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Cells are nonequilibrium systems that exchangematter and energy
with the environment to sustain their metabolic needs. The non-
equilibrium nature of this system presents considerable challenges
to developing a general theory describing its behavior; however,
when studied at appropriate spatiotemporal scales, the behavior of
ensembles of nonequilibrium systems can resemble that of a system
at equilibrium. Here we apply this principle to a population of cells
within a cytomorphological state space and demonstrate that
cellular transition dynamics within this space can be described using
equilibrium formalisms. We use this framework to map the effective
energy landscape underlying the cytomorphological state space of a
population of mouse embryonic fibroblasts (MEFs) and identify
topographical nonuniformity in this space, indicating nonuniform
occupation of cytomorphological states within an isogenic popula-
tion. The introduction of exogenous apoptotic agents fundamen-
tally altered this energy landscape, inducing formation of additional
energy minima that correlated directly with changes in sensitivity to
apoptosis induction. An equilibrium framework allows us to de-
scribe the behavior of an ensemble of single cells, suggesting that
although cells are complex nonequilibrium systems, the application
of formalisms derived from equilibrium thermodynamics can pro-
vide insight into the basis of nongenetic heterogeneities within cell
populations, as well as the relationship between cytomorphological
and functional heterogeneity.
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Cells are complex nonequilibrium systems that exchange
matter across the cellular membrane, often against concen-

tration gradients, allowing cells to participate in intercellular
signaling, sense and respond to environmental conditions, and
import and export essential biomolecules (1, 2). Mechanical
nonequilibrium can be witnessed in the contraction and extension
of the cytoskeletal network (3, 4), and in the complex directed
movements of cell division (5). Thermal nonequilibrium is ob-
served in the form of heat dissipation and absorption in multi-
cellular organisms, as well as in the offset of the entropic increases
produced in many biochemical reactions (e.g., metabolism, DNA
synthesis) through the absorption of free energy produced in the
catabolic breakdown of high-energy biomolecules (6, 7). Given
the central importance of cells in biological systems, significant
efforts over the years have been directed at developing non-
equilibrium formalisms for describing this system; however, a
unifying theory remains, at present, out of reach. In recent years,
several studies have indicated that when viewed at appropriate
spatiotemporal scales, the behavior of ensembles of nonequilib-
rium systems can, at times, be accurately approximated by equi-
librium formalisms (8–11). Here, we apply this principle to explore
heterogeneity in a population of isogenic mouse embryonic
fibroblasts (MEFs).
We begin by identifying an appropriate state space that would

allow both for testing the applicability of an equilibrium framework
and for tracking the relationship between state space dynamics and
functional behavior in a population of living cells. The state space
of a living cell can be defined by many different feature sets.
The molecular microstate represents the sum of the epigenetic,

transcriptomic, proteomic, and additional molecular states of the
cell. The ensemble of these states defines the functional state of
a cell; as a consequence, variability in the molecular microstate
can lead directly to functional heterogeneity within isogenic
populations, a phenomenon known as nongenetic heterogeneity.
These nongenetic heterogeneities play important roles across a
diverse range of biological processes (12, 13). Examples include
the selective differentiation of hematopoietic progenitor cells (14)
and the appearance of subpopulations of “persister” cells with
increased antibiotic resistance (15). Whole-genome methods (e.g.,
transcriptomics, proteomics, ChiP-Seq) offer by far the most
comprehensive catalog of the microstate (16–21), but these
methods are cell-destructive in nature and of limited use in live cell
experiments. Fluorescent reporters linked to mRNA and protein
targets can be tracked over multihour time courses in living cells
(22, 23); however, reporters are limited to a few target sequences
at a time and offer a limited snapshot of the molecular microstate.
Here we employ cytomorphology, as defined at the cell and or-
ganelle scale, as a proxy for the molecular microstate. Cytomor-
phology represents the sum of many thousands of molecular
processes (24, 25), providing global cell state information that
offers a compromise between experimental accessibility and ex-
haustiveness. We note existing precedent for the development of
intermediate, coarse-grained approaches in cases in which com-
prehensive tracking of system components is intractable, notably in
the Eulerian representation of fluid mechanics (SI Appendix).
Further underlining the link between the cytomorphological and
functional states of the cell are numerous studies demonstrating
that diseases such as cancers (26) and neurodegenerative disorders
(27, 28) are characterized by concomitant functional and cyto-
morphological changes. By altering the scale at which we defined
the cellular state, we were able to develop methods to track
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state space occupancy in living cells and investigate relationships
between state space dynamics and functional heterogeneity.
We began by developing a methodology to measure cytomor-

