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Abstract

A large body of literature links risk of cognitive decline, mild cognitive impairment (MCI) and

dementia with Type 2 Diabetes (T2D) or pre-diabetes. Accumulating evidence implicates a

close relationship between the brain insulin receptor signaling pathway (IRSP) and the accu-

mulation of amyloid beta and hyperphosphorylated and conformationally abnormal tau. We

showed previously that the neuropathological features of Alzheimer’s disease (AD were

reduced in patients with diabetes who were treated with insulin and oral antidiabetic medica-

tions. To understand better the neurobiological substrates of T2D and T2D medications in

AD, we examined IRSP and endothelial cell markers in the parahippocampal gyrus of con-

trols (N = 30), of persons with AD (N = 19), and of persons with AD and T2D, who, in turn,

had been treated with anti-diabetic drugs (insulin and or oral agents; N = 34). We studied the

gene expression of selected members of the IRSP and selective endothelial cell markers in

bulk postmortem tissue from the parahippocampal gyrus and in endothelial cell enriched iso-

lates from the same brain region. The results indicated that there are considerable abnor-

malities and reductions in gene expression (bulk tissue homogenates and endothelial cell

isolates) in the parahippocampal gyri of persons with AD that map directly to genes associ-

ated with the microvasculature and the IRSP. Our results also showed that the numbers of

abnormally expressed microvasculature and IRSP associated genes in diabetic AD donors

who had been treated with anti-diabetic agents were reduced significantly. These findings
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suggest that anti-diabetic treatments may reduce or normalize compromised microvascular

and IRSP functions in AD.

Introduction

A significant body of literature links risk of cognitive decline, mild cognitive impairment

(MCI), and dementia with Type 2 Diabetes (T2D) or pre-diabetes[1, 2]. T2D or impaired fast-

ing glucose may be present in up to 80% of persons with Alzheimer’s disease (AD)[3]. Modifi-

cations in brain insulin metabolism are thought to be among the pathophysiological factors

underlying dementia, whether due to AD[4] or to vascular cognitive impairment and dementia

(VCID). Several studies suggest that pre-diabetes[5] and T2D may anticipate conversion to

MCI[2, 6]. Imaging studies suggest significant changes in the brain microvasculature and in

metabolic dysfunction[7] in persons with T2D, or even simple hyperglycemia in the absence

of full blown diabetes, and dementia[8–10]. Accumulating evidence implicates a close relation-

ship between the brain insulin receptor signaling pathway (IRSP) and the major neurobiologi-

cal abnormalities of AD, amyloid beta (Aβ) and hyperphosphorylated and conformationally

abnormal tau. Both pathologies have been shown to lower neuronal IR responses to insulin

and to cause rapid and substantial loss of neuronal surface insulin receptors (IRs)[11]. Disrup-

tion of brain insulin signaling is one of the explanations for the consistently higher risk of AD

and dementia in type 2 diabetic elderly[12]. Fat-feed laboratory transgenic mice models of AD

that overexpress brain amyloidogenic genes develop glucose intolerance and insulin resistance,

illustrating the potential bidirectional complexity of this relationship[13]. In AD patients,

monotherapy with insulin[14] or with single representatives of other classes of hypoglycemic

medications[15, 16] have been shown to not alter the risk of AD[17], but to potentially

improve memory performance and slow cognitive decline. That cognitive impairment and AD

neuropathology have been linked with T2D and even pre-diabetes suggests that the mecha-

nisms underlying the relationship of T2D with dementia may be generalizable to non-T2D

individuals. Although not performed on brain tissue, a recent study strongly supports an asso-

ciation between the molecular mechanisms of AD, insulin regulation, and T2D[18]. Integra-

tive systems analysis of multiple tissues and organs in ob/ob mice identified APP as a top

regulator of islet cell functions with the potential to regulate plasma insulin levels. This and

other evidence for the complexity of the T2D-dementia interaction was comprehensively

reviewed by Arnold and colleagues[19].

Recent evidence[20] suggests that metformin, and by extension other hypoglycemic medi-

cations[21], can significantly improve health- and lifespan. For example, metformin has the

unique ability to correct the aging-related missorting of nuclear and cytoplasmic proteins[22].

