Data in brief 25 (2019) 103981

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Phytolith data in peat profile over the past 1300 years in the Xishan Mountains, Jiangxi Province, China

Xin-Rong Zhang ^{a, b, *}, Yu Du ^{a, b}, Chun-Mei Ma ^c, Shuai-Fei Ping ^{a, b}, Chong Feng ^d

^a College of Earth Sciences, Jilin University, Changchun, 130061, China

^b Key-Lab for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, China

^c School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China

^d Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China

ARTICLE INFO

Article history: Received 15 March 2019 Received in revised form 12 April 2019 Accepted 30 April 2019 Available online 14 June 2019

Keywords: Phytolith morphotypes Microscopic observation Description Classification

ABSTRACT

Phytoliths are microscopic siliceous particles formed in the plants and preserved in the sediments after the plant death and decay. Phytolith formation is controlled by the plant genes and growing environments. As such, phytolith assemblages have been widely used in ancient plant composition analysis, paleoclimate reconstruction, and paleoenvironment reconstruction. For the effective utilization, phytolith description, nomenclature and classification are the most important. This article presents detailed original phytolith data from a peat profile (28°44'55.33"N, 115°39'59.80"N), which is related to the research article of "Climatic controls on peat swamp formation and evolution since 1300 vear BP as recorded by phytoliths in the Xishan Mountains, Jiangxi Province, China" [1]. After extracted from peat, the phytoliths were observed under $400 \times \text{light}$ microscope, described and nominated according to ICPN1.0 [2], and classified and counted more than 400 particles for each peat sample. 314 microscopic slides were observed and fifty types of phytolith were classified for the peat

DOI of original article: https://doi.org/10.1016/j.palaeo.2019.03.004.

* Corresponding author. College of Earth Sciences, Jilin University, Changchun, 130061, China. *E-mail address:* zhangxr@jlu.edu.cn (X.-R. Zhang).

https://doi.org/10.1016/j.dib.2019.103981

^{2352-3409/© 2019} The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

profile, including woody phytoliths, shrub phytoliths, herbaceous phytoliths and other unidentified morph types. All these provide basic information for paleo-researches.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

Specifications Table

Subject area	Quaternary Geology
More specific subject area	Paleo-climatology
Type of data	Table Figure
How data was acquired	Light microscope observation
Data format	Raw
Experimental factors	Acid oxidation, Heavy liquid separation, Microscopic identification
Experimental features	Separation over 72hrs before using the 2.3g/cm3 heavy liquid; identification under 400 $ imes$
	microscope, more than 350 grains counted for each sample
Data source location	Jilin University, China
Data accessibility	Data is available with this article
Related research article	Xin-Rong Zhang, Yu Du, Chun-Mei Ma, Shuai-Fei Ping, Chong Feng, An-ning Cui [1], Climatic controls on peat swamp formation and evolution since 1300 year BP as recorded by phytoliths in the Xishan Mountains, Jiangxi Province, China, Palaeogeography, Palaeoclimatolgy, Palaeoecology

Value of the data.

- The data can be used to compare the phytolith characteristics between different species of common plants in the mountainous area of humid subtropics zone in SE China.
- Phytolith dry-wet index and cold-warm index calculated according to the descriptions can help identifying the hydrothermal environment changes during the peat development.
- The phytolith data are essential for vegetation succession and the paleo-climate research.
- It can be compared with the palynological study for more detailed paleo-researches.

1. Data

This article presents detailed original phytolith data from a peat profile (28°44′55.33″N, 115°39′59.80″N). It is related to the research article of "Climatic controls on peat swamp formation and evolution since 1300 year BP as recorded by phytoliths in the Xishan Mountains, Jiangxi Province, China" [1]. 157 peat samples were collected from the surface to the bottom of this profile. Each sample was 0.5cm thick and about 1.0g of dry weight. Samples were oxidized for 72hrs and separated by 2.3g/cm³ heavy liquid for pure phytolith concentration. 314 slides were made for phytolith microscopic observation.

