

ISSN 2056-9890

Received 20 April 2017 Accepted 5 May 2017

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; nickel; poly-pyridine-diamine; electro-catalyst.

CCDC reference: 1548052

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and electrochemical properties of $[Ni(bztmpen)(CH_3CN)](BF_4)_2$ {bztmpen is *N*-benzyl-*N*,*N'*,*N'*-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine}

Lin Chen,^a Gan Ren,^a Yakun Guo^a and Ge Sang^b*

^aScience and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, People's Republic of China, and ^bInstitute of Materials, China Academy of Engineering Physics, Jiangyou 621908, People's Republic of China. *Correspondence e-mail: chenlin101101@aliyun.com

The mononuclear nickel title complex (acetonitrile- κN){N-benzyl-N,N',N'tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine}nickel(II) bis(tetrafluoridoborate), $[Ni(C_{30}H_{35}N_5)(CH_3CN)](BF_4)_2$, was prepared from the reaction of $Ni(BF_4)_2 \cdot 6H_2O$ with *N*-benzyl-*N*,*N'*,*N'*-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (bztmpen) in acetonitrile at room temperature. With an open site occupied by the acetonitrile molecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octahedral coordination environment. Compared with analogues where the 6-methyl substituent is absent, the bond length around the Ni²⁺ cation are evidently longer. Upon reductive dissociation of the acetronitrile molecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at -1.50 and -1.80 V (versus $F_c^{+/0}$) based on nickel. The F atoms of the two BF₄⁻ counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

1. Chemical context

Nickel complexes with polypyridine-amine ligands are of great interest in catalytic reactions. For example, nickel complexes containing N5-pentadentate ligands with different amine-to-pyridine ratios have been studied for electrochemical H_2 production in water at pH = 7 and the complex with a diamine-tripyridine ligand displays a TON (turn-over number) of up to 308000 over 60 h electrolysis at -1.25 V vs the standard hydrogen electrode (SHE), with a Faradaic efficiency of 91% (Zhang et al., 2014). The nickel-based complex $Ni-PY_5$ {PY₅ = 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine} has been found to act as an electro-catalyst for oxidizing water to dioxygen in aqueous phosphate buffer solutions (Wang et al., 2016). The rate of water oxidation catalyzed by the Ni– PY_5 complex is enhanced remarkably by the proton-acceptor base HPO_4^{2-} , with a rate constant of 1820 M⁻¹ s⁻¹. A stable configuration is important for the stability of a catalyst. In the title complex, the Ni²⁺ cation is chelated by five N-atom sites, so the configuration is stable. With the reductive dissociation of acetonitrile, the title complex would give an open site for a catalytic reaction. Herein, we describe the crystal structure and electrochemical properties of the title complex.

OPEN $\widehat{\bigcirc}$ ACCESS

research communications

2. Structural commentary

In the title complex (Fig. 1), the coordination sphere of the nickel(II) atom adopts a normal octahedral geometry. The Ni²⁺ cation lies almost in the equatorial plane. One pyridine nitrogen atom (N1) and two amino nitrogen atoms (N2, N3) as well as the nitrogen atom of an acetonitrile ligand (N4) form the equatorial plane. The latter can easily be dissociated from nickel. The axial positions are occupied by two pyridine nitrogen atoms (N5, N6). The Ni–N bond lengths for the two axial pyridine–nitrogen atoms [Ni–N5 = 2.209 (3) and Ni–N6 = 2.187 (3) Å] are significantly longer than that for the other four nitrogen atoms [Ni–N1 = 2.151 (3), Ni–N2 = 2.082 (3), Ni–N3 = 2.188 (2), Ni–N4 = 2.061 (3) Å]. The presence of the 6-methyl substituent hinders the approach of the pyridine group to the Ni²⁺ core. A a result of the steric

The structures of the molecular components in the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Cyclic voltammograms of the title complex (1 mM) with a varied scan range under Ar in CH₃CN with 0.1 *M* ^{*n*}Bu₄NBF₄ as the supporting electrolyte.

hindrance from the methyl substituent, the three atoms N5, Ni1 and N6 are not completely linear in the axial direction, with a contact angle of 170.89 (9)°. Two intramolecular C- $H \cdots N$ contacts occur (Table 1).

3. Electrochemical commentary

Generally, the reduction of a metal complex is accompanied by the dissociation of the ligand, or the weakest ligand if more than one ligand is present, which could induce the appearance of an open site for a catalytic reaction (Knoll *et al.*, 2014; Johnson *et al.*, 2016). The introduction of *o*-methyl in the title complex is in favor of the dissociation of acetonitrile. On the cathodic scan under Ar, the title complex features one reversible couple at -1.50 V and one half-reversible couple at -1.80 V (*vs* $F_c^{+/0}$) based on nickel, assigned to Ni^{II/I} and Ni^{I/0} respectively (Fig. 2). The third couple at -2.15 V could be

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1C \cdots N4$	0.96	2 94	3 251 (6)	100
$C3-H3A\cdots F8^{i}$	0.93	2.57	3.457 (14)	159
$C8-H8B\cdots F7$	0.97	2.57	3.371 (13)	140
$C8-H8B\cdots F5A$	0.97	2.42	3.36 (4)	163
$C9-H9B\cdots F4^{ii}$	0.97	2.61	3.291 (16)	128
C10-H10A···N6	0.97	2.67	3.273 (5)	1213
$C12-H12A\cdots F8A^{iii}$	0.93	2.53	3.35 (2)	146
$C17 - H17B \cdot \cdot \cdot N1$	0.96	2.64	3.071 (7)	108
$C21-H21A\cdots F3^{ii}$	0.93	2.62	3.122 (10)	114
$C23-H23B\cdots F6A^{iii}$	0.97	2.33	3.241 (16)	157
$C24-H24A\cdots F7$	0.97	2.53	3.443 (15)	156
$C24-H24B\cdots F3^{iv}$	0.97	2.32	3.179 (13)	148
$C24 - H24B \cdot \cdot \cdot F1A^{iv}$	0.97	2.54	3.43 (3)	153
$C28-H28A\cdots F4^{iii}$	0.93	2.59	3.345 (19)	138
$C30-H30A\cdots F4^{iii}$	0.96	2.60	3.390 (17)	140
$C30-H30A\cdots F4A^{iii}$	0.96	2.50	3.26 (3)	136
C30−H30 <i>B</i> ···N4	0.96	2.85	3.126 (6)	98
$C32-H32A\cdots F6^{iii}$	0.96	2.40	3.196 (14)	140
$C32-H32A\cdots F7A^{iii}$	0.96	2.33	3.19 (3)	150
$C32-H32B\cdots F3^{v}$	0.96	2.55	3.145 (15)	121
$C32-H32B\cdots F3A^{v}$	0.96	2.32	3.11 (4)	140