In non-diabetic AD patients, monotherapy with insulin[23, 24] or with other hypoglycemic

medications[14, 25] has shown some, albeit inconsistent, improvement in memory perfor-

mance and slowing of AD symptom progression. In a series of studies[26, 27], our group

showed that, when taken as a whole, T2D did not significantly affect the neuropathological

sequelae of AD, but that the absence of a “T2D X AD neuropathology” interaction was appar-

ently driven in large measure by the presence of antidiabetic drugs. Our studies showed that

elderly persons with T2D treated with insulin plus other hypoglycemic agents (i.e., combina-

tion therapy) have dramatically less AD neuropathology (reduced densities of neuritic plaques

and neurofibrillary tangles in the cortex) than otherwise similar non-T2D persons2. In an

effort to understand better the neurobiological substrates of T2D and T2D medications in AD,
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we examined in the current study IRSP and endothelial cell markers in the parahippocampal

gyri of persons with and without AD, T2D and T2D medications.

Insulin receptors (IR) are particularly abundant in brain regions supporting cognition, with

recent evidence implicating a close relationship between the brain IR signaling pathway

(IRSP) and the major neurobiological abnormalities of accumulations of Aβ and of conforma-

tionally abnormal and hyperphosphorylated tau (pTau)e.g.,[28]. In vitro studies3-5 provide sup-

port for our findings identifying the IRSP as an underlying mechanism by which combination

of insulin with non-insulin T2D medications may modulate AD neuropathology even in the

absence of comorbid T2D. Insulin binds to IR subunits (member of the receptor tyrosine

kinase family engaging Akt and mTOR pathways). Phosphorylated insulin receptor substrate

(IRS) scaffolding proteins link the IR to downstream signaling effectors including Akt. Akt

activation inhibits pro-apoptotic signaling molecules such as BCL2-antagonist of cell death

(BAD), B cell lymphoma 2 (BCL2), Forkhead Box O (FoxO), nuclear factor kappa B (NF-κB)

and glycogen synthase kinase-3 beta (GSK3β). GSK3β by itself inhibits Akt by controlling

mTORC, a key activating kinase for AKT[29]. GSK3β also phosphorylates β-catenin, targeting

it for ubiquitination and proteasome dependent degradation[30]. Independent evidence impli-

cates elements of this pathway in neuronal dysfunction, neurodegeneration and dementia

[31–34]. In addition to this canonical “metabolic and anti-apoptotic” pathway of the IRSP,

insulin binding to IR can also activate a second, SHC-ERK1/2, pro-survival pathway culminat-

ing in the activation of PPAR, and its coactivator PGC-1α, and interactions with the master

cholesterol regulators RxR and LxR[35, 36]. Notably, these are the molecules that our studies

indicate to be dysregulated in postmortem human AD brain[37, 38]. The IRSP in the brain

contributes to the control of processes such as synaptic plasticity, e.g.,[27] [33, 34], neuropro-

tection, neurodegeneration, survival, growth, and energy metabolism, e.g.,[39], all of which are

particularly relevant to cognition.

The mechanism by which insulin is delivered to the brain is uncertain, but insulin receptors

(IR) on endothelial cells are the leading candidates[40]. Several non-mutually exclusive mecha-

nisms may underlie the association between T2D and dementia, but increased cerebrovascular

compromise and blood-brain barrier disruption[41–43]; defective signal transduction mecha-

nism of central nervous system insulin receptors[44, 45]; and their potential interactions with

amyloidogenic processes[44, 46–48] are among the most prominent see also, [19]. Multiple

studies have suggested that microvascular dysfunction, including permeability of the blood-

brain barrier[49–52], may be a significant contributor to cognitive impairment in the elderly

and in VCID or AD[53]. This evidence has come not only from numerous neuroimaging stud-

ies of microvascular dysfunction[54–56], but also from direct neuropathological investigations

[57–65] and animal model systems[66, 67]. Similarly, microvascular damage and involvement,

including dysfunction of endothelial cells in T2D, is undeniable[23, 55, 56, 68–71]. On the

other hand, IRs in the brain do not appear to downregulate dramatically in response to high

concentrations of insulin, and—in contrast to its role in glia and peripheral cells—insulin has a

relatively limited role in regulating glucose metabolism in neurons[20, 72] and densities of IRs

are not adversely affected in AD[47] when studied in bulk tissue assays. However, the vast

majority of the studies of the brain IRSP in AD and T2D have been conducted in homogenized

bulk tissue where even large changes and abnormalities in one or more cell types can be

diluted or completely obscured when different cell types are intermixed in bulk-homogenate

studies. In order to overcome this limitation and to address more directly the roles of T2D and

antidiabetic medication in AD, we developed a method of endothelial cell enrichment from

bulk human postmortem brain tissue and studied components of the IRSP and markers of

endothelial cell function.