On the basis of identification and counting under $400 \times \text{light}$ microscope, more than 400 phytolith grains with diameters of >5 µm were counted in each two 1 cm² microscope slides. There are fifty types of phytoliths, including Pteridophyta, conifers, broad-leaved, Cyperaceae, Bambusoideae, Chloridoideae, Panicoideae, Pooideae, Oryzoideae, and other "unidentified morphotypes".

All these morphotypes were described according to ICPN1.0 [2] and classical literature [3] in Fig. 1, and Table .1. The calculated absolute concentrations of each sample can be found in the data link of the research article [1].

2. Experimental design, materials and methods

2.1. Materials

Phytoliths were extracted from the peat samples of a 340cm depth peat profile. Each sample quantity is about 1 cm³. The sampling interval is every other 1 cm through the core.

Fig. 1. Major phytolith micrographs and charred grains recovered from studied core. a1-a4, from epidermal cells of *Pteridophyta*; b1-b6, from conifers; c1-c19, from broad-leaved trees; d1-2 polyhedron with papillae from sclerendhyma of *Cyperaceae*; e1-4, long saddles from epidermal cells of *Bambusoide*; f1-2 square saddle from epidermal cell of *Chloridoideae*; g1-5 cross from short epidermal cells of *Panicoideae*; h1-5 trapiziform from epidermal cells of *Pooideae*; h1-9 *Oryzoideae* phytolith; j1-8, k1-4, l1-4, m1-5, n1-4, o1-4, p1, q1-2, r1-2 are morphologies unidentified to genus; a3, c3, c12, c16, e3, g4, i5, i8, l3-4, m1, m3, n2, q2, r2, s1-6 are burned phytoliths, t1-2 are charcoal plates or grains extracted together with phytolith.

Table 1					
Phytolith	morphotype	discri	ptions for	peat	profile.

Major plant	Morphotype	Anatomical origin	Fig.
Pteridophyta	Triangular prism with acute angle bottom	Epidermal cell	a1
	Triangular prism with sinuate edge		a2
	Elongate with two paralleled		a3
	undulating ridges		
	Triangular prism with cancave edges		a4
Coniform	and surfaces		L 1
Conners	ridge		DI
	Blocky scrobiculate	Blocky polyhedrons transfusion cell	b2
	Elongate irregular	Intercellular space	b3
	Tabular elongate cavate	Epidermal cells	b4
	Parallelepipedal contored		b5
	Tabular elongate dendric and blocky	Transfusion traxheid	b6
D	polyhedral	Parishanna at a sti	.1 .
Broad-leaved	Globular psilate	Epidermal cell	CI-2
	Globular granulate Globular echinate		CS-2
	Globular cavate		c7-8
	Globular multifaceted		c9
	Stellate irregular jigsaw		c10
	Polyhedral facetate	Sclerenchyma	c14
	Elongate decorated	Tracheary tissue	c16
	Cylindrical sclereid		c18
Cuperaceae	Polybedron with papillae	Sclerenchyma	d1_
Bambusoideae	Long s ADdle or callosed s ADdle	Fnidermal cell from leaf/Culm/inflor	e1-4
Chloridoideae	Square s ADdle	Epidermal cell from leaf/Culm/inflor	f1-2
Panicoideae	Cross	Short epidermal cell	g1-2
	Bilobate	Short epidemal cell	g3-4
	Cylindrical polylobate	Epidermal cell	g5
Pooideae	Trapiziform bilobate	Epidermal cell	h1
	Trapeziform cinuate		n2
Orvzoideae	Cuneiform bulliform cell	Leaf enidermal	i1-5
oryzołacae	Double peaked glume cell	Husk cell	i6-7
	Bilobate	Leaf epidermal	i8-9
Unidentified	Bilobate	Epidermal cell	j1-6
morphotypes	Polylobate		j7
	Elongate castelate	Epidermal long cell	j8
	Elongate smooth		KI ka
	Elongate echipate		кz k3_/
	Haircell	Hair cell	11-2
	Scutiform		13
	Lanceolate		l4
	Parallepipedal bulliform	Bulliform cell	m1-
	Cuneiform bulliform		m3-
	Square		n1-2
	Rectangle		n3
	Conical hollow with flat top	Hair or trichome base	01
	Conical hollow with cone top	han of thenome base	02
	Rondel		о3
	Pyramidal		o4
	Stoma cell	Stoma cell	p1
	Unciform	Traiched cell	q1-2
	Rugose elongate	Vascular cell or tissue	r1-2
Channad and - 1111	December of a here of the		