phological features and quantify state space occupancy in a pop-
ulation of cells. We chose MEFs as our model population, as
wild-type MEFs (WT MEFs) exhibit native cytomorphological het-
erogeneity, rendering them ideal candidates for studying non-
genetic heterogeneity in the context of cytomorphological variability.
WTMEFs were harvested and grown in vitro, and then chemically
fixed and fluorescently labeled for 3 cytomorphological structures:
the microtubule cytoskeleton (α-tubulin), nucleus (DAPI), and
mitochondria (mtHsp70; Fig. 1B). In numerous studies, mor-
phological changes in these structures have been observed

concomitant with changes in cellular function (29–31), suggesting
potential links between cytomorphological and functional hetero-
geneity. Next, we developed image analysis algorithms to quantify
205 shape, size, and textural features (SI Appendix, Table S3) in
each cell of a 904-cell dataset. The distribution of cells in cyto-
morphological state space were visualized using Principal Com-
ponent Analysis, a technique that converts high-dimensional
datasets to lower-dimensional datasets by identifying linear com-
binations of high-covariance features that together account for a
large percentage of population-wide variance; these linear com-
binations are termed principal components (PCs). As discussed
previously, many of our features exhibit high covariance (Fig. 1C);
Principal Component Analysis allows for multiple covarying

Fig. 1. Cytomorphological heterogeneity in WT MEFs. (A) Relationships between cell states at different levels of description. (B) Fluorescence images of fixed WT
MEFs. The microtubule cytoskeleton (α-tubulin, green), mitochondria (mtHsp70, red), and nucleus (DAPI, blue) are labeled. (Scale bar, 50 μm.) (C and D) Scatter
plots of single cell values for cell area vs. cell perimeter (C) and cell area vs. cell circularity (D) in a sample of fixed WT MEFs (n = 904). (E and F) Scatter plots of
single-cell coordinates in PC1 vs. PC2 (E) and PC1 vs. PC2 vs. PC3 (F) space in a sample of fixed WT MEFs (n = 904).
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features to be linearly combined into a single PC, thereby reducing
the dimensionality of the dataset. In our dataset, PC1 was domi-
nated by cell and nuclear morphometric features, whereas PC2 was
dominated by cell morphometric and textural features and PC3
was dominated by cell morphometric and mitochondrial textural
features (SI Appendix, Table S4). Furthermore, plots of PC1, PC2,

and PC3 (Fig. 1 E and F), together accounting for 46.9% of total
variance, revealed that WT MEFs occupy a continuous set of
cytomorphological states rather than a set of discrete subspaces.
We next turned our attention to developing a dynamic map

of transitions within state space by tracking cytomorphological
changes in living cells. To implement live cell imaging, we employed