Endothelial and insulin receptor signaling pathways in Alzheimer’s disease and type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0206547 November 1, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0206547


Methods

Tissue processing

This study involved analysis of postmortem human brain samples only. Consent for research

use of the tissue was obtained from all donors. The collection and consent procedures were

reviewed by the Mount Sinai (HS#: 13–00709 PS) and JJ Peters VA (ID01527) IRBs and were

exempted from further review. The parahippocampal gyrus (Brodmann 36), was dissected

from snap-frozen ~8 mm thick coronal sections. The dissected block was then pulverized

using liquid nitrogen cooled mortar and pestle. The crushed homogenate was aliquoted into

50 and 100 mg aliquots. The general procedures for tissue acquisition, dissection and aliquot

preparation have been described previously[73]. Some aliquots were used for bulk tissue analy-

ses, whereas other sister aliquots from the same brain region of each donor were used for

endothelial cell enrichment.

Gene expression studies

Custom 51-plex QuantiGene assays (Life Technologies/Thermo, CA) were used for gene

expression studies. Tissue and microvessel isolate homogenization, proteinase K treatment,

probe hybridization and signal amplification were performed according to the manufacturer

manual. Measurement of 51 genes (Table 1, and S1 File) was performed on Luminex 200

(Millipore, MA) instrument. Relative expression values were calculated using standard curve

method and normalized to geometric means of four housekeeping genes included in the panel:

HMBS, NONO, PPIB and RPLP0.

Selection of mRNA transcripts for expression studies

Twenty-four to twenty-six mRNA transcripts were selected for study. The selection of tran-

scripts was based on several factors that included: known association with the IRSP; known

and relatively enriched expression in endothelial cells[74], and relatively high or altered

expression in bulk tissue microarray studies of AD[75, 76]. Twenty-three other transcripts

associated with immune-inflammation, neurons, oligodendrocytes, astrocytes and microglia

Table 1. Characteristics of the primary study cohorts.

Mean PMI

(Hours)

Mean

CDR

Mean

Age

Sex Mean Cortical Plaques

per mm^2

Mean Braak &

Braak Score

Race (white; Black;

Hispanic

Mean Blood glucose

(mg/dl)

Control (N = 30) 12.85 (1.4) 0.43

(0.13)

83.17

(1.48)

14F;

16M

0.83 (0.32) 1.5 (0.32) 26; 3; 1 95.5 (22)

AD (N = 19)� 6.88 (1.17) 3.0 (0.28) 88.26

(2.01)

15F;

4M

9.58 (1.38) 4.89 (0.29) 17; 2; 1 119.4 (8)

AD+DM+Meds

(N = 34)�
7.67 (0.98) 2.89

(0.26)

84.61

(1.49)

23F;

11M

8.39 (0.86) 4.64 (0.26) 26; 5; 3 148.8 (14)

Medication Characteristics of the AD+DM+Meds (N = 34 cohort)

Medication Subset Percent of Subset Medication class

Insulin Only N = 15 (45%) Insulin

Oral Only N = 12 (35%) N = 9 (75%) Sulfonylurea

N = 2 (17%) Metformin

N = 1 (8%) Thiazolidinedione

Insulin + Oral N = 7 (21%) N = 5 (79%) Sulfonylurea

N = 2 (21%) Metformin

� 17% (N = 9) of cases with AD (with or without DM medications) were treated with medications for AD (one was treated with memantine and 8 received donepezil)

which were terminated at least 14 months prior to death.

https://doi.org/10.1371/journal.pone.0206547.t001
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were also studied to survey other systems that may have been affected by T2D medications.

The results of these later assays are shown in S1 File.

Microvascular/endothelial cell enrichment

One hundred milligrams of brain tissue was gently homogenized in cold 18% dextran/PBS

containing protectRNA RNase inhibitor (Sigma, MO) (10 ml/g of tissue) using a Potter-Elve-

jehm with a loose-fit Teflon pestle (6–8 strokes at low speed)[77]. The homogenate was over-

laid onto an equal volume of a discontinuous gradient of Ficoll-Paque PLUS™ and centrifuged

for 30 min at 1,500 x g and 4˚C. The resulting microvascular enriched pellet was resuspended

and washed twice with PBS. The isolated microvascular/endothelial cell fragment was frozen

and stored at -80C until further assays. In preliminary multiple gene expression studies, we

have found this protocol to results in a significant (3–7 fold depending on the endothelial cell

marker used) enrichment of microvascular/endothelial cell markers and a many-fold reduc-

tion in the levels of non-endothelial cell markers. Fig 1 shows one such example.

