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Abstract: Triptolide (TP) often causes adverse reactions in the gastrointestinal tract when 

it is administered orally. This study aimed to prepare and optimize triptolide-loaded solid 

lipid nanoparticles (TP-SLN) with reduced gastric irritation. The microemulsion technique 

was used to formulate TP-SLN employing a five-level central composite design (CCD) that 

was developed for exploring the optimum levels of three independent variables on particle 

size, encapsulation efficiency (EE) and drug loading (DL). Quadratic polynomial models 

were generated to predict and evaluate the three independent variables with respect to the 

three responses. The optimized TP-SLN was predicted to comprise fraction of lipid of 

49.73%, surfactant to co-surfactant ratio of 3.25, and lipid to drug ratio of 55.27, which 

showed particle size of 179.8 ± 5.7 nm, EE of 56.5 ± 0.18% and DL of 1.02 ± 0.003% that 

were in good agreement with predicted values. In addition, the optimized nanoparticles 

manifested a sustained-release pattern in vitro and were stable during 3 h of incubation in 

simulated gastric fluids without significant size change and the majority (91%) of the drug 

was protected. Furthermore, the nanoparticles did not show obvious gastric irritation 

caused by oral administration of TP in rats. 
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1. Introduction 

Triptolide (TP) is a major active and toxic component isolated from the traditional Chinese 

medicine Tripterygium wilfordii Hook F (TWHF). TP has multiple biological activities, including  

anti-inflammatory, immunosuppressive, anti-fertility, anti-cystogenesis and anticancer activities, 

however, the clinical utility of TP has been limited by its poor water solubility and high toxicity [1–3]. 

The most common adverse reactions to TP often occur in the gastrointestinal tract, such as nausea, 

anorexia, vomiting, diarrhea, gastrointestinal ulcer and bleeding [1,4,5]. However, the oral route is the 

simplest and most preferred route for administration of drugs as it offers the greatest degree of patient 

compliance [6,7]. Therefore, development of novel delivery systems of TP would be useful for 

minimizing gastrointestinal irritation. 

Solid lipid nanoparticles (SLN) were introduced at the beginning of the 1990s as a new colloidal 

drug delivery system with advantages such as nontoxicity, excellent biocompatibility, and large scale 

production facilities, which made SLN interesting alternatives to liposomes, microemulsions, and other 

polymeric nanoparticles [8–10]. Due to their solid matrix, solid lipid nanoparticles can protect the 

incorporated drug from chemical degradation in the gastrointestinal environment and have been 

extensively investigated as a promising drug delivery system for controlling the release of therapeutic 

agents [8,11–13]. 

However, triptolide is a moderately lipophilic molecule with low n-octanol/water partition 

coefficient of 0.58 [14,15]. It does not partition well in melted lipid droplets during SLN preparation, 

representing a technological challenge to ensure satisfactory encapsulation efficiency (EE). Among the 

production methods of SLN, the microemulsion technique offers notable advantages such as ease of 

handling, a fast production process, and no need for employing special equipment. It was considered to 

be one of the most feasible methods for industrial production [16]. In addition, this technique was 

reported to successfully encapsulate hydrophilic compounds (which also tends to partition into the 

water phase during the production process) into SLN with high EE [17–19], indicating that 

microemulsion technique might play a beneficial role in circumventing the challenges encountered 

when formulating triptolide-loaded solid lipid nanoparticles (TP-SLN). Furthermore, experimental 

designs have been commonly used to simultaneously analyze the influence of different variables on the 

properties of drug delivery system [20], among them the central composite design (CCD) is suitable 

for pharmaceutical blending problems allowing optimization with the least number of experiments for 

selection of the best composition [21]. 

In this study, optimized TP-SLN was prepared on the basis of the predicted optimum levels of 

independent variables of CCD using the microemulsion technique. Stability in simulated gastric fluid 

and in vitro release profile of optimized TP-SLN were evaluated. In addition, it has been documented 

that reduced exposure of the drug to physiological constituents by encapsulation into the delivery 

system and slow drug release would decrease the toxicity profile of the drug [22,23]. We investigated 
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if incorporation of TP into SLN could produce a protective effect on the gastric mucosa compared with 

the gastric irritation effect caused by a TP aqueous suspension. 