Fig. 2. State space dynamics of living cells approximate a system at equilibrium. (A) Schematic of the fluorescent reporter lentivirus cassette. (B) Fluorescence
images of a WT MEF expressing the lentivirus fluorescent reporter. From left to right: mIFP-H2B (nucleus), tdTomato-mito (mitochondria), EGFP-tubulin (micro-
tubule cytoskeleton), composite. (Scale bar, 50 μm.) (C) Experimentally observed transition vectors ofWTMEFs during a 60-h time course. Vectors originate at (PC1t,
PC2t) and terminate at (PC1t + 4 h, PC2t + 4 h). (D) Heat map of the mean transition vector magnitude of each bin in a 60 × 60 bin representation of state space (E–H)
Heat maps of the pdf (E), pexit (F), pstay (G), and pend (H) of WT MEFs. (I) The distance from the origin (0, 0) to the mean (PC1, PC2) coordinate (green) and the mean
magnitude of the transition vector (PC1t, PC2t) to (PC1t + 4 h, PC2t + 4 h) (orange) at 4-h intervals in WT MEFs (n = 68). (J) Steady-state analysis. Two-sample t test
comparing, at each point, the distance from the origin to the mean (PC1, PC2) coordinate (green) and the mean transition vector magnitude from (PC1t, PC2t) to
(PC1t + 4 h, PC2t + 4 h) (orange) to those observed at t = 0 h. Significance values are indicated by dashed lines. (K) Detailed balance analysis. Heat map of the
binomial probability, indicated by the blue color scale, of the experimentally observed ratio of forward and reverse transitions occurring given an underlying
probability distribution of (pforward = 0.5, preverse = 0.5). Bins for which no data were available are indicated in white. Transitions between adjacent bins are shown;
a full transition map can be found in SI Appendix, Fig. S3.
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a lentivirus-based approach to introduce fluorescent reporters tar-
geted to our structures of interest. Our lentivirus vector consisted of
an EF1α promoter driving expression of fluorescent reporters lo-
calizing to the microtubule cytoskeleton (EGFP-tubulin), nucleus
(mIFP-H2B), and mitochondria (tdTomato-mito-7; Fig. 2A). Once
transduced with this lentivirus, MEFs were imaged at 4-h intervals
during a 60-h time course (Fig. 2B), and each cell’s location within
state space calculated at each point. New PCs were calculated for
living cells, and a new cytomorphological state space was con-
structed (SI Appendix, Fig. S2); the topography of this space bears
close resemblance to that observed for fixed cells (Fig. 1 E and F).
Next, cytomorphological state space transitions were plotted into a
60 × 60 bin representation of state space (Fig. 2C), where transition
vectors were defined as originating at (PC1t, PC2t) and terminating
at (PC1t + 4 h, PC2t + 4 h). This plot revealed nonuniform magni-
tudes of transition, where vectors originating more centrally in state
space appeared to be of smaller magnitude than those originating
peripherally. To quantify this observation, we plotted a heat map of
the mean magnitude of transition of vectors originating from each
bin (Fig. 2D), confirming the mean magnitude of transition varies
as a function of state space. This indicates the degree of
cytomorphological change within a given time interval varies as
a function of the state of a cell.
To further refine our understanding of the dynamics of cyto-

morphology space, we plotted the probability density function
(pdf) of WTMEF state space occupancy (Fig. 2E) in a 10 × 10 bin
representation of state space and identified a peak in the central
(0, 0) region of this space. We then plotted the probability, during
a 60-h time course, that a cell occupying a bin would exit that bin
by the subsequent point (pexit; Fig. 2F) and found that WT MEFs
occupying more peripheral states had a higher probability of exit
compared with those occupying more central states. The proba-
bility of staying within the same bin between consecutive points
(pstay), a measure of short-term occupancy, was also higher within
these central bins (Fig. 2G). However, when we plotted the
probability of a cell occupying the same bin as that occupied at the
end of its time course (pend; Fig. 2H), a rough measure of long-
term occupancy, the mean probability fell by more than 4-fold.
These results suggest that WT MEF cytomorphology space is
energetically nonuniform and supports a directional bias toward
the set of states surrounding (0, 0), but that entry into this space
does not impose long-term occupancy. Interestingly, in PC space,
the origin (0, 0) represents the mean value of contributing fea-
tures, suggesting a control mechanism acts to return cells to this
morphological “mean.”
We next looked for nonequilibrium behavior in morphology

space dynamics. Systems at equilibrium are at steady state, where
the distribution of state variables is invariant during all timescales.
Equilibrium systems are also in detailed balance, in which state
transitions are accompanied by reciprocal transitions of equal
magnitude (32). Violations of detailed balance have been detected
in some cellular processes (33, 34). To assess the steady state
characteristics of cytomorphology space, we identified 2 state
variables describing the occupancy and transition dynamics of
MEFs within this state space. The first state variable, representing
state space occupancy, measured the distance of each cell from the
origin (0, 0) in state space and calculated the mean distance at
each point (Fig. 2I, green). The second state variable, representing
the dynamics of state space transitions, measured the mean mag-
nitude of transition vectors at each point (Fig. 2I, orange). At each
point, the mean distance from the origin, as well as mean mag-
nitude of transition, was compared with the mean distances and
magnitudes observed at time t0(0 h), using a 2-sample t test. The
results indicated that both the mean distance from the origin (0, 0)
and mean magnitude of transition were statistically invariant (α =
0.05) at time scales ranging from 4 to 52 h (Fig. 2J), indicating that
cytomorphological state space is at steady state at the temporal
resolution of our experiment. To test for detailed balance, we