Symmetry codes: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) $x + 1, -y, z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x + \frac{1}{2}, y - \frac{1}{2}, z;$ (v) $x + \frac{3}{2}, y - \frac{1}{2}, z.$

assigned to the reduction of pyridine. The free ligand bztmpen itself is electrochemically silent in the potential range (Fig. 3). The coordination with nickel leads to a positive shift of the reduction on pyridine. The good reversibility of the couple indicates a negligible change in the configuration of the title complex after one electron reduction. The second reduction might result in a change of the configuration. Analogues in the absence of o-methyl show only one redox couple more negative than -1.50 V (vs $F_c^{+/0}$; Zhang et al., 2014). The positive shift of the first redox couple for the title complex results from the weaker electron-donating ability of the pyridine ligands, which are farther from the nickel core. The

Figure 4

Packing plot of the molecular components in the title compound viewed down the *a* axis. $C-H \cdots F$ weak bonds are shown as dotted lines.

Experimental details.	
Crystal data	
Chemical formula	$[Ni(C_{30}H_{35}N_5)(C_2H_3N)](BF_4)_2$
M _r	739.01
Crystal system, space group	Monoclinic, Cc
Temperature (K)	298
a, b, c (Å)	11.230 (3), 17.204 (5), 18.110 (6)
β (°)	103.248 (7)
$V(Å^3)$	3405.7 (18)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.65
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.847, 0.955
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14710, 6476, 6304
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.092, 1.03
No. of reflections	6476
No. of parameters	520
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.29, -0.25
Absolute structure	Classical Flack (1983) method
	preferred over Parsons because
Absolute structure parameter	-0.017(12)
rissonate structure parameter	0.017 (12)

Computer programs: SMART and SAINT (Bruker, 2016), SHELXTL (Sheldrick, 2008) and SHELXL2016 (Sheldrick, 2015).

electrochemical properties of these analogues are consistent with the differences shown in the structure.

4. Supramolecular features

In the title crystal, no classical hydrogen bonds have been found. Weak C-H···F contacts (Table 1) link the components into a three-dimensional network. The crytal paacking is illustrated in Fig. 4.

5. Database survey

Table 2

There are three published nickel complexes with poly-pyridine groups (Shi et al., 2015; Zhang et al., 2014; Wang et al., 2016), but to the best of our knowledge, the title compound has not been reported previously. The nickel complex with N, N, N', N'tetra(2-pyridylmethyl)ethylenediamine (tpen) adopts a normal octahedral geometry (Shi et al., 2015). In the Ni^{2+} (tpen) complex, the Ni-N1, Ni-N2, Ni-N3, Ni-N4, Ni-N5 and Ni-N6 bonds [2.106 (3), 2.099 (3), 2.114 (3), 2.086 (3), 2.094 (3) and 2.120 (2) Å, respectively] are shorter than the corresponding bond lengths in the title complex. Among the earliest reports, the nickel complex with N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine (bztpen) ligand

research communications

is most similar to the title complex (Zhang *et al.*, 2014). Under reductive conditions, Ni²⁺(*bztpen*) displays a high activity on electro-catalytic water reduction. The title complex possesses a higher steric hindrance than Ni²⁺(*bztpen*), which affects evidently the bond lengths, especially in the axial direction. The bonds lengths in the title complex [Ni-N5 = 2.209 (3), Ni-N6 = 2.187 (3) Å] are longer than those in Ni²⁺(*bztpen*) [Ni-N5 = 2.149 (3), Ni-N6 = 2.096 (3) Å]. The nickel complex with a PY₅ ligand {PY₅ = 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine} displays a similar configuration to the title complex, but the labile ligand is at the axial site (Wang *et al.*, 2016). Ni²⁺(PY₅) has been found to act as an electro-catalyst for oxidizing water to dioxygen in an aqueous phosphate buffer solution.

6. Synthesis and crystallization

The tripyridine-diamine ligand *N*-benzyl-*N*,*N'*,*N'*-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (*bztmpen*) was prepared according to literature procedures (Zhang *et al.*, 2013), ¹H NMR (CDCl₃, 600 MHz): δ 7.44 (*m*, 4H), 7.25 (*m*, 6H), 6.96 (*m*, 4H), 3.74 (*s*, 6H), 3.58 (*s*, 2H), 2.75 (*d*, 4H), 2.49 (*s*, 9H). ESI–MS: calculated for [*M* + H]⁺: *m/z* 466.63; found: 466.27.

Preparation of $[Ni(bztmpen)(CH_3CN)](BF_4)_2$. Compound $Ni(BF_4)_2 \cdot 6H_2O$ (0.16 g, 0.5 mmol) was added to an acetonitrile solution (5 mL) of *bztmpen* (0.2 g, 0.5 mmol). The mixture was stirred at room temperature for 6 h. The purple solution was then transferred to tubes, which were placed in a flask containing ether. Block-shaped blue crystals were obtained in a yield of 85% (0.25 g). Analysis calculated for $C_{32}H_{38}B_2F_8N_6Ni$ (%): C, 50.01; H, 5.18; N, 11.37; found: 50.01; H, 5.19; N, 11.36; MS (TOF-ES): m/z = 282.6341 { $[M-2BF_4^-]/2$ }⁺, 599.3015 [$M - 2BF_4^- + CI^-$]⁺.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The F atoms of the two BF₄⁻ counter-anions were split into two groups and the occupancies refined to 0.611 (18)/0.389 (18) and 0.71 (2)/0.29 (2). The hydrogen atoms were refined in a riding mode with C-H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Funding information

Funding for this research was provided by: China Postdoctoral Science Foundation (award Nos. 2015M582573, Chinese National Natural Science Foundation, 21601164, 21573200, 21573223).

