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Abstract

The assigned work was aimed to examine the capability of phytoconstituents of an aqueous

seed extract of Acacia senegal (L.) Willd to inhibit HMG-CoA reductase and regression of

the atherosclerotic plaque. The chemical fingerprinting of the test extract was assessed by

LC-MS/MS. Consequently, the analyses of in-vitro, in-vivo, and in-silico were executed by

using the standard protocols. The in-vitro assessment of the test extract revealed 74.1%

inhibition of HMG-CoA reductase. In-vivo assessments of the test extract indicated that

treated hypercholesterolemic rabbits exhibited a significant (P�0.001) amelioration in the

biomarker indices of the dyslipidaemia i.e., atherogenic index, Castelli risk index(I&II), ath-

erogenic coefficient along with lipid profile. Subsequently, significant reductions were

observed in the atherosclerotic plaque and antioxidant levels. The in-silico study of molecu-

lar docking shown interactions capabilities of the leading phytoconstituents of the test

extract i.e., eicosanoic acid, linoleic acid, and flavan-3-ol with target protein of HMG-CoA

reductase. The values of RSMF and potential energy of top docked complexes were show

significant interactions. Accordingly, the free energy of solvation, interaction angle, radius of

gyration and SASA were shown significant stabilities of top docked complex. The cumulative

data of results indicate phytoconstituents of an aqueous seed extract of Acacia senegal

have capabilities to inhibit the HMG-CoA reductase and improve the levels of antioxidants.
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Introduction

The existing therapeutics of dyslipidemia involve cholesterol lowering drugs specifically

known as statins and fibrates. The mechanism of statins involves inhibition of HMG-CoA

enzyme [1]. Although, there are several adverse effects associated with these synthetic drugs

[2]. In view of this, the present study was aimed to explores HMG–CoA reductase inhibition

and antioxidant potential. Plant products are not only used in traditional medicine but are also

in demand globally as potential sources for the development of new drugs [3]. The Indigenous

traditional herbal remedies contain unique formulations of local herbs and herbal extracts that

have been developed based on conventional knowledge and local wisdom [4–6]. The ability of

several traditional medicines to treat and resolve cardiovascular problems and linked meta-

bolic disorders have been well documented [7]. In this regard, polyherbal formulation of five

local herbs (Panchkuta), such as unripe pod of Prosopis cineraria (Sangari), seed of Acacia sen-
egal (L.) Willd. (Kumbat or Kumatiya), fruit of Capparis decidua (Ker), fruit of Cordia myxa
(Gunda), and pulp of unripe fruit of Mangifera indica (Amchoor) that are endemic to the

Western Rajasthan region (Thar desert) of India, have been historically used to treat cardiovas-

cular problems in rural communities [8, 9]. The seeds of Acacia senegal (L.) Willd. is one of the

key ingredients in this herbal medicine (panchkuta) of which several medicinal properties

have been demonstrated in our previous studies [10–12]. Exudates of Acacia senegal(L.)

Willd., which is commonly known as gum Arabic, have also been reported to exhibit hypocho-

lesterolemic activity in animals as well as Sudanese human subjects [13–15]. The extracts of

the seeds of Acacia senegal (L) also have the ability to inhibit serine proteinase activity [16].

Several reports have provided the information about the ethnopharmacological applications of

foods and herbal medicines of indigenous to the arid regions of African countries and the

Indian subcontinent [16–18]. Acacia senegal (L.) Willd.is typically known by its common

name, white gum tree, and is a member of the Leguminosae-Mimosoideae [11, 19], while seed

extracts of Acacia senegal (L.) Willd.is locally known as kumbat or kumatiya in Rajasthan [20,

21]. The present study also identified the major phytoconstituents present in the seed extracts

of Acacia senegal and assess its anti-atherosclerotic properties in hypercholesterolemic rabbits

using a combination of in-vitro, in-silico, and in-vivo methodology.

Material and methods

Plant material and extraction

The seeds of Acacia senegal (L.) Willd. were collected from in and around premises of new

campus of Jai Narain Vyas University, Jodhpur (Rajasthan), India. Taxonomic confirmation

of the seeds was based on a comparison with an herbarium accession by a botanical expert in

the regional centre, Botanical Survey of India, Jodhpur (BSI/AZRC/I.12012/Tech./2021-22 (PI.

Id.)/007 dated 16.06.2021). Seed extract was obtained using a standard Soxhlet procedure [22].