2.2. Experimental design

- (1) These sub-samples were dried at 60 $^{\circ}$ C and then weighed.
- (2) The dried samples were initially disaggregated by being gently stirred in distilled water overnight.
- (3) The samples were then heated for 1 hr in 250 ml beakers with 10 ml of 10% hydrochloric acid (HCl) and 75 mL of 68% nitric acid (HNO₃).
- (4) The samples were left to gravity settle for 4 hr, after the upper part was clean.
- (5) The solution was then rinsed five times with distilled water until the pH was neutral.
- (6) Dipersed Lycopodium spore tablet using diluted HCl (10%) and rinsed it to neutral.
- (7) The samples were then transferred to 50 ml centrifuge tubes and mixed with 15 ml of 2.3 g/mL heavy liquid (Znl₂), and centrifuged three times for 10 min at 1500 rpm.
- (8) Mixed the dispersed Lycopodium spores in the phytolith part.
- (9) Transferred the mixed phytolith and Lycopodium to 5 ml vials for storage.
- (10) Made slides with Canadian gum and prepare an optical microscope with 40 \times objective lens and 10 \times eye lens.

2.3. Methods

The absolute concentration of each type of phytolith was calculated using the following formula, on the basis of the number of added Lycopodium spores and the starting dry weight of each sample.

Phytolith concentration = [(counted phytolith number \times Lycopodium number in a tablet)/counted Lycopodium number/dry weight of sample] (unit is \times 10000grains/gram)

2.4. Dataset description

Pteridophyta phytoliths from the studied core are mainly triangular with acute angle bases (Fig. 1; a1), triangular with sinuate edges (Fig. 1; a2), elongate with two parallel undulating ridges (Fig. 1; a3), or triangular with concave edges and surfaces (Fig. 1; a4) [4–6].

The coniferous phytoliths [7–9] have blocky polyhedral and cubic shapes with clear ridges (Fig. 1; b1), blocky shapes with scrobiculate surfaces (Fig. 1; b2), elongate irregular shapes (Fig. 1; b3), tabular elongate cavate shapes (Fig. 1; b4), parallelepipedal contoured shapes (Fig. 1; b5), tabular elongate dendritic shapes, and blocky polyhedral (Fig. 1; b6) forms.

Broad-leaved plant phytoliths [10,11], from this coremainly have globular psilate (Fig. 1; c1–2), globular granulate (Fig. 1; c3–5), globular echinate (Fig. 1; c6), globular cavate (Fig. 1; c7–8), globular multifaceted (Fig. 1; c9), stellate irregular jigsaw (Fig. 1; c10–13), polyhedral facetate (Fig. 1; c14–15), elongate decorated (Fig. 1; c16–17), cylindrical sclereid (Fig. 1; c18), and tabular polygons (Fig. 1; c19).

Cyperaceae phytoliths are mainly polyhedra with papillae, which are from sclerenchyma [12] (Fig. 1; d1–2). Bambusoideae phytoliths mainly have long saddle or collapsed saddle shapes, and originate from epidermal cells from leaves, stalks, and flowers [12,13] (Fig. 1; e1–4). Chloridoideae phytoliths mainly have square saddle shapes and are from epidermal cells [3,13] (Fig. 1; f1–2). Panicoideae phytoliths typically have cross (Fig. 1; g1–2), bilobate (Fig. 1; g3–4), and cylindrical polylobate (Fig. 1; g5) forms, which are also derived from epidermal cells [2,12]. Pooideae phytoliths in this core are mainly epidermal cell phytoliths, including trapeziform bilobate (Fig. 1; h1), trapeziform polylobate (Fig. 1; h2–3), and trapeziform sinuate (Fig. 1; h4–5) forms [2,3,12–14]. Oryzoideae phytoliths [15] have cuneiform bulliform cell (Fig. 1; i1–5), double peaked glume cell (Fig. 1; i6–7), and bilobate forms.