References

- Bruker (2016). *SMART*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, B. A., Maji, S., Agarwala, H., White, T. A., Mijangos, E. & Ott, S. (2016). Angew. Chem. Int. Ed. 55, 1825–1829.
- Knoll, J.-D., Albani, B. A., Durr, C. B. & Turro, C. (2014). J. Phys. Chem. A, 118, 10603–10610.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shi, W. D., Zheng, D. H. & Wang, M. (2015). Chin. J. Inorg. Chem. 31, 2205–2212.
- Wang, L., Duan, L. L., Ambre, R. B., Daniel, Q., Chen, H., Sun, J. L., Das, B., Thapper, A., Uhlig, J., Dinér, P. & Sun, L. C. (2016). J. *Catal.* 335, 72–78.
- Zhang, P.-L., Wang, M., Gloaguen, F., Chen, L., Quentel, F. & Sun, L.-C. (2013). *Chem. Commun.* **49**, 9455–9457.
- Zhang, P.-L., Wang, M., Yang, Y., Zheng, D. H., Han, K. & Sun, L.-C. (2014). Chem. Commun. 50, 14153–14156.

supporting information

Acta Cryst. (2017). E73, 825-828 [https://doi.org/10.1107/S2056989017006764]

Crystal structure and electrochemical properties of [Ni(bztmpen)(CH₃CN)] (BF₄)₂ {bztmpen is *N*-benzyl-*N*,*N'*,*N'*-tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine}

Lin Chen, Gan Ren, Yakun Guo and Ge Sang

Computing details

Data collection: *SMART* (Bruker, 2016); cell refinement: *SMART* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $(Acetonitrile-\kappa N) \{N-benzyl-N,N',N'-Tris[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine\}nickel(II) bis(tetrafluoridoborate)$

Crystal data

 $[Ni(C_{30}H_{35}N_5)(C_2H_3N)](BF_4)_2$ $M_r = 739.01$ Monoclinic, Cc a = 11.230 (3) Å b = 17.204 (5) Å c = 18.110 (6) Å $\beta = 103.248$ (7)° V = 3405.7 (18) Å³ Z = 4

Data collection

Bruker SMART CCD area detector diffractometer Radiation source: sealed tube phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.847, T_{\max} = 0.955$ 14710 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.092$ S = 1.036476 reflections 520 parameters F(000) = 1528 $D_x = 1.441 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8509 reflections $\theta = 2.3-28.4^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 298 KBlock, blue $0.30 \times 0.20 \times 0.10 \text{ mm}$

6476 independent reflections 6304 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -14 \rightarrow 11$ $k = -22 \rightarrow 22$ $l = -24 \rightarrow 24$

2 restraints Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 1.7104P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta \rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0091 (17) Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. Absolute structure parameter: -0.017 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	0.73459 (2)	-0.19011 (2)	0.24468 (2)	0.02752 (12)	
N1	0.6542 (3)	-0.29110 (15)	0.18272 (14)	0.0333 (5)	
N2	0.5812 (3)	-0.20749 (17)	0.28899 (14)	0.0331 (5)	
N3	0.7742 (3)	-0.09858 (14)	0.33073 (13)	0.0325 (5)	
N4	0.8969 (3)	-0.17465 (19)	0.21169 (18)	0.0395 (6)	
N5	0.8531 (3)	-0.25827 (15)	0.33616 (14)	0.0361 (5)	
N6	0.6119 (2)	-0.11087 (13)	0.16863 (13)	0.0303 (5)	
C1	0.7455 (4)	-0.2798 (2)	0.0724 (2)	0.0515 (9)	
H1A	0.727964	-0.299078	0.021314	0.077*	
H1B	0.830687	-0.287160	0.095248	0.077*	
H1C	0.726121	-0.225425	0.072011	0.077*	
C2	0.6698 (3)	-0.32319 (17)	0.11726 (17)	0.0354 (6)	
C3	0.6181 (4)	-0.3937 (2)	0.0906 (2)	0.0460 (8)	
H3A	0.631892	-0.414716	0.045975	0.055*	
C4	0.5459 (4)	-0.4324 (2)	0.1306 (3)	0.0599 (10)	
H4A	0.510311	-0.479825	0.113295	0.072*	
C5	0.5270 (5)	-0.3999 (2)	0.1971 (3)	0.0569 (10)	
H5A	0.478334	-0.425011	0.224961	0.068*	
C6	0.5816 (3)	-0.32968 (18)	0.22115 (19)	0.0382 (6)	
C7	0.5658 (4)	-0.29254 (19)	0.29387 (19)	0.0421 (7)	
H7A	0.485006	-0.304199	0.301634	0.051*	
H7B	0.626011	-0.313171	0.336524	0.051*	
C8	0.6011 (3)	-0.1684 (2)	0.36392 (17)	0.0405 (7)	
H8A	0.653812	-0.200003	0.402342	0.049*	
H8B	0.523544	-0.161637	0.378152	0.049*	
C9	0.6601 (3)	-0.08985 (19)	0.35846 (17)	0.0379 (6)	
H9A	0.603190	-0.056630	0.324016	0.046*	
H9B	0.678916	-0.065285	0.407993	0.046*	
C10	0.8122 (4)	-0.02283 (16)	0.30210 (16)	0.0376 (6)	
H10A	0.747853	-0.006513	0.259492	0.045*	
H10B	0.884650	-0.032304	0.282792	0.045*	
C11	0.8397 (3)	0.04463 (17)	0.35776 (17)	0.0387 (6)	
C12	0.9533 (4)	0.0523 (2)	0.4080 (2)	0.0506 (8)	
H12A	1.011855	0.013546	0.410691	0.061*	
C13	0.9795 (5)	0.1177 (3)	0.4540 (2)	0.0639 (12)	