Identification of the phytoconstituents

The screening of predominant phytoconstituents present in the seed extracts was based on

LC-MS (Liquid chromatography and Mass spectroscopy) [23, 24]. The LC-MS data were sub-

sequently analysed using Mass hunter software developed by Agilent. Peaks generated in both

positive and negative modes of ionization, with�3500 ionization counts, were considered

using a peak spacing tolerance of 0.0090m/z for reasonable resolution of the chromatogram.

Chromatogram peaks were assigned masses based upon MS-MS fragmentation patterns spe-

cific for the identified phytocompound. The metabolite profile was confirmed using mass

Bank workstation software along with public database information. The samples (SAIF 436)
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were analysed by the SAIF (Sophisticated Analytic Instrumental Facility), CDRI, Lucknow,

UP, India.

Chemicals and reagents

All chemicals and reagents were used obtained from Sigma Aldrich, India up to chemical

grade of ACS (American Chemical Society). Diagnostic kits were obtained from local supplier

of Transasia Bio-Medicals LTD, Erba Mannheim GmbH., Germany.

Doses of standard statin drug and seed extract dosage

A supply of 20 mg tablets of Atorlip (atorvastatin) was obtained from a local pharmacy in

Jodhpur and administered doses were calculated based on body weight of the test rabbits. The

400mg/kg dose regime was calculated and administered orally for the course of experimenta-

tion based on LD50 assessment and previously published studies [25, 26].

In-vitro inhibition of HMG -CoA reductase activity

The HMG-CoA reductase inhibition assay was performed in-vitro using a kit (Sigma Aldrich)

according to the manufacturer’s instructions and previous reports in the literature [27, 28].

The inhibitory activity of increasing concentrations (0.32μg/ml, 0.62 μg/ml, 1.25 μg/ml, and

5μ0g/ml) of the seed and a standard statin drug (Pravastatin) provided with the kit were deter-

mined by measuring absorbance at 340 nm. The IC50 was calculated based on the obtained

inhibition curve for HMGR of the seed extract and the standard drug. The assay is based on

the decrease in absorbance resulting from the tested compound and measures the oxidation of

NADPH by the catalytic subunit of HMGR in the presence of the substrate HMG-CoA.

Experimental animals

New Zealand white male adult rabbits weighing approximately 1.5±0.1 kg were used in the

experiments. Four groups (two control groups and two treated groups) of rabbits were formu-

lated by consisting of five rabbits in each group. Animals were acclimatized for 10 days prior

to the onset of the experiment and were maintained in cages in a controlled environment

(26 ± 3˚C and 12 h of light and dark cycles). The animals were fed a balanced diet supple-

mented with micronutrients and vitamins. The experimental protocol for use of the animals

was recommended (UDZ/IAEC/2019/03 dated on 29.03.2019) by the Institutional Animal

Ethics Committee (IAEC) based on the standard norms of the CPCSEA (Reg. No.1646/GO/a/

12/CPCSEA valid up to 27.03.23).

Experimental groups were assigned as follows:

Group I: Intact control

Group II: Hypercholesterolemic control

Group III: Group administered seed extracts of Acacia senegal (L.) Willd.

Group IV: Group administered standard statin drug (Atorvastatin).

The duration of the experiment was 60 days inclusive of the time needed to induce hyper-

cholesterolemia (15days) and administer the treatments (45days). After the completion of

experimentation, the overnight fasted animals were scarified after cervical dislocation by flow-

ing the guidelines of AVMA (The American Veterinary Medical Association) [29].
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Induction of hypercholesterolemia

Hypercholesterolemia was induced in the test rabbits by feeding them a high fat diet and a cho-

lesterol powder supplement for 15days. The cholesterol powder supplement was formulated at

500mg cholesterol powder/kg body weight per day mixed with 5ml coconut oil [30, 31]. The

induction of hypercholesterolemia was confirmed by weekly biochemical assessments of the

blood lipid profile and calculation of the atherogenic index using standard methods.

Collection of serum samples for biochemical and histopathological

analyses

Twenty-four-hour fasted animals were autopsied under prolonged anaesthesia of ketamine

formulation (10mg/kg) as per recommendation of the veterinarian at the completion of the

experiment and blood samples were obtained from direct cardiac and hepatic vein puncture.

The collected blood was kept in EDTA-coated vials and serum was separated by centrifugation

for 15 min at 3000rpm.