Characteristics of brain tissue donors and molecular pathways of interest

The demographic characteristics and group stratification of study cases is shown in Table 1.

All postmortem brain tissue donors were derived from the Mount Sinai NIH Neurobiobank

(http://icahn.mssm.edu/research/nih-brain-tissue-repository/about). All brain tissue dona-

tions were derived from cases with written consent from the next of kin of each donor for

research use. Each brain underwent a detailed neuropathological assessment as described pre-

viously[78, 79]. Donors were selected from over 1,900 cases for short postmortem interval

(under 24 hours), high brain tissue pH (>6.0), the presence of either only AD pathology (as

defined by CERAD[80]) or no evidence of neuropathology. Brodmann area 36 (the parahippo-

campal gyrus) was selected for study because transcriptome-wide analysis of 17 different brain

regions showed it to be among the most transcriptionally vulnerable brain region in AD[76].

Fig 1. Enrichment of endothelial cell transcripts in microvascular isolates. The expression levels of selected endothelial cell markers and non-endothelial markers

are expressed as fold change ratios relative to the levels of each transcript in bulk tissue homogenates.

https://doi.org/10.1371/journal.pone.0206547.g001
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To enable direct comparison of assayed IRSP and endothelial cell mRNA expression, cases

with AD and no known history of T2D were selected to match those with AD and a history of

T2D as closely as possible with respect to both pre-agonal cognitive function and severity of

neuropathology as defined by Braak score and density of cortical neuritic plaques. Cases with

neuropathological evidence of non-AD pathology (e.g., Lewy body pathology, significant vas-

cular pathology such as stroke or amyloid angiopathy, etc.) were excluded from all studies as

described previously. Donors were included as presenting with T2D based on the American

Diabetes Association criteria (symptoms of diabetes plus casual plasma glucose

concentration > 200mg/dl; fasting plasma glucose > 126mg/dl; 2h plasma glucose>200mg/dl

during OGTT); and/or record of receiving anti-diabetes medication; history of diabetes in the

medical record. Diagnoses of T2D were ascertained from detailed structured review (>275

items) of all medical records and medical history. Similarly, medication use history and labora-

tory test results were derived from detailed reviews of medical records and semi-structured

guided interviews of the next of kin or caregivers intimately acquainted with the donor.

Statistical methods

Differential expression between disease status (control, AD) and treatment (insulin and/or

oral anti-diabetes agents) was assessed using the limma package in R, with normalized gene

expression matrix and the final covariate model, which included gender and PMI. Note that

the analysis was run separately for gene expression derived from vessels and homogenate tis-

sue. For each gene, least-squares linear regression was performed using limma to yield coeffi-

cients for the effect on gene expression of each variable on the right-hand side:

gene expression � Groupþ Genderþ PMI;

where Group is defined based on combination of diagnosis and treatment [i.e., control, AD

(no T2D, no T2D medications), and AD+T2D treated with insulin and/or oral anti-diabetes

agents]. P values were adjusted for multiple hypothesis testing using false discovery rate (FDR)

estimation, and the differentially expressed genes were determined as those with an estimated

FDR� 5%, or where specified FDR� 7%.

Results

The main analyses were performed on the expression of the genes shown in Table 2 with

the primary goal of determining the extent to which IRSP and endothelial cell related

transcripts were altered in AD vs. controls and whether these disease-associated changes

were normalized in the brain of persons with AD receiving one or more antidiabetic medica-

tions of any kind and in any combination (i.e., insulin only, oral agents only, insulin plus oral

agents).

Altered mRNA expression in whole tissue homogenates of the

parahippocampal gyrus in AD and anti-T2D medicated AD

Compared to controls, 12 of the 18-endothelial cell and IRSP-associated genes assayed were

significantly (12 of 18 unadjusted ps<0.05; 6 of 12 after FDR correction) altered in AD (Figs 2

and 3). One third of the altered genes (unadjusted ps<0.05), or 44% after FDR correction,

were genes with preponderant expression in endothelial cells[74]. In AD donors who had a

history of receiving antidiabetic treatment, only 4 of these 12 genes remained significant before

FDR correction and only 1 (ANGPT1) after FDR correction.
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Table 2. Abbreviations, brief function and cell-type expression and expression levels of IRSP and endothelial cell transcripts in AD-tissue and vessels.

