhibits good chemical
stability in both acidic and alkaline environments [121–123]. Sun et al. [124] electrospun chi-
ral phenylalanine gels with PCL co-blended to prepare hybrid scaffolds, which can mimic
human vascular endothelial cells, enhance cell adhesion, and promote vascular endothelial
remodeling, which is an innovative approach for cardiovascular therapy. Confocal laser
scanning microscopy images of HUVECs cultured on a chiral hybrid scaffold are shown in
Figure 8A. The good biocompatibility of this material can be observed by staining live and
dead cells green and red. Yoshida et al. [125] chose polyphenylalanine to prepare nanofi-
brous membranes by electrospinning. This electrospinning produced a nonwoven fabric
that is superhydrophobic and biodegradable, which is promising for further wastewater
treatment as well as biomedical applications. Chemical stability of PolyPhe nonwovens
prepared by electrospinning into hexane/CHCl3 in basic (pH 12) conditions and the water
contact angle (CA) of a water droplet on the PolyPhe nonwovens after the alkali treatment
are shown in Figure 8B. In addition, chiral phenylalanine is often used as a gelling agent to
enhance the cytocompatibility of polymers, and blending phenylalanine gels with polymers
can modulate the biocompatibility of polymers.
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Figure 8. Application effect of nonpolar amino acid electrospun nanofibers. (A) H&E staining of the
wound section, NE: new epidermis, GT: granulation tissue, ND: new dermis [123]; (B) confocal laser
scanning microscope images of HUVECs cultured on chiral hybrid scaffolds [124]; (C) morphology
and CA of PolyPhe nonwoven fabric after alkali treatment [125].

Polyalanine acid, especially poly-b-alanine (PBA), contains amide bonds in its main
chain, similar to protein molecules. Because PBA has a highly crystalline polymer structure,
it is excellent in terms of heat resistance and mechanical properties, so it has excellent
results in biomedical applications, is biologically active, and supports cell adhesion [126].
Catiker et al. [127] blended PBA with an optically active, biocompatible biodegradable
thermoplastic poly(3-hydroxybutyrate) (P3HB). The addition of PBA enhances the opening
of functional groups on the surface of P3HB and increases the biocompatibility and scaf-
folding properties of P3HB. The nanofibers prepared by the electrospinning method have a
porous structure and can be applied to soft tissues.

Tryptophan is an essential amino acid that is involved in protein synthesis and is
a precursor to many biologically active components in many important physiological
activities. Tryptophan is also frequently used for medical diagnosis at the molecular
level, including cataracts, colon tumors, renal cell carcinomas, etc. [128,129]. Li et al. [123]
synthesized poly(esterurea)TP-PEU from tryptophan and L-phenylalanine, and then made
nanofiber mats by electrospinning, loaded with S-nitrosoglutathione, which can release
nitric oxide (NO) from S-nitrosoglutathione (GSNO). H&E staining of the wound section
is shown in Figure 8C. The release of NO enables the treatment of wound infection and
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promotes wound cell proliferation and improves collagen deposition, which serves to
promote wound healing.

The electrospinning conditions and characteristics of several nonpolar amino acids are
shown in Table 3.

Table 3. Electrospinning conditions and characteristics of common nonpolar amino acids.

Amino Acids Additional
Polymer Solvent Electrospun

Technique Characteristic Ref.

Phenylalanine
PCL HFIP Blend

Cell adhesion is good and can be
applied to vascular endothelial

remodeling
[124]

/ TFA/CHCl3 Blend Super hydrophobic material to
ensure stable adhesion of droplets [125]

Alanine P3HB HFIP Blend
Good biocompatibility and

mechanical properties, conducive to
cell adhesion and proliferation

[127]

Tryptophan L-phenylalanine HFIP Blend Treat wound infection and promote
wound healing [123]

4. Application
4.1. Application in Hemostasis and Wound Healing

Wound injury caused by trauma or surgery is one of the most common clinical diseases,
which has a great impact on the life of patients. Avoiding the serious consequences caused
by excessive blood loss and wound infection has always been the focus of clinical medical
research. It can be seen from the above that electrospinning nanofibers are a good choice
with structural and performance advantages [130–134]. Electrospinning of poly(amino
acids) with high biocompatibility and loading of drugs or active substances with anti-
inflammatory, antibacterial, and hemostatic functions can obtain electrospun nanofibers
with good medical effects and sustained drug release therapeutic effects [135–139].