Serum lipid profile and atherogenic index

Total cholesterol [32], HDL-cholesterol [33], and triglyceride (TG) [34] were determined

using standard methods and the lipid profile was constructed following Friedewald’s formula

[35]. The following indices were calculated using the indicated formulas:

LDL-cholesterol ¼ Total cholesterol - HDL-cholesterol - VLDL-cholesterol

Where VLDL = triglyceride/5

The Castelli risk index–I (Total cholesterol/HDL), Castelli risk index–II (LDL/HDL) [36]

and the Atherogenic index = Log (Triglyceride / HDL-cholesterol) [37].

Antioxidants and peroxidation assays of serum

Serum antioxidant levels were determined for catalase [38], superoxide dismutase (SOD) [39],

GSH (reduced glutathione) [40], and FRAP (Ferric reducing antioxidant potential) [41] using

standard protocols based on redox reaction end products measured as absorbance at an appro-

priate wavelength. The degree of lipid peroxidation (LPO) in serum was determined by assess-

ing thiobarbituric acid reactive substances (TBARS) and is represented as malondialdehyde

(MDA) content, following the modified method of Ohkawa [42].

Histology and planimetric (morphometry) study of aorta

A 2–3 cm length of the ascending aorta of autopsied animals was removed and fixed in 10%

formalin. The aortic tissues were consequently dehydrated through alcohol series and eventu-

ally implanted in paraffin wax. The paraffin-embedded samples of aorta were sectioned at a

thickness of 5 microns and processed for staining and histopathological analysis [10, 43]. The

morphometric measurements and planimetric assessments of the sectioned samples of aorta

were performed using a Camera Lucida [30, 43].

In-silico assessments

In-silico assessments were performed by following the molecular docking, molecular dynamics

simulation, ADMET and pharmacokinetics.
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Molecular docking

The interaction compatibility of the screened prominent phytocompounds with HMG-CoA

reductase (1HW8) was examined through the molecular docking by using Autodock 4 [44,

45]. The catalytic portion of human HMG-CoA reductase (1HW8) was retrieved from a pro-

tein data bank and managed using PyMol to obtain the co-crystallised ligand i.e., atorvastatin,

eliminate undesirable water molecules, and correct for chain integration. Three-dimensional

structures of the compounds identified in the seed extract and the known inhibitors (prava-

statin and atorvastatin) were downloaded from Pubchem Database. Ligand processing was

performed using PyMol and hydrogen atoms were added to the structures. The developed

docking protocol was validated by performing re-docking with prepared co-crystalized ligand

and composed receptor protein and maps were created. Post-validation of the docking eti-

quette of the test compounds was performed by independently docking them with target

receptor proteins. The parameters of molecular interactions were obtained through ligand

conformations, binding energies, and linked assessments.

Molecular dynamics

Molecular dynamics (MD) simulation assessments were conducted by using GROMACS to

recognize the conformational dynamics of docked complexes (Atorvastatin, Eicosanoid, Fla-

van-3-ol, Linoleic acid and Pravastatin) with 1HW8. The MD simulations of docked com-

plexes such as atorvastatin-HMG-CoA reductase (1HW8), Eicosonoid-1HW8, Flavan-3-ol-

1HW8, Linoleic acid-1HW8 and Pravastatin-1HW8 were performed with the GROMACS

2020 [46]. For the solvation of protein, dodecahedron box was used, and protein was placed at

least 1.0 nm from the edge of the box. The standard protocol and conditions were followed by

structural analysis (RMSF and potential energy minimization) of top three docked complexes

which were further proceeded for top docked complex (Eicosonoid-1HW8) was made by

using radius of gyration, free energy of solvation, average angle, angle distribution, SASA and

interaction energy by gyrate modules of GROMACS and their representations (curves) were

produced with xm grace (Graphing, Advanced Computation and Exploration program).

ADMET pharmacokinetic analysis

The pharmacokinetics of ADMET analyses were performed using Drulito software with the

standard protocol used to determine the ideal pharmacokinetic profile of the test compounds

considered for drug development [47–49]. The test compounds were adopted through two fil-

ters: the Lipinski rule and the blood brain barrier (BBB) requirement. The Lipinski rule indi-

cates that an ideal drug molecule should weigh below 500g/mol, the number of hydrogen bond

donors should be less than or equal to 5 and the number of hydrogen bond acceptor should

be� 10, with a partition coefficient� 5. The test compound should pass the BBB if the num-

ber of hydrogen bonds present is approximately 8–10 and no acidic groups should be present

in the molecule. TPSA (total polar surface area) represents the bioavailability of the drug mole-

cule according to Veber’s rule which indicates that a TPSA less than or identical to 140Å will

have good oral bioavailability.