Symbol Description System

ANGPT1 Angiopoietin 1 is involved in vascular development and angiogenesis.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=ANGPT1

Endothelial

related

CD59 CD59 glycoprotein, aka MAC-inhibitory protein is mostly expressed in endothelial cells and oligodendrocytes.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=CD59

Endothelial

related

CTNNB1 Catenin beta-1, AKA β-catenin, is involved in regulation and coordination of cell–cell adhesion and gene transcription. It is a

member of the Wnt signaling pathway. Highest expression is in endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=CTNNB1

Endothelial

related

FLT1 Vascular endothelial growth factor receptor 1 shows tyrosine protein kinase activity that is important for the control of cell

proliferation and differentiation. It is exclusively expressed in endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=flt1

Endothelial

related

FOXF2 Forkhead box protein F2. FOXF2 functions are not understood well, but it is expressed almost exclusively in endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=FOXF2

Endothelial

related

ICAM1 Intercellular Adhesion Molecule 1 aka D54 (Cluster of Differentiation 54) encodes a cell surface glycoprotein which is expressed on

endothelial cells and cells of the immune system.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=ICAM1

Endothelial

related

IGF1R Insulin-like growth factor 1 (IGF-1) receptor belongs to the large class of tyrosine kinase receptors. This receptor mediates the

effects of IGF-1, which is a polypeptide protein hormone similar in molecular structure to insulin. IGF-1 is highly expressed in

endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=IGF1R

Endothelial

related

PDGFRB Beta-type platelet-derived growth factor receptor Activation of PDGFRβ requires de-repression of the receptor’s kinase activity

which is accomplished during PDGFRβ dimerization. Two of the five PDGF isoforms activate PDGFRβ (PDGF-B and PDGF-D)

which phosphorylates itself and other proteins, and engages intracellular signaling pathways associated with migration and

proliferation. PDGFRβ is mostly expressed in astrocytes and endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=PDGFRB

Endothelial

related

PECAM1 Platelet endothelial cell adhesion molecule aka CD31, plays a key role in removing aged neutrophils from the body. PECAM-1 is

found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell

intercellular junctions. The encoded protein is a member of the immunoglobulin superfamily, it is expressed almost exclusively on

endothelial cells and is likely involved in leukocyte transmigration, angiogenesis, and integrin activation.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=PECAM1

Endothelial

related

SLC2A1 Glucose transporter 1 (or GLUT1), aka solute carrier family 2, facilitated glucose transporter member 1 is expressed mainly in

endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=SLC2A1

Endothelial

related

VCAM1 Vascular cell adhesion protein 1 is expressed on both large and small blood vessels only after the endothelial cells are stimulated by

cytokines. The VCAM-1 protein mediates the adhesion of lymphocytes, monocytes, eosinophils, and basophils to the vascular

endothelium. Upregulation of VCAM-1 in endothelial cells by cytokines occurs as a result of increased gene transcription (e.g., in

response to Tumor necrosis factor-alpha (TNF-α) and Interleukin-1 (IL-1)). VCAM-1 protein is an endothelial ligand for VLA-4

(Very Late Antigen-4 or integrin α4β1) of the β1 subfamily of integrins. It is almost exclusively expressed in astroglial.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=VCAM1

Endothelial

related

VEGFA Vascular endothelial growth factor A is a member of the platelet-derived growth factor (PDGF) family. It acts on endothelial cells to

increase permeability. It is expressed in mostly in astrocytes but also in neurons and OPCs.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=VEGFA

Endothelial

related

VWF Von Willebrand factor is expressed mostly in endothelial cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=VWF

Endothelial

related

AKT1 V-akt murine thymoma viral oncogene homolog 1; AKT1 gene encodes an enzyme in the serine/threonine kinase family and is a

key signaling molecule in the IRSP.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=AKT1

IRSP related

AKT3 v-akt murine thymoma viral oncogene homolog 3; AKT3, regulates cell signaling in response to insulin and growth factors.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=AKT3