H13A	1.055817	0.122176	0.487139	0.077*	
C14	0.8960 (6)	0.1749 (3)	0.4515 (3)	0.0665 (15)	
H14A	0.915001	0.218324	0.482537	0.080*	
C15	0.7850 (7)	0.1685 (3)	0.4038 (4)	0.0741 (17)	
H15A	0.727325	0.207599	0.402322	0.089*	
C16	0.7555 (5)	0.1034 (2)	0.3562 (3)	0.0588 (10)	
H16A	0.678691	0.099906	0.323433	0.071*	
C17	0.8769 (5)	-0.3819 (2)	0.2717 (2)	0.0618 (11)	
H17A	0.947332	-0.415222	0.279414	0.093*	
H17B	0.877006	-0.347513	0.229995	0.093*	
H17C	0.803989	-0.412999	0.260617	0.093*	
C18	0.8809 (4)	-0.3350(2)	0.3424 (2)	0.0462 (7)	
C19	0.9179 (5)	-0.3706(2)	0.4121 (3)	0.0648 (12)	
H19A	0.935934	-0.423435	0.414915	0.078*	
C20	0.9283 (6)	-0.3275(3)	0.4778 (3)	0.0703 (14)	
H20A	0.946599	-0.351625	0.525012	0.084*	
C21	0.9112 (4)	-0.2481(2)	0.4721(2)	0.0530 (9)	
H21A	0.923136	-0.217195	0.515292	0.064*	
C22	0.8758 (3)	-0.21540(18)	0.40064(17)	0.0374 (6)	
C23	0.8742(3)	-0.12851(18)	0.39211(17)	0.0391 (6)	
H23A	0.866918	-0.105272	0.439683	0.047*	
H23B	0.951744	-0 111991	0 382379	0.047*	
C24	0.4730(3)	-0.1755(2)	0.23570 (19)	0.0376 (6)	
H24A	0.416027	-0.156355	0 264446	0.045*	
H24B	0.432739	-0.217051	0.203176	0.045*	
C25	0.152755 0.5017 (3)	-0.11045(16)	0.18656 (15)	0.013 0.0328(5)	
C26	0.3017(3) 0.4120(4)	-0.0560(2)	0.1587(2)	0.0320(3) 0.0485(8)	
H26A	0.338511	-0.056083	0.174092	0.058*	
C27	0.4340(4)	-0.0012(2)	0.1072(3)	0.0581 (10)	
H27A	0.374968	0.035766	0.087176	0.070*	
C28	0.5429 (4)	-0.00225(18)	0.0866(2)	0.0481 (8)	
H28A	0.557883	0.033626	0.051338	0.058*	
C29	0.6327 (3)	-0.05676(16)	0.11773 (16)	0.0356 (6)	
C30	0.0527(3) 0.7518(4)	-0.0552(2)	0.0947(2)	0.0520(0) 0.0522(9)	
H30A	0 749443	-0.015746	0.056818	0.078*	
H30R	0.766266	-0.104850	0.074227	0.078*	
H30C	0.816492	-0.043836	0.138065	0.078*	
C31	0.010492 0.9942 (4)	-0.1705(3)	0.196009	0.0524 (9)	
C32	1 1190 (6)	-0.1620(6)	0.2000(2) 0.1991(5)	0.0524(3)	
H32A	1.1190 (0)	-0.112648	0.219080	0.139*	
H32R	1.131132	-0.165218	0.146450	0.139*	
H32D	1.121102	-0.203008	0.140450	0.139*	
R1	-0.2984(7)	0.1828 (4)	0.220070 0.0952(4)	0.0668 (16)	
B2	0.290 + (7) 0.2397 (7)	-0.0699 (4)	0.0992 (+) 0.3807 (4)	0.0000(10) 0.0734(15)	
F1	-0.2730(12)	0.0099(4) 0.1428(8)	0.1633(4)	0.0754(15) 0.118(4)	0.71(2)
F2	-0.4166(9)	0.1922 (5)	0.1055 (+)	0.110(7) 0.124(5)	0.71(2) 0.71(2)
F3	-0.2264(10)	0.1922(3) 0.2458(7)	0.0737(0) 0.1037(7)	0.127(3)	0.71(2) 0.71(2)
F7	-0.2204(10)	0.2730(7) 0.1237(0)	0.1037(7)	0.111(4)	0.71(2)
1.4	0.273(2)	0.1337 (9)	0.0333 (0)	0.093 (3)	0.71(2)