Statistical analysis

The data on the biochemical parameters were represented as a mean ± SEM (standard error of

the mean). A one-way analysis of variance (ANOVA) was conducted followed by Tukey’s mul-

tiple comparison tests using GraphPad Prism 7.0 software. Graphical representations of the

data were constructed using MS Excel 2018.
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Results

Phytoconstituents screening by LCMS

The monoisotopic mass obtained for phytoconstituents was calculated as M+H or M-H ions

in QTOF mass hunter software and verified by MS/MS and identified using the data MET-

LINE software and published literature. Results indicated that the seed extract contained nine

major phytoconstituents (Table 1).

In-vitro inhibition of HMG-CoA reductase activity

The seed extract and the standard statin drug, pravastatin, exhibited a maximum 74.1% and

91.4% inhibition of HMG-CoA reductase activity, respectively. Increasing gradient of concen-

trations of the seed extract were assessed. Enzyme activity was calculated based on the product

rate per minute. The IC50 of the seed extract, calculated from the inhibition curve, was

0.064μg/ml (Fig 1A & 1B).

Atherogenic index, Castelli risk indexes (I &II), and the lipid profile

Biomarker indices of dyslipidemia, such as atherogenic index, Catelli risk index–I (Total cho-

lesterol/HDL), Castelli risk index–II (LDL/HDL), and the lipid profile significantly (P� 0.001)

increased up to ten-fold, relative to the vehicle group, in rabbits that were fed the high fat diet

supplemented with cholesterol powder. Treatment with the seed extract or atorvastatin

resulted in a significant reduction in the atherogenic index, LDL/HDL ratio, and lipid profile

that were near normal relative to the untreated rabbits (Figs 2 & 3).

Effect on peroxidation and antioxidants levels

The levels of peroxidation and antioxidants (SOD, CAT and GSH) were abnormal in hyper-

cholesterolemic rabbits. In contrast, however, administration of the seed extract or atorvastatin

resulted insignificant reduction (P� 0.001) in MDA in hypercholesterolemic rabbits, relative

to the untreated, hypercholesterolemic rabbits. Moreover, the levels of catalase, SOD and GSH

were significantly elevated in hypercholesterolemic rabbits which treated with the test seed

extract. Increased levels of total antioxidants were observed in the rabbits treated with the seed

extract, as determined by using a FRAP assay (Fig 4).

Table 1. Identified masses from UPLC-QTOF mass spectroscopy constituents in an aqueous extract of Acacia. senegal (L.) Willd. seed in negative and positive elec-

tron ionization modes.

S.No. Identified compound Name Formula Monoisotopic mass (g/mol) Retention time (min) m-z/ m+z values

1. Fisetinidol C15H14O5 274.1 1.05 min 273.1

2. Linoleic acid C18H32O2 280.4 2.31 min 279.4

3. Eicosonoic acid C20H40O2 312.02 3.84 min 311.09

4. Lupenone C30H48O 424.5 23.00 min 423.5

5. Flavan-3-ol C15H14O2 226.04 4.47 min 249.0

6. Myricetin C15H10O8 318.3 4.58 min 341.3

7. Digallic acid C14H10O9 322.2 13.10 min 323.2

8. Taxifolin C15H12O7 304.3 16.23 min 327.3

9. Gallocatechin C15H14O7 306.3 16.23 min 307.3

https://doi.org/10.1371/journal.pone.0264646.t001
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Fig 1. A: HMG-CoA reductase inhibition against ascending concentration gradient of the aqueous extract of Acacia.

senegal (L.) Willd. seed (Equation- y = 9.7365ln(x) + 76.671, R2 = 0.9725, IC50 = 0.064μg/ml). B: HMG-CoA reductase

inhibition against ascending concentration gradient of the standard drug (Pravastatin) (Equation-y = 12.686ln(x)

+ 94.755, R2 = 0.9749, IC50 = 0.029μM).

https://doi.org/10.1371/journal.pone.0264646.g001
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Histology and morphometric (planimetric) analysis of the aorta