IRSP related

DDIT4 DNA-damage-inducible transcript 4 protein (DDIT4) acts as a negative regulator of mTOR. Metformin increases DDIT4

expression.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=DDIT4

IRSP related

FTO Fat mass and obesity-associated protein.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=FTO

IRSP related

GSK3B Glycogen synthase kinase 3 beta, is a kinase and part of the IRSP.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=GSK3B

IRSP related

(Continued)
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Altered mRNA expression in endothelial cells of the parahippocampal

gyrus in AD and anti-T2D medicated AD

Compared to EC enriched fraction of controls, 5 (unadjusted for FDR) endothelial and IRSP-

related genes were abnormally expressed in untreated persons with AD (Figs 4 and 5). None of

the IRSP/endothelial cell associated genes, except for AKT3, met the FDR corrected threshold.

Only one of these 5 genes (IRS1) remained significantly different in expression in the endothe-

lial cell fraction of treated persons with AD, and even the expression levels of this gene

approached that of the controls, nominally. Interestingly, the expression level of IRS1 was not

changed in the endothelial fractions derived from persons with AD, but its expression

increased significantly (corrected p = 0.05) in those AD donors who had been treated with

antidiabetic medications.

Non-IRSP and/or non-endothelial cell mRNAs in the parahippocampal

gyrus in AD and anti-T2D medicated AD

Twenty-three mRNAs representing neuronal, oligodendroglial, astrocytic, microglial cell

types, and cell-cell adhesion, inflammation/immune, cell fate markers were also selected (S1

File) to study the consequences of antidiabetic treatment on some of the more non-IRSP/

endothelial cell functions of the parahippocampal gyrus. Not surprisingly, the expression of 8

of the 23 mRNAs studied was affected in the whole tissue homogenates of untreated persons

with AD and included mRNAs encoding for proteins associated with synaptic function,

Table 2. (Continued)

Symbol Description System

INSR Insulin receptor (IR) is an insulin, IGF-I and IGF-II activated transmembrane receptor that is expressed in most cells.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=INSR

IRSP related

IRS1 Insulin receptor substrate participates in transmitting signals from the insulin and insulin-like growth factor-1 (IGF-1) receptors to

intracellular pathways PI3K / Akt and Erk MAP kinase pathways.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=IRS1

IRSP related

IRS2 Insulin receptor substrate 2 is a cytoplasmic signaling molecule that mediates effects of insulin, insulin-like growth factor 1, and

some cytokines by acting as a molecular adaptor between diverse receptor tyrosine kinases.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=irs2

IRSP related

MTOR mechanistic target of rapamycin (mTOR), (formerly mammalian target of rapamycin) is a serine/threonine kinase and is part of

the IRSP.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=MTOR

IRSP related

PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha regulates genes associated with energy metabolism.

PPARGC1A interacts with the nuclear receptor PPAR-γ and is a downstream member of the IRSP. It is expressed in astrocytes,

neurons and oligodendrocytes.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=PPARGC1A

IRSP related

RICTOR Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) is a subunit of mTOR and part of the IRSP.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=rictor

IRSP related

RPS6KB1 Ribosomal protein S6 kinase beta-1 (S6K1), aka p70S6 kinase (p70S6K, p70-S6K), is a protein kinase that phosphorylates threonine

389 and activates mTOR and correlated with autophagy inhibition. The kinase activity of RPS6KB1 protein leads to an increase in

protein synthesis and cell proliferation. It is expressed in most cell types.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=RPS6KB1

IRSP related

RPTOR Regulatory-associated protein of mTOR AKA KIAA1303 encodes part of a signaling pathway regulating cell growth responding to

nutrient and insulin levels.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=RPTOR

IRSP related

SLC2A4 Glucose transporter type 4, aka GLUT4 is the insulin-regulated glucose transporter found primarily in adipose tissues and striated

muscle (skeletal and cardiac). It is expressed in most cell types, but especially in astrocytes.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=SLC2A4

IRSP related

TBC1D4 TBC1 domain family member 4 now known as AS160 encodes Rba GTPase-activating protein and is a substrate for Akt2.

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=TBC1D4

IRSP related

https://doi.org/10.1371/journal.pone.0206547.t002
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astrocytes, cell adhesion and immune/inflammation responses. Treatment with antidiabetic

medications reduced the number of adversely affected mRNAs to 3 that included markers of

immune/inflammation and cell-cell adhesion. Significantly fewer of these markers were

affected in the endothelial cell enriched fraction, where 2 (oligodendroglial and nuclear RNA

retention) of the 23 markers were affected in untreated AD samples and altered expression

remained significant, albeit nominally moderated in the treatment group.