F1A	-0.233 (2)	0.181 (2)	0.1638 (17)	0.138 (11)	0.29 (2)	
F2A	-0.411 (3)	0.185 (2)	0.111 (3)	0.21 (2)	0.29 (2)	
F3A	-0.287 (4)	0.2622 (10)	0.067 (2)	0.127 (12)	0.29 (2)	
F4A	-0.251 (6)	0.1297 (18)	0.054 (2)	0.098 (10)	0.29 (2)	
F5	0.205 (2)	-0.1435 (7)	0.3810 (10)	0.208 (10)	0.611 (18)	
F6	0.1540 (9)	-0.0300(7)	0.3264 (5)	0.122 (4)	0.611 (18)	
F7	0.3403 (11)	-0.0688(7)	0.3563 (10)	0.135 (5)	0.611 (18)	
F8	0.2472 (17)	-0.0380 (11)	0.4477 (6)	0.137 (6)	0.611 (18)	
F5A	0.348 (2)	-0.105 (3)	0.414 (4)	0.30 (2)	0.389 (18)	
F6A	0.1583 (13)	-0.1213 (13)	0.3817 (13)	0.125 (8)	0.389 (18)	
F7A	0.246 (7)	-0.0368 (13)	0.3222 (13)	0.30 (3)	0.389 (18)	
F8A	0.2379 (16)	-0.0186 (17)	0.4387 (13)	0.126 (8)	0.389 (18)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02251 (17)	0.03240 (16)	0.02857 (16)	-0.00093 (15)	0.00773 (11)	0.00228 (14)
N1	0.0299 (13)	0.0365 (11)	0.0343 (11)	-0.0040 (11)	0.0090 (10)	0.0032 (9)
N2	0.0284 (14)	0.0418 (11)	0.0315 (11)	-0.0022 (12)	0.0119 (10)	0.0037 (10)
N3	0.0326 (14)	0.0335 (10)	0.0312 (10)	0.0008 (10)	0.0068 (10)	0.0013 (9)
N4	0.0288 (15)	0.0488 (13)	0.0434 (14)	-0.0049 (13)	0.0132 (12)	-0.0014 (12)
N5	0.0320 (13)	0.0372 (12)	0.0362 (11)	0.0008 (11)	0.0021 (10)	0.0009 (10)
N6	0.0281 (12)	0.0332 (10)	0.0294 (10)	-0.0016 (9)	0.0065 (9)	0.0017 (8)
C1	0.066 (3)	0.0537 (18)	0.0417 (15)	-0.0160 (18)	0.0256 (17)	-0.0068 (14)
C2	0.0337 (16)	0.0370 (12)	0.0347 (13)	-0.0021 (12)	0.0060 (12)	0.0009 (11)
C3	0.044 (2)	0.0420 (15)	0.0517 (18)	-0.0067 (15)	0.0094 (16)	-0.0100 (14)
C4	0.056 (3)	0.0379 (16)	0.088 (3)	-0.0169 (17)	0.022 (2)	-0.0129 (17)
C5	0.059 (3)	0.0411 (16)	0.078 (3)	-0.0205 (17)	0.031 (2)	-0.0019 (17)
C6	0.0331 (16)	0.0349 (13)	0.0491 (16)	-0.0040 (12)	0.0147 (13)	0.0065 (12)
C7	0.0426 (19)	0.0430 (14)	0.0469 (16)	-0.0064 (14)	0.0229 (15)	0.0086 (13)
C8	0.0397 (17)	0.0529 (16)	0.0331 (13)	-0.0016 (15)	0.0171 (13)	0.0012 (12)
C9	0.0375 (16)	0.0451 (14)	0.0323 (12)	0.0035 (13)	0.0104 (12)	-0.0047 (11)
C10	0.0492 (19)	0.0302 (12)	0.0334 (12)	-0.0008 (12)	0.0092 (12)	0.0013 (10)
C11	0.0458 (19)	0.0350 (12)	0.0376 (13)	-0.0027 (13)	0.0143 (13)	-0.0011 (11)
C12	0.055 (2)	0.0464 (17)	0.0496 (17)	-0.0074 (17)	0.0103 (17)	-0.0017 (14)
C13	0.076 (3)	0.069 (2)	0.0478 (18)	-0.029 (2)	0.016 (2)	-0.0131 (17)
C14	0.093 (4)	0.057 (2)	0.060(2)	-0.020 (2)	0.038 (3)	-0.0246 (19)
C15	0.088 (5)	0.053 (2)	0.091 (4)	0.008 (3)	0.041 (4)	-0.021 (3)
C16	0.059 (3)	0.0444 (17)	0.074 (2)	0.0061 (18)	0.016 (2)	-0.0109 (17)
C17	0.067 (3)	0.0478 (19)	0.062 (2)	0.025 (2)	-0.003 (2)	-0.0082 (16)
C18	0.0418 (19)	0.0396 (14)	0.0519 (18)	0.0044 (15)	-0.0004 (15)	-0.0004 (14)
C19	0.077 (3)	0.0410 (18)	0.065 (2)	0.011 (2)	-0.006 (2)	0.0104 (17)
C20	0.094 (4)	0.057 (2)	0.048 (2)	0.011 (3)	-0.008(2)	0.0191 (17)
C21	0.062 (3)	0.0508 (18)	0.0377 (15)	0.0027 (18)	-0.0049 (16)	0.0066 (13)
C22	0.0342 (16)	0.0367 (13)	0.0366 (13)	0.0000 (13)	-0.0017 (12)	0.0033 (11)
C23	0.0385 (17)	0.0373 (13)	0.0358 (13)	-0.0018 (13)	-0.0031 (12)	-0.0006 (11)
C24	0.0218 (14)	0.0504 (15)	0.0420 (15)	-0.0030 (12)	0.0104 (12)	0.0007 (12)
C25	0.0257 (14)	0.0377 (13)	0.0330 (12)	0.0018 (11)	0.0025 (10)	-0.0031 (10)

supporting information

C26	0.0308 (17)	0.0517 (17)	0.0593 (19)	0.0097 (15)	0.0027 (15)	0.0021 (15)
C27	0.048 (2)	0.0453 (17)	0.071 (2)	0.0153 (17)	-0.0058 (18)	0.0078 (16)
C28	0.060 (2)	0.0326 (13)	0.0449 (16)	0.0005 (15)	-0.0022 (16)	0.0093 (12)
C29	0.0428 (18)	0.0313 (12)	0.0300 (11)	-0.0028 (12)	0.0030 (12)	0.0020 (10)
C30	0.055 (2)	0.0528 (18)	0.0553 (19)	-0.0033 (17)	0.0252 (18)	0.0177 (16)
C31	0.038 (2)	0.066 (2)	0.059 (2)	-0.0107 (18)	0.0219 (17)	-0.0207 (18)
C32	0.047 (3)	0.176 (7)	0.139 (6)	-0.035 (4)	0.050 (4)	-0.083 (6)
B1	0.062 (4)	0.071 (3)	0.062 (3)	-0.015 (3)	0.004 (3)	-0.014 (2)
B2	0.081 (4)	0.073 (3)	0.072 (3)	0.004 (3)	0.029 (3)	0.004 (3)
F1	0.127 (8)	0.174 (9)	0.049 (3)	0.013 (6)	0.014 (3)	0.000 (4)
F2	0.066 (5)	0.090 (5)	0.181 (10)	0.003 (4)	-0.044 (6)	-0.009 (5)
F3	0.106 (6)	0.105 (6)	0.136 (7)	-0.057 (5)	0.055 (5)	-0.073 (6)
F4	0.157 (13)	0.077 (5)	0.052 (3)	-0.032 (6)	0.036 (6)	-0.014 (3)
F1A	0.069 (12)	0.17 (3)	0.15 (2)	0.006 (12)	-0.033 (12)	-0.037 (17)
F2A	0.14 (2)	0.20 (3)	0.34 (5)	-0.10 (2)	0.18 (3)	-0.16 (3)
F3A	0.20 (3)	0.060 (6)	0.17 (2)	0.013 (11)	0.14 (2)	0.025 (10)
F4A	0.135 (19)	0.047 (8)	0.11 (2)	-0.006 (9)	0.017 (18)	-0.020 (10)
F5	0.35 (3)	0.080 (6)	0.159 (11)	-0.074 (10)	-0.018 (14)	0.039 (6)
F6	0.125 (7)	0.170 (9)	0.071 (4)	0.085 (7)	0.020 (4)	0.029 (4)
F7	0.098 (7)	0.134 (8)	0.207 (13)	0.026 (5)	0.105 (9)	-0.001 (7)
F8	0.174 (13)	0.183 (13)	0.053 (4)	-0.015 (9)	0.025 (5)	0.006 (6)
F5A	0.087 (14)	0.37 (5)	0.44 (6)	0.09 (2)	0.06 (3)	-0.03 (5)
F6A	0.056 (6)	0.179 (19)	0.151 (13)	-0.046 (8)	0.047 (8)	-0.033 (12)
F7A	0.73 (8)	0.102 (13)	0.113 (13)	-0.14 (3)	0.18 (3)	-0.021 (10)
F8A	0.061 (7)	0.163 (15)	0.155 (17)	-0.008 (8)	0.029 (9)	-0.090 (13)