The unidentified morphotypes types mainly include: (1) short cell bilobate (Fig. 1; j1–6) and polylobate (Fig. 1; j7) forms; (2) long epidermal cells with elongate castelate (Fig. 1; j8), elongate smooth (Fig. 1; k1), elongate coarse (Fig. 1; k2), and elongate echinate (Fig. 1; k3) forms; (3) Acicular and unciform hair cells (Fig. 1; l1–4); (4) parallelepipedal bulliform cells (Fig. 1; m1–2; Fig. 1; n1–2; Fig. 1; n3), cuneiform bulliform cells (Fig. 1; m3–5), ovate (Fig. 1; n4), conical hollow with flat top (Fig. 1; o1), conical hollow with cone top (Fig. 1; o2), rondel (Fig. 1; o3), pyramidal (Fig. 1; o4), stoma cell (Fig. 1; p1), and unciforms (Fig. 1; q1–2).

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant number 41371202) and the Global Change Program of the National Key Research and Development Program of China (grant number 2016YFA0600501). The authors are grateful to Associated Professor Jia Yulian and her students (Jiangxi Normal University) for their assistance with field sampling works.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- X. Zhang, Y. Du, C. Ma, S. Ping, C. Feng, A. Cui, Climatic controls on peat swamp formation and evolution since 1300 yr BP as recorded by phytoliths in the Xishan Mountains, Jiangxi Province, China, Palaeogeogr. Palaeoclimatol. Palaeoecol. 522 (2019) 76–88.
- [2] M. Madella, A. Alexandre, T.B. Ball, International code for phytolith Nomenclature 1.0, Ann. Bot. 96 (2005) 253-260.
- [3] Y. Wang, H. Lu, Phytolith Study and its Application, Ocean Press, Beijing, 1992, pp. 50–124 (in Chinese).
- [4] M. Sundue, Silica bodies and their systematic implications in Peteridaceae (Pteridophyta), Bot. J. Linn. Soc. 161 (2009) 422–435.
- [5] D.K. Chauhan, D.K. Triphthi, P. Sinha, S.P. Tiwari, Biogenic silica in some Pteridophytes, Bionature 29 (1) (2009) 1-9.
- [6] J. Mazumdar, Phytolith of pteridophytes, South Afr. J. Bot. 77 (2011) 10–19.
- [7] I. Rovner, Potential of opal phytoliths for use in paleoecological reconstruction, Quat. Res. 1 (1971) 343–359.
- [8] R.L. Klen, J.W. Geis, Biogenic silica in the pinaceae, Soil Sci. 126 (3) (1978) 145-156.
- [9] X. An, Morpholoigical characteristics of phytoliths from representative conifers in China, Plaeoworld 25 (2016) 116–127.
- [10] J.W. Geis, Biogennic silica in selected species of deciduous angiosperms, Soil Sci. 116 (2) (1973) 113–130.
- [11] C.A.E. Strömberg, Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene, Palaeogeogr. Palaeoclimatol. Palaeoecol. 207 (3) (2004) 239–275.
- [12] D.R. Piperno, Phytolith-A Comprehensive Guide for Archaeologists and Paleoecologists, Rowman & Littlefield Publishers, Inc, Lanham. New York. Toronto. Oxford, 2006.
- [13] H. Lu, K. Liu, Morphological variations of lobate phytoliths from grass in China and the south-eastern United States, Divers. Distrib. 9 (2003) 73–87.
- [14] P.C. Twiss, E. Suess, R.M. Smith, Morphological classification of grass phytoliths, Soil Sci. Soc. Am. J. 33 (33) (1969) 128-131.
- [15] Q. Jiang, Searching for evidence of early rice agriculture at prehistoric sites in China through phytolith analysis: an example from central China, Rev. Palaeobot. Palynol. 89 (1995) 481–485.