The aortal wall of the vehicle control group (non-hypercholesterolemic) of rabbits was com-

posed of three distinct layers (intima, media and adventitia) and exhibited a compact wall area

and enlarged lumen (Figs 5 and 6A). In contrast, the aortal wall of hypercholesterolemic rab-

bits exhibited abnormal wall area with the presence of bulging structures of atherogenic plaque

and a reduced lumen volume (Figs 5 and 6B). Treatment of the hypercholesterolemic rabbits

with the seed extract resulted in a significant (P� 0.001) reduction in the aortal total wall area

and plaque along with an enlargement in lumen volume relative to the untreated,

Fig 2. Effect on biomarker indices of dyslipidemia i.e., Castelli risk factors (I & II) and atherogenic index (AI) of phytochemicals of

an aqueous extract of Acacia. senegal (L.) Willd. seed. Data are means ± S.E.M. (n = 5); a P� 0.05; b P� 0.01; c P� 0.001; and d was

non-significant as compared to the respective control values. e P� 0.05; g P� 0.001; and h was non-significant as compared to the

respective values of the hypercholesterolemic control group.

https://doi.org/10.1371/journal.pone.0264646.g002
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hypercholesterolemic rabbits. The effect was even greater than the reduction exhibited in

response to treatment with the standard statin drug (Figs 5, 6C & 6D).

In-silico assessments

The in-silico assessments were performed by following the assessments of molecular docking,

molecular dynamics, ADMET and Pharmacokinetics through standard procedures where

results obtained as followings.

Molecular docking

HMG-CoA has a catalytic groove comprising amino acid residue from 426 to 888. The cata-

lytic portion is composed of Cys688, Thr689, Asp690 and Lys691. The side chain of Lys691 is

Fig 3. Effect of an aqueous extract of Acacia. senegal (L.) Willd. seed treatment on lipid profile. Data are means ± S.E.M. (n = 5); a

P� 0.05; b P� 0.01; c P� 0.001; and d was non-significant as compared to the respective control values. e P� 0.05; g P� 0.001; and h

was non-significant as compared to the respective values of the hypercholesterolemic control group.

https://doi.org/10.1371/journal.pone.0264646.g003
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positioned in the middle of the active site. The flap, primarily composed of Glu559 and

Asp767, is in the front of the active site. Among the identified phytoconstituents, eicosanoic

acid, linoleic acid, digallic acid, and flavan-3-ol displayed polar interactions with the catalytic

residues of the receptor protein (Table 2, Fig 7A–7E). In contrast, gallocatechin, taxifolin, and

myricetin did not exhibit any interaction with the HMG-CoA molecule.

Molecular dynamics

Atorvastatin_1HW8, Eicosanoid_1HW8, Flavan-3-ol_1HW8, Linoleic acid_1HW8 and Pra-

vastatin_1HW8 protein systems were solvated and made electro neutral by adding 3 sodium

Fig 4. Effect of an aqueous extract of Acacia. senegal (L.) Willd. seed on antioxidant levels in treatment groups. Data are means ± S.

E.M. (n = 5); a P� 0.05; b P� 0.01; c P� 0.001; and d was non-significant as compared to the respective control values. e P� 0.05; g

P� 0.001; and h was non-significant as compared to the respective values of the hypercholesterolemic control group.

https://doi.org/10.1371/journal.pone.0264646.g004
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ions in each system using genion module of GROMACS. Potential energy graph revealed a

sudden drop in potential energy of the system in first few ps but reached a constant value

thereafter. Potential energy minimization of the Atorvastatin_1HW8 system achieved at 2060

EM steps, Eicosanoid_1HW8 at 1681 EM steps, Flavan-3-ol_1HW8 at 1873 steps, Linoleic

acid_1HW8 at 1768 steps and Pravastatin_1HW8 at 1754 EM steps, indicating that the struc-

ture Eicosonoid_1HW8 equilibrated fastest among all five (Fig 8A). Appropriately, RMSF per

residue were calculated which shows fluctuation over all the course of study of all residues of

all five proteins. Peak shows protein area undergoing maximum fluctuation over simulation.

Fig 5. Effect of an aqueous extract of Acacia. senegal (L.) Willd. seed on planimetry of aorta. Data are means ± S.E.M. (n = 5); a

P� 0.05; b P� 0.01; c P� 0.001; and d was non-significant as compared to the respective control values. e P� 0.05; g P� 0.001; and h

was non-significant as compared to the respective values of the hypercholesterolemic control group.

https://doi.org/10.1371/journal.pone.0264646.g005
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Fig 6. Effect of an aqueous extract of Acacia. senegal (L.) Willd. seed on histopathology of aortas of treatments groups (400X, H& E), A–

Histoarchitecture of vehicle control aorta: Exhibiting normal structure with composition three layers i.e. intima, media and adventitia, B–