Discussion

Numerous clinical, animal model, and postmortem studies have suggested that treatment of

persons suffering from dementia with antidiabetic medications may have beneficial effects on

cognitive function and on AD-related neuropathology[19, 26]. A number of recent studies and

reviews have drawn attention to the role(s) of the brain microvasculature in dementia[56] and

especially in persons with diabetes[55, 56, 81]. The current study was designed to uncover

some of the transcriptomic substrates for microvascular abnormalities in AD and to delineate

whether any beneficial effects of T2D medications could be attributed to the restoration of

microvascular and endothelial cell attributes affected in AD.

The results indicated that there are considerable abnormalities and reductions in gene

expression (whole tissue homogenates and endothelial cell isolates) in the parahippocampal

gyrus of persons with AD that map directly to genes associated with the microvasculature and

the IRSP. Whether these endothelial and IRSP abnormalities contribute to the genesis of AD

neuropathology, or whether they result from other neuropathological changes cannot be deter-

mined in postmortem studies. The findings also showed that the numbers of abnormally

Fig 2. Endothelial cell markers in parahippocampal gyrus bulk tissue. Values represent relative log fold change in persons with

AD relative to controls and log fold change in persons with AD and T2D who had been treated with anti-diabetes agents. � =

p<0.05 after FDR correction; # = p<0.05 without FDR correction;✦ = p<0.05 AD-No Treatment vs. AD-T2D Treatment.

https://doi.org/10.1371/journal.pone.0206547.g002
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expressed microvasculature and IRSP associated genes in diabetic AD donors who had been

treated with anti-diabetic agents were reduced significantly. Of course, it can be argued that in

the absence of untreated studied cases with AD and T2D, the “normalization” of microvascula-

ture and the IRSP gene expression could be due to T2D and not its treatment. Although this

argument cannot be countered by the results of this study, we find this alternative explanation

to be less biologically plausible given knowledge of the well-documented detrimental effects of

T2D on brain parenchyma and especially on the brain microvasculature. The interpretation

that treatment of T2D “normalized” multiple transcriptional abnormalities associated with AD

is, however, consistent with the results of some of the clinical trials reported to date[24, 82] as

well as our earlier studies of the effects of anti-diabetic treatments on AD neuropathology[26,

27]. That AKT3 expression was dramatically and robustly reduced in endothelial cells, and to a

lesser extent in whole tissue homogenates suggests that tissue level expression was driven by

changes in the endothelial transcriptome and that the disruption of components of the IRSP in

endothelial cells is a significant participant in AD neuropathology.

The expression levels of GLUT4 (SLC2A4), which encodes for an insulin-regulated glucose

transporter, were significantly upregulated in bulk tissue from the parahippocampal gyrus of

AD donors (Fig 3), while the expression levels of this same transcript were significantly

reduced in the endothelial cell enriched isolates derived from the same donors and brain

region. On the other hand, the expression levels of GLUT4 in persons with AD and T2D who

had been treated with anti-diabetic medications were similar to the levels detected in controls.

This suggests that anti-diabetic medications restored homeostasis to this critical glucose trans-

porter and that dis-homeostasis of glucose transport in brain endothelial and non-endothelial

Fig 3. IRSP-associated markers in parahippocampal gyrus bulk tissue. Values represent relative log fold change in persons with

AD relative to controls and log fold change in in persons with AD and T2D who had been treated with anti-diabetes agents.
� = p<0.05 after FDR correction; # = p<0.05 without FDR correction;✦ = p<0.05 AD-No Treatment vs. AD-T2D Treatment.

https://doi.org/10.1371/journal.pone.0206547.g003
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cells may be a critical abnormality in AD that is restored by anti-diabetes medications. Animal

model and in vitro studies will need to be conducted to determine whether dysregulation of

GLUT4 may be a key contributor to at least some of the other IRSP and endothelial cell abnor-

malities observed in the current study. Zlokovic and colleagues have independently implicated

GLUT1, another glucose transporter, as a key player in the microvascular pathology associated

with AD[83].

“Normalization” of abnormally expressed genes in AD by anti-T2D treatment was not lim-

ited to transcripts associated with the IRSP and endothelial cells, but as shown in Figs 1 and 2

of the S1 File carried over to genes associated with immune-inflammation, microglia, cell-

adhesion and synaptic function. These findings are not surprising if it is assumed that treat-

ment with anti-T2D medications results in decreased overall inflammation and improved

insulin signaling.