2. Results and Discussion 

2.1. Preparation of TP-SLN 

TP-SLN was successfully prepared by the microemulsion technique. An oil-in-water microemulsion 

was spontaneously obtained as recognized by a clear solution after adding the heated water phase into 

the oil phase of the same temperature. Addition of a hot microemulsion to cold water led to 

precipitation of the lipid phase forming fine particles. High-temperature gradients facilitate rapid lipid 

crystallization and prevent lipid aggregation [8,12]. In a preliminary study, the critical variables 

including fraction of lipid (X1), surfactant to co-surfactant ratio (X2) and lipid to drug ratio (X3) that 

influenced the particle size, EE and DL of TP-SLN were selected, and single-factor experiments were 

performed to determine the appropriate ranges of these three variables. 

2.2. Designing the Models 

The observed particle size, EE and DL values from the 20 experiments are shown in Table 1. The 

statistical parameters computed by design-expert software indicated that quadratic polynomial model 

was the best fitted for the experimental data for all responses. The R2 values were 0.9585, 0.9467 and 

0.9916 for Y1 (particle size), Y2 (EE) and Y3 (DL) models, respectively, which meant that the 

relationship between the variables and responses was well depicted by second order model. The 

quadratic polynomial equations in terms of coded levels for the three responses are as follows: 

Particle size (nm) = 118.70 + 78.41X1 − 98.31X2 + 3.21X3 − 61.69X1X2 + 

2.15X1X3 − 1.17X2X3 + 22.74X1
2 + 60.75X2

2 − 3.88X3
2 

(1) 

Encapsulation efficiency (%) = 50.47 + 1.52X1 – 2 .65X2 − 2.31X3 − 0.27X1X2 + 

0.23X1X3 + 1.08X2X3 − 2.30X1
2 − 1.25X2

2 − 0.30X3
2 

(2) 

Drug loading (%) = 0.67 + 0.020X1 − 0.038X2 − 0.17X3 − 0.0029X1X2 − 

0.0023X1X3 + 0.021X2X3 − 0.031X1
2 − 0.017X2

2 + 0.029X3
2 

(3) 

in which X1, X2 and X3 were the descriptors for three independent variables. 

The regression coefficients and analysis of variance (ANOVA) of the model parameters are listed in 

Table 2. A positive value in the regression equation represented an effect that favored the optimization 

due to synergism, while a negative value indicated an inverse relationship or antagonistic effect 

between the variables and the responses [24]. As can be seen in Table 2, fraction of lipid (X1) 

significantly increased the particle size of TP-SLN (p < 0.0001), yet increase in surfactant to  

co-surfactant ratio (X2) favored a smaller sized particle. EE was positively influenced by X1 but 

negatively influenced by X2 and X3, which also happened on DL though the intensity of the influence 

was lower. In addition, there were significant interactive parameters (p < 0.05) in particle size model 

which was the interaction between fraction of lipid and surfactant to co-surfactant ratio (X1X2); in EE 
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and DL models which was the interaction between surfactant to co-surfactant ratio and lipid to drug 

ratio (X2 X3). 

Table 1. The central composite design and resulting values of Y1 (particle size, nm),  

Y2 (encapsulation efficiency, %) and Y3 (drug loading, %). X1: fraction of lipid (%, w/w), 

X2: surfactant to co-surfactant ratio (w/w) and X3: lipid to drug ratio (w/w). 

 Variables Responses 

Experiments X1 X2 X3 Y1 Y2 Y3 

1 55.77 2.85 89.43 421 48.1 0.54 

2 50.00 4.00 75.00 113.3 52.4 0.70 

3 44.23 2.85 60.57 117.3 50.5 0.83 

4 50.00 4.00 50.00 123.5 53.3 1.07 

5 44.23 5.15 60.57 79.5 44.0 0.73 

6 55.77 5.15 60.57 131.5 47.7 0.79 

7 55.77 2.85 60.57 391.9 54.0 0.89 

8 50.00 4.00 100.00 125.4 45.8 0.46 

9 50.00 4.00 75.00 124.1 50.6 0.67 

10 44.23 5.15 89.43 95.4 41.5 0.46 

11 44.23 2.85 89.43 113.7 42.4 0.47 

12 60.00 4.00 75.00 327.7 45.0 0.60 

13 50.00 4.00 75.00 116.5 51.0 0.68 

14 55.77 5.15 89.43 131.8 44.8 0.50 

15 50.00 6.00 75.00 95.9 40.9 0.55 

16 50.00 2.00 75.00 540.8 52.5 0.70 

17 50.00 4.00 75.00 116.3 49.2 0.66 

18 40.00 4.00 75.00 80.9 42.1 0.56 

19 50.00 4.00 75.00 121.7 50.0 0.67 

20 50.00 4.00 75.00 120.3 49.6 0.66 

Table 2. Regression coefficients and analysis of variance (ANOVA) of the model 

parameters. X1: fraction of lipid (%, w/w), X2: surfactant to co-surfactant ratio (w/w) and 

X3: lipid to drug ratio (w/w). 