The nanofiber membranes obtained by electrospinning of amino acid polymers ex-
hibit strong biocompatibility and have important applications in hemostasis and wound
healing. Sun et al. [140] blended γ-PGA and cationic photosensitizer 5,10,15,20-tetrakis
(1methylpyridinium-4-yl)porphyrin tetra (p-toluenesulfonate) (TMPyP) for electrospin-
ning and stabilized them by chemical cross-linking. The treatment of wounds with
this material is shown in Figure 9A. Cheng et al. [141] prepared ultrafine nanofibers of
PVA/histidine/AgNPs for application in antimicrobial wound dressings. Since AgNPs
are easily decomposed in polymer solutions, the researchers designed two separate tubes
for PVA and histidine/AgNPs and mixed them only near the spinning head to further
reduce the degradation rate of AgNPs and maximize their antimicrobial activity, and the
antimicrobial effect of this wound dressing is shown in Figure 9B. This composite nanofiber
is a convenient and efficient low-cost method, which is important for wound antimicrobial
as well as further drug delivery. Sequeira et al. [142] prepared electrospun nanofibers
by co-blending PVA and lysine, and also blended the anti-inflammatory agent ibupro-
fen (IBP) and antimicrobial agent lavender oil (LO) into the electrospun membrane by
mixed electrospinning and surface physical adsorption methods. It was able to achieve
sustained release of IBU and initial burst release of LO, as shown in Figure 9C, which is
important for initial antimicrobial and sustained anti-inflammatory in the healing process
of wounds. It is a novel composite wound dressing and also provides the possibility of
further application of lysine and other amino acids. The prepared nanofiber mats can keep
the wound environment moist and release cytotoxic reactive oxygen species (ROS) under
visible light irradiation, which is amino acid material with bactericidal activity. It has good
application potential for wound infection and wound healing. It has good potential for
application in wound infection and wound healing. Nemeth et al. [143] performed solvent
electrospinning of polyaspartic acid using ethanol as a solvent to design polyaspartic acid
nanofibers capable of rapid dissolution in the oral pH environment and was shown to be
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a model with potential applications for sublingual drug delivery systems with potential
applications in sublingual and oral drug delivery.

Ravichandran et al. [144] constructed a composite nanofiber scaffold composed of
PLLA and polyaspartic acid, which not only mimics the natural ECM structure but also
effectively mimics its biological function to enhance granulation tissue formation and guide
new cells into the wound area, as shown in Figure 9D. This composite nanofiber membrane
showed good biocompatibility on both days 10 and 15, which has a positive impact on
promotion. Murase et al. [122] co-blended phenylalanine, adipic acid, and butylene glycol
to make ester amide, and then made nanofibers by electrospinning method. This material
is biocompatible and the resulting nanofiber mats degrade at a controlled rate. Due to
the highly hydrophobic benzyl side group of phenylalanine, this ester amide is able to
exhibit enhanced enzymatic hydrolysis ability. In addition, this composite fiber has an
advantage in the field of drug delivery, as it was shown that this composite fiber can
modulate its antimicrobial activity by drug loading according to the loading colchicine
protease experiments.