The fact that no brains from AD+T2D diabetic donors that had not been treated with anti-

diabetic agents were included in this study is a distinct weakness and detracts from interpreta-

tive power. However, in developed countries, the vast majority of persons diagnosed with T2D

receive insulin or oral anti-diabetes medications, making it difficult to include such a group in

clinical and postmortem studies. In addition, interpretation of results, even if such a group had

been included, would have been hampered since, almost by definition, the severity of T2D

would have been significantly less than that of the treated subjects. Despite the imperfect

nature of mouse models, these variables will be easier to control in such a system, and we plan

to attempt to address some of these questions left open in our postmortem human studies by

employing mouse models of amyloidosis or tauopathy, each of which will be studied without

Fig 4. Endothelial cell markers in microvascular enriched isolates from the parahippocampal gyrus. Values represent relative

log fold change in persons with AD relative to controls and log fold change in persons with AD and T2D who had been treated with

anti-diabetes agents. � = p<0.05 after FDR correction; # = p<0.05 without FDR correction;✦ = p<0.05 AD-No Treatment vs.

AD-T2D Treatment.

https://doi.org/10.1371/journal.pone.0206547.g004
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or with diabetes, and each of those groups, in turn, can be studied with or without antidiabetic

medication. Choice of the adequate mouse model of diabetes will be key since we have

observed some unexpected effects in some transgenic mouse models for amyloidosis[84] and

the effect of a deficiency of the T2D gene, Sorcs1[85]. Finally, we might also need to examine

the effects of young ages vs older as additional parameters in this highly ambitious study.

As noted in Table 1, the great majority of the donors (79+%) who were treated with oral

anti-diabetes agents were treated with sulfonylureas. Although this makes it easier to attribute

any oral medication effects to sulfonylureas, it detracts from our ability to distinguish between

the effects of the myriad of different agents with different mechanisms of action. The inability

to discern the specific neuro/vascular effects of different anti-diabetic agents in this study also

precluded our ability to assess how the reported interactions of metformin and APP/Aβ influ-

ence IRSP and endothelial cell markers[86–88]. In addition, it would have been of significant

interest to stratify the studied cohort according to whether they received insulin only, oral

agents only, or insulin plus oral agents as well as the efficacy and duration of treatment. Unfor-

tunately, extended medical histories (e.g., since mid-life) were not available since the study

cohort was nursing home based and the sample size was not large enough for adequate statisti-

cal power to analyze the results with medication type granularity.

Challenge notwithstanding, about half of diabetics develop dementia and that roughly dou-

bles the cost of caring for each demented diabetic patient especially since their cognitive

decline makes it impossible for the patient to participate in the monitoring and modulation of

his/her diabetic status. Given the dual epidemics of T2D and dementia in the most rapidly

Fig 5. IRSP-associated markers in microvascular enriched isolates from the parahippocampal gyrus. Values represent relative log fold

change in persons with AD relative to controls and log fold change in persons with AD and T2D who had been treated with anti-diabetes

agents. � = p<0.05 after FDR correction; # = p<0.05 without FDR correction;✦ = p<0.05 AD-No Treatment vs. AD-T2D Treatment.

https://doi.org/10.1371/journal.pone.0206547.g005
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growing segment of our population, there is enormous importance in elucidating the basis for

cognitive impairment in T2D so that potentially meaningful interventions can be evaluated.

Supporting information

S1 File. Other transcripts.

(DOCX)

S2 File. Original raw data.

(XLSX)

S1 Fig. Significantly affected non-endothelial and non-IRSP associated transcripts in para-

hippocampal gyrus bulk tissue. Values represent relative log fold change in persons with AD

relative to controls and log fold change in persons with AD and T2D who had been treated

with anti-diabetes agents. � = p<0.05 after FDC correction; # = p<0.05 without FDR correc-

tion.

(TIF)

S2 Fig. Significantly affected non-endothelial and non-IRSP associated transcripts in

microvascular enriched isolates from the parahippocampal gyrus. Values represent relative

log fold change in persons with AD relative to controls and log fold change in persons with

AD and T2D who had been treated with anti-diabetes agents. � = p<0.05 after FDC correction;

# = p<0.05 without FDR correction.

(TIF)
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