tabulated the frequency of state transitions between each pair of
bins within our 10 × 10 bin representation of state space (Fig. 2K
and SI Appendix, Fig. S3), with a binomial test revealing statisti-
cally insignificant variability in the rates of forward and reverse
transitions between paired bins (α = 0.05; SI Appendix). This result
was unexpected, since the cell cycle alters cell morphology (35–37).
The discrepancy may be a product of dimensionality reduction
(SI Appendix).
The results of the steady state and detailed balance analyses

indicated that the transition dynamics of WT MEFs within cyto-
morphology space approximated those of a system at equilibrium.
To assess the suitability of equilibrium formalisms in describing the
population-level transition dynamics, we developed a framework
based on an adaptation of Maxwell-Boltzmann statistics. Maxwell-
Boltzmann statistics are an equilibrium statistical mechanics-based
formalism for describing state occupancies of a system in terms of
a single-valued state function that plays the role of a potential
energy (32, 38). According to this formalism, the relative occu-
pancies of the different energy states of a system are a function of
the differences in energy levels between available states, as well
as the temperature (Tb) of the system. In classical statistical me-
chanics, the Maxwell-Boltzmann temperature (Tb) refers to the
thermodynamic temperature of the system, as measured in Kelvins
(K). This concept of temperature was adapted to our system by
drawing parallels between particle velocity vectors and state space
transition vectors (SI Appendix), an approach that allowed us to
calculate an effective temperature (TWT) for our system. The
concept of energy state occupancies was similarly adapted by
drawing parallels between particle occupancy of energetic states
and cell occupancy of cytomorphological states, as measured by
the pdf (Fig. 2E). The effective temperature and state space oc-
cupancy data were then used to calculate the effective energy
landscape underlying WT MEF cytomorphology space (Fig. 3B
and SI Appendix). This energy landscape was characterized by a
global minimum surrounding (0, 0), and was absent any additional
local maxima or minima. In a system at equilibrium, the future
behavior of the system depends on its current state, and the ve-
locity field in state space can be predicted by the gradient of the
potential energy landscape (Fig. 3A and SI Appendix). To assess
the predictive power of the effective energy landscape, we plotted
the vector field predicted by the gradient of the energy landscape
(Fig. 3D) and compared it with the experimentally observed
transition vector field (Fig. 3C). By calculating the vector dot
product of corresponding bins between the observed and predicted
vector fields and averaging the dot product across state space, we
were able to quantify directional similarity between vector fields.
Our results indicated that the experimentally observed transition
vector field was more closely aligned with the transition vector field
predicted by our inferred effective energy landscape than with
transition vector fields predicted from any of 1,000 scrambled
variations of the energy landscape, created by randomly distrib-
uting the original set of energy levels throughout state space (Fig. 3
E and F and SI Appendix, Fig. S8). Although cells are non-
equilibrium systems, our results indicate equilibrium formalisms
can successfully describe the behavior of an ensemble. Whether
equilibrium formalisms can be applied to individual cells is a
separate question not addressed here.
Having developed a framework for mapping cytomorphology

space and a formalism for describing the energy landscape
underlying this space, we were now in a position to investi-
gate potential relationships between cytomorphological and
functional variability. Given the many available examples of
concomitant functional and cytomorphological changes, we hy-
pothesized that the heterogeneity observed in cytomorphology
space might correspond directly to functional heterogeneity
within the population. To test this hypothesis, we screened 5
apoptosis drugs for conditions producing a heterogeneous re-
sponse in a population of isogenic WT MEFs. We found that
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camptothecin (2 μM), a topoisomerase I inhibitor, produced
such a response, with a fraction of cells undergoing apoptosis
within 96 h of exposure, while others remained alive up to 21
d postexposure (SI Appendix, Fig. S9). The long duration during
which some cells survived relative to the timescale of apoptosis
suggests that the observed heterogeneity resulted from funda-
mentally different apoptotic decisions rather than a simple delay
in apoptosis. To ask whether apoptotic response correlates with
cytomorphology, we transduced a population of WT MEFs with
our cytomorphology-targeted fluorescent reporter lentivirus and
imaged cells at 4-h intervals, this time adding 2 μM camptothecin
at the 2-h time. Over the course of a 64-h time course, we ob-
served that 17 (52%) of 33 cells underwent apoptosis (Apoptosis
[+]), while 16 (48%) of 33 cells did not (Apoptosis[−]). We hy-
pothesized that the response of a cell might correlate directly
with its cytomorphological state before apoptosis induction, but
when the space states of Apoptosis[+] and Apoptosis[−] cells at
time 0 h were plotted (SI Appendix, Fig. S10) and analyzed, they
were found to be statistically indistinguishable (SI Appendix, Fig.
S11). Although the initial space state was uninformative, an ex-
amination of the state transitions of each class of cell revealed
characteristic differences in the dynamics of their state space
transitions. The transition vectors of Apoptosis[+] cells (Fig. 4
A and B) were of larger-than-average magnitude relative to
the total cell population (SI Appendix, Fig. S12), and displayed
a directional bias toward the (−30, 30) region of PC space
(SI Appendix, Fig. S13). In contrast, the transition vectors of
Apoptosis[−] cells (Fig. 4G and H) were of smaller-than-average
magnitude (SI Appendix, Fig. S12) and displayed a directional
bias toward the (30, 0) region of PC space (SI Appendix, Fig.
S13). Interestingly, both groups of cells were also found to
populate the central (0, 0) region of PC space. Plots of the
probabilities of exit from each bin (pexit; Fig. 4 D and J) revealed
that both Apoptosis[+] and Apoptosis[−] cells exhibited higher
probabilities of exit from peripheral states relative to central states.
Plots of the probability of staying within the same bin between