4.2. Application in Special Trauma Repair

Burns are a major global public health problem, and burn trauma can be caused by heat
(flame or scald), freezing, electricity, chemicals, radiation, or friction. Skin repair after burns
requires a complex process following trauma, including coagulation, inflammation, cell
proliferation, and tissue remodeling [145,146]. Burns can cause damage to the protective
skin barrier and lead to pathogen colonization of the burn wound site. Burns can cause
damage to body tissues and require polymers, bioactive molecules, or combinations thereof
that support tissue regeneration [147,148]. The focus of the response to severe skin damage
is to develop tissue skin substitutes that are biocompatible, sufficiently biodegradable, and
hydrophilic, while electrospun nanofibers are good materials with an ECM-like structure,
appropriate mechanical properties, and sufficient porosity. Fang et al. [149] used γ-PGA
as the core solution and PLA as the shell solution to prepare coaxial nanofibers with a
core-shell structure. Due to the good biocompatibility and biodegradability of PLA, γ-PGA
is easy to process, easy to form film, and has good plasticity; it is readily biodegradable,
promotes cell adhesion, and has slow-release properties. The animal model evaluation of
the wound healing-promoting ability of γ-PGA/PLA fiber mat showed that this core-shell
structured nanofiber has excellent wound healing-promoting ability and has great potential
in the field of wound repair, as shown in Figure 9E.

Diabetes is a chronic degenerative disease. The diabetic foot is a symptom of diabetes,
including infection, ulceration, or destruction of foot tissue, which seriously affects the
quality of life of diabetics and, in more severe cases, requires amputation. Even if the
diabetic foot heals, the chances of recurrence are very high. Diabetic wounds are often
difficult to treat because they can become trapped in a vicious inflammatory cycle, where
the response to growth factors is impaired, resulting in poor circulation and the continued
release of inflammatory cytokines, which can produce excess amounts of reactive oxygen
species, injuring microvasculature and creating other complications. Normal wounds
can naturally terminate inflammation and heel, but diabetic wounds require appropriate
treatment to enter a normal healing process [150]. Traditional diabetic foot dressings are
primarily used to protect the wound from infection and do not aid in wound healing, and as
technology advances active wound dressings that provide bioactive substances have been
found to be more effective in treating diabetic foot wounds. Based on the similar structure
of electrospinning and ECM, electrospinning of bioactive substances with biocompatible
polymers is a feasible approach for the treatment of diabetic foot [151,152]. Isela et al. [153]
used γ-PGA and polyvinyl alcohol (PVA) blended to prepare electrospinning nanofibers
for wound dressing for diabetic foot treatment. The nature and fiber structure of γ-PGA
and PVA provided a good base for the drug release system, which was able to sustain
the release in phosphate-buffered medium for more than 200 h. This composite fiber is
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an effective model for the treatment of diabetic foot and also provides inspiration for the
treatment of wounds in other sites.