Histoarchitecture of hypercholesterolemia aorta: The arrow indicating the presence of atherosclerotic plaque whereas yellow arrow indicating the

foam cells in the area of intima, C- Histoarchitecture of Acacia. senegal (L.) Willd. seed extract (aqueous) treated aorta: The arrow indicating the

reduced area of atherogenic aorta, D-Histoarchitecture of atorvastatin treated aorta: Histoarchitectural restorations by treatment of atorvastatin by

indicating the arrow.

https://doi.org/10.1371/journal.pone.0264646.g006
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Pravastatin System high RMSF values indicates its residues were more fluctuating during sim-

ulation as compared to others Fig 8B. Subsequently, there were seen significant interaction val-

ues of ligand interaction energy, average angle, angle distribution and radius of gyration of top

docked complex (Eicosanoid_1HW8) (Fig 8C). Supportively, the ligand accessibilities and sta-

bilities shown significant values of free energy of solvation and SASA (Fig 8D).

ADMET analysis of pharmacokinetics

ADMET studies of the identified phytoconstituents indicated that, among the identified phy-

toconstituents in the seed extract, only the flavonoid, flavan-3-ol, conforms to the Lipinski rule

of five along with the potential to cross the BBB. Although eicosanoic acid and linoleic acid

both displayed a molecular interaction with HMG-CoA in the docking analysis, they did not

conform with the Lipinski rule of five for an ideal drug molecule. Fisetinidol and taxifolin

exhibited ideal drug profiles but lack the ability to cross the BBB and did not interact with the

target protein in the docking analysis (Table 3).

Discussion

The prevailing strategy for the management of hypercholesterolemia is the use of HMG-CoA

reductase inhibitors which work by inhibiting cholesterol synthesis by HMG-CoA reductase

in the liver and removal of excess cholesterol level in peripheral circulation by several mecha-

nisms of reverse cholesterol transport [50, 51]. Excess cholesterol in the circulatory system is

indicated by biomarker indices of dyslipidaemia and abnormal lipoproteins ratios, which can

be regulated by proper fractional esterification of cholesterol and reverse cholesterol transport

(RCT) [52, 53]. Cholesterol present in the intestine is first absorbed in the form of chylomicron

(triglyceride rich complex) and is then modified and packaged as high-density lipoprotein

(HDL) cholesterol. Therefore, the ratio of triglyceride to HDL is indicative of the levels of

peripheral cholesterol in circulation. Abnormal cholesterol esterification rates in apoB-lipo-

protein-depleted plasma (fractional esterification) and lipoprotein particle size result in dysli-

pidaemia [52, 54]. In animal model, specifically hypercholesteraemic rabbits, exhibit elevated

levels of the biomarker indices of dyslipidaemia, such as the logarithm of the TG/HDL ratio,

total cholesterol/ HDL (Castelli risk index -I (CRI-I)) and LDL-cholesterol/HDL-cholesterol

Table 2. Molecular docking investigations of identified phytocompounds of aqueous extract of Acacia senegal (L.) Willd. seed with target enzyme of HMG-CoA

reductase.

S.No. Ligand Binding Energy (Kcal/mol) No. of H-bonds Bond length (Å) Interacting residues

Identified Phytoconstituents

1. Fisetinidol 0.8

2. Linoleic acid -3.4 3 2.7, 2.5, 2.1 Asp767, Asp690, Lys692

3. Eicosonoic acid -5.0 3 3.3, 2.4, 2.4 Asp690, Lys691, Glu559

4. Lupenone NA

5. Flavan-3-ol -3.4 1 2.4 Arg590

6. Myricetin 7 NA NA NA

7. Digallic acid -3.7 9 2.7, 2.3, (2.8, 1.8, 2.2), (1.8, 2.6), 2.2, 2.3 Lys692, Ala751, Lys691, Asn7555, Ser684, Arg590

8. Taxifolin 0.9 0

9. Gallocatechin 7.5 NA NA NA

Positive control

1. Pravastatin -7.0 2 1.8, 2.1 Asp690, Lys691

2. Atorvastatin -7.8 1 2.2 Asp690

https://doi.org/10.1371/journal.pone.0264646.t002
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Fig 7. Molecular interactions of identified compounds studied using docking analysis; (A)- HMG-CoA interaction with eicosonoic

acid; (B)- HMG-CoA interaction with linoleic acid; (C)- HMG-CoA interaction with flavan-3-ol; (D)- HMG-CoA interaction with

atorvastatin; (E)- HMG-CoA interaction with pravastatin.

https://doi.org/10.1371/journal.pone.0264646.g007
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Fig 8. A: Potential Energy Minimization of Eicosanoid System achieved at 1681 P.E steps, Flavan-3-ol System achieved at 1873 P.E steps, Flavan-3-ol