consecutive points (pstay; Fig. 4 E and K), a measure of short-term
occupancy, revealed a region of increased probability near (0, 0),
in agreement with our model of an energetically favorable
subspace surrounding this region. The pstay of corresponding
bins differed by no more than 1.5-fold between Apoptosis[+] and
Apoptosis[−] cells, but plots of the probability of a cell occupying
the same bin as that occupied at the end of its time course (pend; Fig.
4 F and L), a measure of long-term occupancy, revealed that long-
term occupancy in Apoptosis[+] and Apoptosis[−] cells was re-
stricted to different, nonoverlapping regions in cytomorphology
space. Apoptosis[+] cells exhibited increased pend probabilities in
the upper left (−30, 30) region of PC space, whereas Apoptosis[−]
cells exhibited increased pend probabilities in the central (0, 0) and
far right (30, 0) regions of this space. These observations suggest
variability in the occupancy of Apoptosis [+] and Apoptosis[−]
cells in WT MEF cytomorphology space might contribute to
functional divergence within the population. To statistically test
this hypothesis, we ran 2D Kolmogorov-Smirnov significance tests
(α = 0.05) between pairs of corresponding probability plots (39)
(Fig. 4Q and SI Appendix, Fig. S14), revealing significant differ-
ences among the pexit, pstay, and pend plots of Apoptosis[+] and
Apoptosis[−] cells.
To identify the underlying changes to cytomorphology space

driving this behavior, we calculated the effective energy landscape.
The transition vectors of camptothecin-treated cells were, on av-
erage, of 36% smaller magnitude than those of untreated cells (SI
Appendix, Fig. S15). In a system defined by Maxwell-Boltzmann
statistics, smaller average displacements correspond to a lower
effective temperature of the system. To test whether this “cooling”
of morphology space could explain observed changes in the pdf,
we calculated the expected pdf of WT MEFs over a range of
temperatures. We then ran a series of 2D Kolmogorov-Smirnov
(K-S) tests to quantify similarities between these expected pdfs
and those observed experimentally under camptothecin treatment.
A plot of K-S statistic values as a function of temperature (SI
Appendix, Fig. S16) revealed that similarities between the observed

Fig. 3. The gradient of the inferred effective energy landscape is predictive of experimentally observed transition dynamics. (A) Example of an energy landscape,
formed by taking the inverse of a 2D Gaussian with μx = 0, μy = 0, σx = 1, and σy = 1 (Left) and the transition vector field (Right) predicted by the gradient of this
landscape. (B) Heat map (Left) and surface plot (Right) of the inferred effective energy landscape of WT MEF cytomorphology space. Energy values are scaled to a
range of [−0.4, 0]. (C through E) Experimentally observed transition vectors (C), vectors derived from the gradient of the inferred effective energy landscape (D),
and vectors derived from a scrambled energy landscape (E). Vectors are unit normalized. (F) Histogram of the mean dot product of the observed vectors (C) and
vectors derived from 100 scrambled versions of the energy landscape. The mean dot product of C and D is indicated by a dashed line (red).
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and expected pdfs were maximized at an effective temperature of
1.04TWT, whereas the calculated temperature of camptothecin
cytomorphology space was 0.41TWT, suggesting that a change in
temperature alone was insufficient to explain observed changes
in the pdf. The new camptothecin-treated energy landscape was

calculated (Fig. 4M), and the difference relative to the untreated
energy landscape plotted (Fig. 4N). Camptothecin treatment
produced new energy minima in the upper left (−30, 30) and far
right (30, 0) regions of PC space while further deepening the
existing minimum at (0, 0).