Bone is actually an active tissue and can be reconfigured. Conventional scaffolds,
made primarily of metal, calcium phosphate ceramic, or glass, have osteoconductive prop-
erties but not osteoinductive properties. They may also release toxic metal ions through
corrosion or wear, leading to inflammation and allergic reactions. In addition, the non-
biodegradable nature of such scaffolds in the natural environment further limits the repair
of these challenging defects. An ideal bone regeneration scaffold should mimic ECM well,
be biocompatible to promote cell growth, and have mechanical properties close to those of
bone. Bone regeneration materials made of inorganic and metallic materials are less biocom-
patible and less flexible due to their high stiffness, in contrast to polymeric materials, which
are more suitable. Polymer fibers can also be specially tailored to meet clinical needs. Com-
posite polymer fibers prepared by electrospinning have been widely used for the treatment
of bone, cartilage, and osteochondral defects because of their good bioactivity and superior
mechanical properties. Bone regeneration membranes are commonly used in the treatment
of bone tissue defects, and they are particularly suitable for recovery in cases of large bone
injuries and massive bone grafts. Barrier membranes for bone regeneration applications
play a key role in preventing cell entry from surrounding epithelial and connective tissues,
preventing the proliferation of bone progenitor cells and formation of new bone tissue
within the implant [154,155]. Common bone regeneration membranes are divided into two
categories: resorbable membranes, which may cause damage to soft tissues and require
secondary surgical removal, and non-resorbable membranes, which are generally chosen
to use naturally degradable components that are friendly to patients and wound tissues
but need to overcome the limitations of the mechanical properties of naturally degradable
materials [156–158]. Liu et al. [159] used polyaspartic acid to modify maize proteins with
good film-forming and biocompatibility properties. The nanofibrous membrane was made
by electrospinning of maize protein, which has good film formation, biocompatibility, and
mechanical properties. The nanofibrous membranes were implanted into intracranial bone
defects in rats, and their ability to promote bone growth and repair was evaluated, as
shown in Figure 9F. The zeatin nanofibrous membrane modified with polyaspartic acid
has low cytotoxicity and provides a good microenvironment for promoting osteogenicity,
which is a good biomaterial for coping with bone repair and has promising applications.
Alazzawi et al. [116] prepared core-shell structured nanofibers using PCL as the shell and
glycine and PVA as the core and wrapped glycine as the core part in them by coaxial
electrospinning. This core-shell structured nanofiber is able to guide bone regeneration
and promote the growth of bone defects, which is an ideal membrane for bone regener-
ation and can alleviate the rapid degradability of glycine. It is thus clear that composite
materials of glycine and PVA have great potential for biomedical applications, and the
choice of different additive materials may also have different effects on wound treatment.
Poly(γ-glutamic acid)/β-tricalcium phosphate (γ-PGA/β-TCP) composite fiber mats were
prepared by Yao et al. [160] using the electrospinning technique. Later, in the presence of
1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), it reacted with cystamine to obtain
a cross-linked product with improved water resistance, which can be better used as a
new bone substitute. In addition, the cross-linked nanofibers tend to have higher alkaline
phosphatase activity and are better able to promote cell adhesion, which are promising for
applications not only in bone repair but also in tissue engineering.
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Figure 9. Application effect of poly(amino acid) electrospun nanofibers. (A) Photographs of wounds
at different time intervals after treatment with different environments and materials [140]; (B) bac-
terial growth inhibition halos against Staphylococcus aureus and E. coli for PVA/L-H and PVA/L-
H/Ag nanofibers [141]; (C) characterization of the IBP and LO in vitro release profile at pH 5 and
pH 8 [142]; (D) SEM images showing the cell–biomaterial interactions on day 10 and day 15 on
PLLA/PAA/Col I&III nanofibers [144]; (E) wound healing in the experimental and control groups at
different times [149]; (F) three-dimensional micro-computed tomography reconstructed images of
PAsp nanofibrous membrane treatment at 4 and 8 weeks postoperatively, the diameter of calvarial-
defect model is 6 mm [159].

5. Summary and Outlook

Nanofibers are widely researched and applied because of their nanoscale size which
can well mimic the human ECM structure, as well as their porosity, high specific surface
area, and other characteristics with good air permeability and moisture retention. Electro-
spinning, as an important method to prepare nanofibers, is also a relevant research hotspot
in recent years. Single polymer electrospinning can no longer meet the requirements for
hemostatic dressings nowadays, and a variety of polymers with compatible or comple-
mentary properties are selected to be blended with inorganic nanoparticles, drugs, and
bioactive substances at the same time, and a variety of new electrospinning techniques
are combined to design nanofibers with parallel, coaxial, and triaxial structures, which
can be used in the fields of drug transport, drug controlled release, scar reduction, active
substance encapsulation, etc. They have been applied in the fields of drug transport, drug
release control, scar reduction, and active substance encapsulation, and can help wound
healing in various aspects, such as hemostasis, antibacterial, and accelerated healing.



Biomolecules 2022, 12, 794 21 of 27

Amino acids, as a kind of biological small molecules, are often used in biomedical
applications. Common amino acids such as glutamic acid, lysine, and aspartic acid are
considered biomedical materials with the potential for development due to their excellent
biocompatibility and biodegradability. At present, wound hemostatic dressings prepared
by electrospinning of various amino acids are still relatively few and are mostly used
to promote wound healing, and there are few amino acid composite fibers for wound
hemostasis. From the above description and summary of amino acid wound dressings,
it can be seen that the method of preparing electrospun nanofibers by blending amino
acids with polymers is feasible, and if further addition of hemostatic materials, drugs, and
bioactive substances may be able to achieve the desired hemostatic effect. The research
on amino acid polymer materials in the field of electrospinning is not sufficient, and the
electrospinning conditions of most amino acid polymers need to be further clarified. With
the increasing attention and research on biomaterials in recent years, nanofibers based on
amino acid polymers are gaining more and more attention, and further applications of
amino acid polymers in electrospinning in various fields are also contemporary.
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