System achieved at 1873 P.E steps, atorvastatin system achieved at 2060 P.E. steps, Pravastatin System achieved at 1754 P.E steps and Comparative

Potential Energy Minimization all five Systems. B: System RMSF accounted during the 1ns of MD simulations run of Eicosanoid, flavan-3-ol, linoleic

acid, atorvastatin, pravastatin and comparative. C: The top docked complex of 1HW8-Eicosanoic acid, showing the highest binding affinity, was

subjected to molecular dynamics simulations. The molecular dynamic simulations were examined based on Interaction energy, Free energy of solvation

(DGsolv), Radius of gyration (Rg), average angle and angle distribution of ligand in receptor’s active site as a function of time. D: Molecular dynamics

simulation of free energy of solvation and SASA (Solvent Accessible Surface Area) of top docked complex of 1HW8 (target Protein) -Eicosanoic acid.

https://doi.org/10.1371/journal.pone.0264646.g008
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(Castelli risk index-II (CRI-II)). In the present study, the treatment of hypercholesterolemic

rabbits with an aqueous seed extract of Acacia senegal (L.) Willd. caused a significant reduction

in the atherogenic index and CRI–I&II, indicating improved fractional esterification of choles-

terol and reverse cholesterol transport. These results are similar to a previously reported study

[36]. The lipid profile i.e., total cholesterol, triglyceride, VLDL-cholesterol, and LDL-choles-

terol were significantly improved by treatment with the aqueous seed extract of Acacia senegal
(L.) Willd. The seed extract appears to significantly inhibit cholesterol biosynthesis in hepatic

tissues, as demonstrated in the in-vitro HMG-CoA reductase inhibition assay, as well as the in
vivo studies in hypercholesterolemic rabbits. A variety of phytocompounds have been reported

to have capacity to inhibit HMG-CoA reductase, a key enzyme in cholesterol biosynthesis, by

inducing the activation of sterol regulatory element binding protein-2 (SERBP-2) and modifi-

cations in LDL receptors that lead to reduced cholesterol production and other parameters of

the lipid profile [51, 55].

Excessive amounts of peripheral LDL-cholesterol induce the generation of an excessive

level of free radicals resulting in oxidative stress. This causes endothelial dysfunction and leads

to the further progression of atherosclerotic plaque and reduced lumen volume in the aorta.

Similar observations have been noted hypercholesterolemic animals accompanied by an excess

level of cholesterol in the peripheral circulatory system, as well as the progression of atheroscle-

rosis. In the present study, hypercholesterolemic rabbits treated with the seed extract exhibited

lower levels of free radicals and elevated levels of catalase, SOD and GSH, which are responsi-

ble for scavenging and degrading free radicals. In addition, treatment with the seed extract also

resulted in a significant regression in atherosclerotic plaque which would have reversed the

progress of atherosclerosis. Previous studies have indicated that hypercholesterolemia pro-

motes atherosclerosis by generating oxidative stress which causes an imbalance between host

antioxidant capability and the level of oxidative stress-inducing molecules including reactive

oxygen (ROS), nitrogen (RNS), and halogen species, non-radical as well as free radical species.

Oxidative stress leads to peroxidation of cellular proteins, lipids, and DNA, resulting in cell

injury or cell death, which activates cell death signalling pathways that are responsible for

accelerating atherogenesis [56]. In the present study, treatment of hypercholesterolemic rab-

bits with the seed extract elevated the levels of catalase, SOD and GSH and thus the free radical

scavenging capacity of the cell. This effect reduced the atherogenic plaque area and increased

the lumen volume. Consequently, Oxidative stress govern through imbalance between free

Table 3. Pharmacokinetics ADMET prediction by Drulito against Lipinski rule of five and blood-brain-barrier filter of phytocompounds of aqueous extract of Aca-
cia. senegal (L.) Willd. seed.