Geometric parameters (Å, °)

Ni1—N4	2.061 (3)	C15—H15A	0.9300
Ni1—N2	2.082 (3)	C16—H16A	0.9300
Ni1—N1	2.151 (3)	C17—C18	1.505 (5)
Ni1—N6	2.187 (3)	С17—Н17А	0.9600
Ni1—N3	2.188 (2)	С17—Н17В	0.9600
Ni1—N5	2.209 (3)	С17—Н17С	0.9600
N1—C2	1.355 (4)	C18—C19	1.378 (6)
N1—C6	1.361 (4)	C19—C20	1.385 (7)
N2—C24	1.475 (5)	С19—Н19А	0.9300
N2—C7	1.479 (4)	C20—C21	1.381 (6)
N2—C8	1.485 (4)	C20—H20A	0.9300
N3—C23	1.480 (4)	C21—C22	1.382 (4)
N3—C9	1.488 (4)	C21—H21A	0.9300
N3—C10	1.500 (4)	C22—C23	1.503 (4)
N4—C31	1.119 (5)	С23—Н23А	0.9700
N5—C22	1.355 (4)	С23—Н23В	0.9700
N5—C18	1.356 (4)	C24—C25	1.509 (4)
N6—C25	1.350 (4)	C24—H24A	0.9700
N6—C29	1.367 (3)	C24—H24B	0.9700
C1—C2	1.502 (4)	C25—C26	1.384 (5)

C1—H1A	0.9600	C26—C27	1.386 (6)
C1—H1B	0.9600	C26—H26A	0.9300
C1—H1C	0.9600	C27—C28	1.360 (7)
C2—C3	1.383 (4)	С27—Н27А	0.9300
C3—C4	1.377 (5)	C28—C29	1.398 (5)
С3—НЗА	0.9300	C28—H28A	0.9300
C4—C5	1.388 (6)	C29—C30	1.490 (5)
C4—H4A	0.9300	C30—H30A	0.9600
C5—C6	1.380 (5)	C30—H30B	0.9600
С5—Н5А	0.9300	C30—H30C	0.9600
C6—C7	1.510 (4)	C31—C32	1.448 (6)
С7—Н7А	0.9700	C32—H32A	0.9600
С7—Н7В	0.9700	С32—Н32В	0.9600
C8—C9	1.519 (5)	С32—Н32С	0.9598
C8—H8A	0.9700	B1—F1A	1.29 (3)
C8—H8B	0.9700	B1—F2	1.303 (12)
С9—Н9А	0.9700	B1—F3	1.339 (10)
С9—Н9В	0.9700	B1—F4A	1.36 (4)
C10—C11	1.522 (4)	B1—F2A	1.36 (2)
C10—H10A	0.9700	B1—F1	1.384 (11)
C10—H10B	0.9700	B1—F4	1.385 (14)
C11—C16	1.380 (5)	B1—F3A	1.470 (16)
C11—C12	1.392 (6)	B2—F7A	1.219 (16)
C12—C13	1.391 (5)	B2—F6A	1.276 (17)
C12—H12A	0.9300	B2—F7	1.305 (10)
C13—C14	1.352 (8)	B2—F8	1.317 (14)
С13—Н13А	0.9300	B2—F5	1.324 (12)
C14—C15	1.349 (9)	B2—F5A	1.36 (3)
C14—H14A	0.9300	B2—F8A	1.38 (2)
C15—C16	1.405 (7)	B2—F6	1.389 (10)
			()
N4—Ni1—N2	174.24 (13)	C13—C14—H14A	120.2
N4—Ni1—N1	104.24 (12)	C14—C15—C16	120.7 (5)
N2—Ni1—N1	78.45 (10)	C14—C15—H15A	119.6
N4—Ni1—N6	102.02 (11)	C16—C15—H15A	119.6
N2—Ni1—N6	82.81 (10)	C11—C16—C15	120.5 (5)
N1—Ni1—N6	92.67 (10)	C11—C16—H16A	119.8
N4—Ni1—N3	93.70 (11)	C15—C16—H16A	119.8
N2—Ni1—N3	83.11 (10)	C18—C17—H17A	109.5
N1—Ni1—N3	160.94 (9)	C18—C17—H17B	109.5
N6—Ni1—N3	89.77 (9)	H17A—C17—H17B	109.5
N4—Ni1—N5	82.24 (12)	C18—C17—H17C	109.5
N2—Ni1—N5	92.54 (11)	H17A—C17—H17C	109.5
N1—Ni1—N5	94.07 (11)	H17B—C17—H17C	109.5
N6—Ni1—N5	170.89 (9)	N5-C18-C19	121.6 (3)
N3—Ni1—N5	81.87 (10)	N5—C18—C17	119.3 (3)
C2—N1—C6	117.5 (3)	C19—C18—C17	119.0 (4)
C2—N1—Ni1	131.5 (2)	C18—C19—C20	119.8 (4)