Fig. 4. State variability in cytomorphology space corresponds to variability in apoptotic response. (A and G) Experimentally observed transition vectors of
Apoptosis[+] (A) and Apoptosis[−] (G) cells during a 64-h time course. Vectors originate at (PC1t, PC2t) and terminate at (PC1t+4 h, PC2t+4 h). (B and H) Single-cell mean
transition vectors and mean (PC1, PC2) coordinates of Apoptosis[+] (B) and Apoptosis[−] (H) cells during a 64-h time course. Radii of circles are scaled to the (PC1,
PC2) coordinate variance. (C–F and I–L) Heat maps of the pdf (C and I), pexit (D and J), pstay (E and K), and pend (F and L) of Apoptosis[+] (C–F) and Apoptosis[−] (I–L)
cells. (M) Inferred effective energy landscape of camptothecin-treated WT MEFs. (N–P) Calculated differences between the effective energy landscapes of WT and
camptothecin-treated (N), Apoptosis[+] (O), and Apoptosis[−] (P) cells. (Q) Bar plot of Kolmogorov-Smirnov statistic values comparing the probability plots of WT,
Apoptosis[+], and Apoptosis[−] cells. The K-S statistic value at α = 0.05 is indicated by a dashed line, and statistically significant values are indicated by asterisks. (R)
Heat map of the probability of apoptosis given occupancy of a particular state space bin at any point during the 64-h time course.
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Although both Apoptosis[+] and Apoptosis[−] cells effectively
occupied the same camptothecin-treated energy landscape, we
wanted to better understand whether specific features of this
landscape could explain their divergent behaviors. To do this, we
separately calculated the effective temperatures of Apoptosis[+]
and Apoptosis[−] cells and plotted their effective energy land-
scapes (SI Appendix, Figs. S18 and S19), along with their differ-
ences relative to the untreated energy landscape (Fig. 4 O and P).
The effective energy landscape of Apoptosis[+] cells resembled
that of untreated cells, with the exception of a new energy well in
the upper left (−30, 30) region of PC space. This well coincided
with the endpoint of 92% of Apoptosis[+] cells, indicating that this
energy minimum acts as a “death” well that apoptotic cells enter
but do not escape. In contrast, the landscape of Apoptosis[−] cells
was characterized by a dramatic deepening in the far right (30, 0)
region of PC space, accompanied by a second milder deepening
in the central (0, 0) region. We hypothesized that these energy
minima might act as protective barriers to apoptosis by hindering
cell exit and minimizing the probability of cell entry into the (−30,
30) “death” well. To test this possibility, we plotted the probability
of apoptosis as a function of state space occupancy (Fig. 4R) and
observed that entry at any point in the time series into states near
(30, 0) corresponded to a 0% probability of apoptosis, whereas
entry at any point in the time series into states in the (−30, 30)
“death” well corresponded to a 100% probability of apoptosis. In
between these 2 extremes were the central states surrounding (0, 0),
where the probability of apoptosis was low, but nonzero. These
findings support an interpretation in which the addition of

camptothecin produces 3 functionally distinct energy minima in
WT MEF cytomorphology space: 1 acting as an irreversible
“death” well into which cells enter and do not escape, and the
other 2 acting as energetically favorable subregions that serve as
protective barriers to apoptosis. Comparison of observed tran-
sition vectors to those predicted by the inferred effective energy
landscape (SI Appendix, Fig. S20 and SI Appendix) suggests that
camptothecin alters the landscape, leading to subsequent changes
in cellular transition dynamics and behavior.
Our application of equilibrium formalisms to understand

nongenetic heterogeneity suggests that equilibrium statistical
mechanics-based frameworks can have much to offer for studying
inherently nonequilibrium systems such as living cells (40).

Materials and Methods
For imaging fixed cells, mouse embryonic fibroblasts were grown in 384-well
plates, fixed with formaldehyde, and stained with antibodies, and imaged on
a GE InCell 2000 imager. For imaging live cells, a custom lentivirus construct
was used to express tagged proteins in MEFs. A custom image analysis
pipeline was used to extract morphological features from images.
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