Compound MW logP AlogP HBA HBD TPSA nHB nAcidic group Filter L/B

Fisetinidol 274.08 0.933 -0.373 5 4 90.15 9 0 L

Linoleic acid 280.24 7.865 -0.948 2 1 37.3 3 1

Eicosonoic acid 312.3 9.846 -5.05 2 1 37.3 3 1

Lupenone 424.37 11.294 3.801 1 0 17.07 1 0

Flavan-3-ol 226.1 1.591 1.316 2 1 29.46 3 0 L/B

Myricetin 318.04 2.182 -1.807 8 6 147.68 14 0

Digallic acid 322.02 1.77 -1.178 9 6 164.75 15 1

Taxifolin 304.06 0.803 -1.369 7 5 127.45 12 0 L

Gallocatechin 306.07 1.2 -1.499 7 6 130.61 13 0

MW = molecular weight; logP = partition coefficient; AlogP = octanol–water partition coefficient; HBA = hydrogen bond acceptor; HBD = hydrogen bond donor;

TPSA = total polar surface area; nHB = number of hydrogen bond; nAcidic group = number of acidic group; Filter L = Lipinski rule of five and B = blood brain barrier.

https://doi.org/10.1371/journal.pone.0264646.t003
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radicals formation and their antioxidant status (scavenging process) in the body. In the case of

hypercholesterolemia, there is an raised level of total cholesterol pool in cells which results into

altered cell membrane due to lipid peroxidation [57]. Natural and synthetic antioxidants have

been reported to play a crucial role in the prevention and treatment of atherosclerosis through

different mechanisms, including inhibition of LDL oxidation [58], decreasing the generation

of ROS [59], inhibition of cytokine discharge, the regression of atherosclerotic plaque forma-

tion [60] and platelet accumulation [61], the prevention of mononuclear cell infiltration,

improvement in endothelial dysfunction [56] and vasodilation, increasing nitric oxide (NO)

bioavailability [62], modulating the expression of adhesion molecules, and reducing foam cell

formation [61]. The phytochemical analysis of the seed extract identified several predominant

phytoconstituents, including fisetinidol, linoleic acid, eicosanoic acid, lupenone, flavan-3-ol,

myricetin, digallic acid, taxifolin, and gallocatechin. The insilico molecular docking analysis

indicated that eicosanoic acid, linoleic acid, and flavan-3-ol are capable of binding to the target

enzyme, HMG-CoA reductase [63]. Accordingly, the molecular dynamics (MD) simulation

validates the stability of the complex system in polar solution was observed using the parame-

ters of RMSD (root mean square deviation), RMSFs (root means square fluctuations), and

radius of gyration [64]. The MD Simulations are very helpful in identifying potential flavo-

noids and potent ligands targeting disease therapy [65]. A constant trend for RMSF was

observed in systems. The protein region between amino acid residues 450–500 shows the high-

est root mean square fluctuations in all five systems indicating this area of highly dynamic in

nature [45].

The average Coulomb’s short-range (Coul-SR) value for complex 1HW8-Eicosanoic acid

was found -46.75 KJ/mol, indicating that 1HW8-Eicosanoic acid interaction is favourable. The

average Lennard-Jones short-range (LJ-SR) value for the complex was found -149.97 KJ/mol.

The solvation-free energy of the complex remains static with an average value of -35 DGsolv.

Theoretically, the solvent-accessible surface area (SASA) gives an insight into how accessible a

protein is to the solvent it resides. Throughout the simulations, SASA fluctuates around 210

nm2 for 1HW8-Eicosanoic acid complex [45, 66]. A plot of the radius of gyration (Rg) span-

ning over 10 ns is analysed to display the compactness of the protein during MD simulations.

Throughout simulations, the radius of gyration for the 1HW8-Eicosanoic acid complex fluctu-

ates around 2.6 nm, indicating that the complex remains stable during simulation studies [67].

MD analysis has revealed that Eicosanoic acid has lesser binding energy, higher nonbonded

interaction capability, and more stability against HMG-CoA reductase compared to other

ligands. Eicosanoic acid was determined to be the best candidate phytochemicals of an aque-

ous seed extract of Acacia senegal (L.) against HMG-CoA reductase inhibition. Compassion-

ately, the ADMET profile of the major phytoconstituents present in the seed extract indicated

that the compounds have ideal pharmacokinetic properties conforming to the Lipinski rule,

have good bioavailability, and are capable of crossing the blood brain barrier [47, 68].

Conclusion

In conclusion, it can be stated that leading phytoconstituents of an aqueous seed extract of

Acacia senegal (L.) Willd. i.e., eicosanoic acid, linoleic acid, and flavan-3-ol, have capability to

inhibit the HMG-CoA reductase and significantly able to scavenge free radicals. These proper-

ties might be responsible to regress atherosclerosis and reduce hypercholesterolemia as evident

by the improvements in biomarker indices of dyslipidaemia observed in vivo in hypercholes-

terolemic rabbits. The further efficacy of leading phytocompounds can be validating by alone

or in formulation at targeted gene expressions.
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