C6—N1—Ni1	110.9 (2)	C18—C19—H19A	120.1
C24—N2—C7	108.6 (3)	C20—C19—H19A	120.1
C24—N2—C8	111.0 (3)	C21—C20—C19	118.8 (4)
C7—N2—C8	112.9 (2)	C21—C20—H20A	120.6
C24—N2—Ni1	108.95 (18)	C19—C20—H20A	120.6
C7—N2—Ni1	106.5 (2)	C20—C21—C22	118.6 (4)
C8—N2—Ni1	108.8 (2)	C20—C21—H21A	120.7
C23—N3—C9	110.2 (2)	C22—C21—H21A	120.7
C_{23} N3 $-C_{10}$	109.6 (3)	N5-C22-C21	122.8 (3)
C9—N3—C10	111.4 (2)	N5-C22-C23	117.2 (3)
C^{23} N ³ N ¹	10627(18)	$C_{21} - C_{22} - C_{23}$	1197(3)
C9—N3—Ni1	105 24 (19)	N3-C23-C22	119.7(3) 1144(3)
C10-N3-Ni1	113.98 (16)	N3-C23-H23A	108 7
C_{1} N_{1} N_{1} C_{1} N_{1} N_{1}	167 3 (4)	C^{22} C^{23} H^{23} H^{23} H^{23}	108.7
C^{22} N5-C18	1177(3)	N3-C23-H23B	108.7
$C_{22} = N_5 = C_{10}$	108.6 (2)	C^{22} C^{23} H^{23B}	108.7
C18 N5 Ni1	131.8(2)	H23A_C23_H23B	107.6
$C_{10} = N_0 = N_1$	131.0(2) 117.8(3)	$N_2 C_{24} C_{25}$	107.0 114.0(3)
$C_{23} = N_0 = C_{23}$	117.8(3) 100.20(18)	$N_2 = C_2 4 = C_2 3$	108 7
C_{23} NG Ni	109.39(10) 121.0(2)	12 - C24 - 1124A	108.7
C_{29} C_{10} H_{10}	131.9 (2)	C_{23} C_{24} C	108.7
$C_2 = C_1 = H_1 R$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.7
	109.5	C_{23} C_{24} C	100.7
	109.5	П24A—C24—П24D	107.0
	109.5	No-C25-C20	123.1(3)
HIA—CI—HIC	109.5	N6-C25-C24	118.0(3)
HIB—CI—HIC	109.5	$C_{20} = C_{23} = C_{24}$	118.8(3)
N1 = C2 = C3	122.3 (3)	$C_{25} = C_{26} = C_{27}$	118.6 (4)
NI = C2 = CI	118.2 (3)	C_{25} — C_{26} — H_{26A}	120.7
$C_3 = C_2 = C_1$	119.4 (3)	C27—C26—H26A	120.7
C4—C3—C2	119.4 (3)	C28—C27—C26	119.1 (3)
C4—C3—H3A	120.3	С28—С27—Н27А	120.5
C2—C3—H3A	120.3	С26—С27—Н27А	120.5
C3—C4—C5	119.2 (3)	C27—C28—C29	120.6 (3)
C3—C4—H4A	120.4	C27—C28—H28A	119.7
C5—C4—H4A	120.4	C29—C28—H28A	119.7
C6—C5—C4	118.8 (3)	N6—C29—C28	120.7 (3)
С6—С5—Н5А	120.6	N6-C29-C30	120.3 (3)
C4—C5—H5A	120.6	C28—C29—C30	119.0 (3)
N1—C6—C5	122.8 (3)	С29—С30—Н30А	109.5
N1—C6—C7	116.3 (3)	С29—С30—Н30В	109.5
C5—C6—C7	120.9 (3)	H30A—C30—H30B	109.5
N2—C7—C6	109.1 (2)	С29—С30—Н30С	109.5
N2—C7—H7A	109.9	H30A—C30—H30C	109.5
С6—С7—Н7А	109.9	H30B—C30—H30C	109.5
N2—C7—H7B	109.9	N4—C31—C32	177.5 (7)
С6—С7—Н7В	109.9	C31—C32—H32A	110.0
H7A—C7—H7B	108.3	С31—С32—Н32В	109.6
N2—C8—C9	108.6 (2)	H32A—C32—H32B	109.5

	110.0	G21 G22 H22G	100.0
N2—C8—H8A	110.0	C31—C32—H32C	108.8
C9—C8—H8A	110.0	H32A—C32—H32C	109.5
N2—C8—H8B	110.0	H32B—C32—H32C	109.5
С9—С8—Н8В	110.0	F2—B1—F3	118.9 (9)
H8A—C8—H8B	108.3	F1A—B1—F4A	107 (3)
N3—C9—C8	110.8 (2)	F1A—B1—F2A	99 (2)
N3—C9—H9A	109.5	F4A—B1—F2A	129 (3)
С8—С9—Н9А	109.5	F2—B1—F1	107.0 (9)
N3—C9—H9B	109.5	F3—B1—F1	107.7 (8)
C8—C9—H9B	109.5	F2—B1—F4	103 1 (13)
H9A_C9_H9B	108.1	F3F4	1117(10)
N3_C10_C11	1177(2)	$F_1 = B_1 = F_4$	108.1(9)
$N_2 = C_{10} = U_{10A}$	117.7(2)	$\begin{array}{ccc} \Gamma I & D I & \Gamma I \\ \hline \Gamma I & D I & \Gamma 2 \Lambda \end{array}$	106.1(9)
N_{3} $-C_{10}$ $-H_{10A}$	107.9	$\Gamma IA = DI = \Gamma JA$	100.1(18)
CII—CIO—HIOA	107.9	F4A—B1—F3A	111.3 (18)
N3—C10—H10B	107.9	F2A—B1—F3A	102 (2)
C11—C10—H10B	107.9	F7A—B2—F6A	122 (3)
H10A—C10—H10B	107.2	F7—B2—F8	115.4 (12)
C16—C11—C12	117.7 (3)	F7—B2—F5	106.9 (13)
C16—C11—C10	120.7 (4)	F8—B2—F5	110.6 (12)
C12—C11—C10	121.4 (3)	F7A—B2—F5A	111 (3)
C13—C12—C11	120.3 (4)	F6A—B2—F5A	105 (2)
C13—C12—H12A	119.9	F7A—B2—F8A	112.3 (16)
$C_{11} - C_{12} - H_{12A}$	119.9	F6A = B2 = F8A	1074(13)
C14 $C13$ $C12$	121.2 (5)	F_{5A} B_{2} F_{8A}	97(2)
$C_{14} = C_{13} = C_{12}$	121.2(3)	$F_7 = D_2 = F_6 A$	$\frac{97}{2}$
C14—C13—H13A	119.4	F/-B2-F6	105.5 (9)
С12—С13—Н13А	119.4	F8—B2—F6	109.6 (10)
C15—C14—C13	119.6 (4)	F5—B2—F6	108.6 (12)
C15—C14—H14A	120.2		
C6—N1—C2—C3	-2.1(5)	C22—N5—C18—C19	7.0 (6)
$N_{1} - N_{1} - C_{2} - C_{3}$	173.2(3)	Ni1N5C18C19	-1553(4)
C6 N1 $C2$ $C1$	177.5(3)	C_{22} N5 C_{18} C_{17}	-170.0(4)
$C_0 - N_1 - C_2 - C_1$	77.3(5)	122 - 10 - 10 - 17	170.0(+)
NI = NI = C2 = C1	-7.2(3)	NII - NJ - C10 - C17	27.7 (0)
N1 = C2 = C3 = C4	1.4 (0)	N_{3} C_{18} C_{19} C_{20}	-0.4(8)
C1—C2—C3—C4	-1/8.2(4)	C1/C18C19C20	1/6.6 (5)
C2—C3—C4—C5	-0.2 (7)	C18—C19—C20—C21	-5.4 (9)
C3—C4—C5—C6	-0.2 (7)	C19—C20—C21—C22	4.5 (8)
C2—N1—C6—C5	1.7 (5)	C18—N5—C22—C21	-8.1 (6)
Ni1—N1—C6—C5	-174.5 (3)	Ni1—N5—C22—C21	158.1 (3)
C2—N1—C6—C7	-179.9 (3)	C18—N5—C22—C23	165.5 (3)
Ni1—N1—C6—C7	3.8 (4)	Ni1—N5—C22—C23	-28.3(4)
C4—C5—C6—N1	-0.6 (7)	C20-C21-C22-N5	2.3 (7)
C4—C5—C6—C7	-178.9(4)	C20—C21—C22—C23	-171.1(4)
C24—N2—C7—C6	72.3 (3)	C9—N3—C23—C22	84.2 (3)
C8-N2-C7-C6	-1643(3)	C_{10} N3 C_{23} C_{22}	-1529(3)
$N_{1} N_{2} C_{7} C_{6}$	-44.9(3)	Ni1_N3_C23_C22	-203(3)
N1 C6 C7 N2	77.5(3)	N5 C22 C22 N2	41 5 (A)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	27.3(+)	1NJ = 0.22 = 0.23 = 1N3	$\pi 1.3 (4)$
UJ-U0-U/-N2	-134.1 (4)	UZI-UZZ-UZS-NS	-144./(4)

C24—N2—C8—C9	-78.0 (3)	C7—N2—C24—C25	-142.1 (3)
C7—N2—C8—C9	159.8 (3)	C8—N2—C24—C25	93.4 (3)
Ni1—N2—C8—C9	41.8 (3)	Ni1—N2—C24—C25	-26.5 (3)
C23—N3—C9—C8	-75.9 (3)	C29—N6—C25—C26	-3.1 (4)
C10—N3—C9—C8	162.3 (3)	Ni1—N6—C25—C26	167.6 (3)
Ni1—N3—C9—C8	38.3 (3)	C29—N6—C25—C24	173.2 (3)
N2	-55.1 (4)	Ni1—N6—C25—C24	-16.2 (3)
C23—N3—C10—C11	-62.0 (4)	N2-C24-C25-N6	29.8 (4)
C9—N3—C10—C11	60.2 (4)	N2-C24-C25-C26	-153.7 (3)
Ni1-N3-C10-C11	179.1 (3)	N6-C25-C26-C27	2.9 (5)
N3-C10-C11-C16	-102.0 (4)	C24—C25—C26—C27	-173.3 (3)
N3-C10-C11-C12	82.8 (4)	C25—C26—C27—C28	-0.7 (6)
C16-C11-C12-C13	-0.5 (5)	C26—C27—C28—C29	-1.3 (6)
C10-C11-C12-C13	174.8 (3)	C25—N6—C29—C28	1.0 (4)
C11—C12—C13—C14	0.3 (6)	Ni1—N6—C29—C28	-167.1 (2)
C12-C13-C14-C15	0.2 (7)	C25—N6—C29—C30	-179.0 (3)
C13—C14—C15—C16	-0.5 (8)	Ni1—N6—C29—C30	13.0 (4)
C12-C11-C16-C15	0.2 (6)	C27—C28—C29—N6	1.1 (5)
C10-C11-C16-C15	-175.1 (4)	C27—C28—C29—C30	-178.9 (4)
C14—C15—C16—C11	0.2 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D··· A	D—H··· A
C1—H1 <i>C</i> ···N4	0.96	2.94	3.251 (6)	100
C3—H3A····F8 ⁱ	0.93	2.57	3.457 (14)	159
C8—H8 <i>B</i> …F7	0.97	2.57	3.371 (13)	140
C8—H8 <i>B</i> …F5 <i>A</i>	0.97	2.42	3.36 (4)	163
C9—H9 <i>B</i> …F4 ⁱⁱ	0.97	2.61	3.291 (16)	128
C10—H10A…N6	0.97	2.67	3.273 (5)	1213
C12—H12A····F8A ⁱⁱⁱ	0.93	2.53	3.35 (2)	146
C17—H17 <i>B</i> …N1	0.96	2.64	3.071 (7)	108
C21—H21A····F3 ⁱⁱ	0.93	2.62	3.122 (10)	114
C23—H23 <i>B</i> …F6 <i>A</i> ⁱⁱⁱ	0.97	2.33	3.241 (16)	157
C24—H24A…F7	0.97	2.53	3.443 (15)	156
C24—H24 B ···F3 ^{iv}	0.97	2.32	3.179 (13)	148
C24—H24 B ····F1 A^{iv}	0.97	2.54	3.43 (3)	153
C28—H28A····F4 ⁱⁱⁱ	0.93	2.59	3.345 (19)	138
C30—H30A····F4 ⁱⁱⁱ	0.96	2.60	3.390 (17)	140
C30—H30A····F4A ⁱⁱⁱ	0.96	2.50	3.26 (3)	136
C30—H30 <i>B</i> ···N4	0.96	2.85	3.126 (6)	98
C32—H32A…F6 ⁱⁱⁱ	0.96	2.40	3.196 (14)	140
C32—H32 <i>A</i> …F7 <i>A</i> ⁱⁱⁱ	0.96	2.33	3.19 (3)	150
C32—H32 B ···F3 ^v	0.96	2.55	3.145 (15)	121
C32—H32 B ···F3 A ^v	0.96	2.32	3.11 (4)	140

Symmetry codes: (i) *x*+1/2, *-y*-1/2, *z*-1/2; (ii) *x*+1, *-y*, *z*+1/2; (iii) *x*+1, *y*, *z*; (iv) *x*+1/2, *y*-1/2, *z*; (v) *x*+3/2, *y*-1/2, *z*.