Source 
Particle size 

Encapsulation 

efficiency 
Drug loading 

coefficient p-value coefficient p-value coefficient p-value 

Model  <0.0001  <0.0001  <0.0001 

Intercept 118.70  50.47  0.67  

X1 78.41 <0.0001 1.52 0.0016 0.020 0.0029 

X2 −98.31 <0.0001 −2.65 <0.0001 −0.038 <0.0001 

X3 3.21 0.7522 −2.31 <0.0001 −0.17 <0.0001 

X1 X2 −61.69 0.0008 −0.27 0.5713 −0.0029 0.6796 

X1 X3 2.15 0.8730 0.23 0.6423 −0.0023 0.7484 

X2 X3 −1.17 0.9305 1.08 0.0452 0.021 0.0140 

X1
2 22.74 0.0349 −2.30 <0.0001 −0.031 <0.0001 

X2
2 60.75 <0.0001 −1.25 0.0039 −0.017 0.0056 

X3
2 −3.88 0.6861 −0.30 0.3902 0.029 0.0001 
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2.3. Response Surface Analysis 

The effect of the formulation variables on a response was assessed by studying the  

three-dimensional response surface plots. These plots were used to describe the interaction and 

quadratic effects of two independent variables on the response at one time, while keeping the third 

variable constant.  

2.3.1. Effects on Particle Size 

The three-dimensional response surface plots for particle size are presented in Figure 1. As shown 

in Figure 1A,B, particle size increased with increasing fraction of lipid, which could be related to a 

viscosity increase in the dispersion, leading to higher surface tension and thus larger particle size [25]. 

Furthermore, increasing the particle size as a result of higher content of lipid might occur due to 

increased collision and aggregation of the nanoparticles [26], or relatively lack of enough surfactant for 

covering the surface of the particles [18]. However, as indicated in Table 2, X2 (surfactant to  

co-surfactant ratio) showed negative effect on particle size and by increasing X2, particle size 

decreased (Figure 1A,C), which suggested that the presence of a higher content of surfactant 

(Cremophor RH40) reduced interfacial tension more effectively and the lipid could become more 

homogenized in the aqueous phase and this caused the formation of smaller particles. 

Figure 1. Response surface plots showing the effects of variables on particle size of  

TP-SLN. (A) fraction of lipid and surfactant to co-surfactant ratio, (B) fraction of lipid and 

lipid to drug ratio, and (C) surfactant to co-surfactant ratio and lipid to drug ratio. 
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2.3.2. Effects on Encapsulation Efficiency (EE) 

Figure 2A–C illustrate the response surface model for EE in response to the investigated variables. 

As shown in Figure 2A,B, EE improved with increases in fraction of lipid to an optimal maximum 

value. The possible reason could be that higher content of lipid afforded more space to accommodate 

the drug [21]. On the other hand, surfactant was needed to solubilize TP in the lipid (or allow TP to 

disperse in its coating) because of the low lipophilicity of TP. Consequently, EE gradually increased to 

its maximum point and then the relatively decreased content of surfactant might fail to load more TP. 

Lipid to drug ratio negatively influenced EE (Table 2). However, the intensity of the influence was 

relatively low (Figure 2B,C). 

Figure 2. Response surface plots showing the effects of variables on EE of TP-SLN.  

(A) fraction of lipid and surfactant to co-surfactant ratio, (B) fraction of lipid and lipid to 

drug ratio, and (C) surfactant to co-surfactant ratio and lipid to drug ratio.  

 

 

A significant negative effect of surfactant to co-surfactant ratio (X2) on EE was observed  

(Figure 2A,C). As the amount of surfactant increased, the surface of the formed SLN failed to absorb 

all surfactant molecules, which would result in the formation of micellar solution causing increased 

partition of TP from the SLN into water phase [20]. On the other hand, as reported in the literature, 

molecules with low lipophilicity could disperse or dissolve in the coating of lecithin [27], and a strong 

binding of phospholipids to the solid lipid matrix might occur to immobilize the interfacial film [28]. 
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This immobilization lowered the partition of TP across the lecithin barrier to water phase. Therefore, 

lecithin (co-surfactant) decreased with increasing X2, which also led to decreased EE. 

2.3.3. Effects on Drug Loading (DL) 

The three-dimensional response surface plots for DL are presented in Figure 3. As shown in  

Figure 3A,B, DL improved with increases in fraction of lipid (X1) to an optimal maximum value, and 

surfactant to co-surfactant ratio (X2) had a significantly negative effect on DL (Figure 3A,C), which 

suggested that X1 and X2 had similar effects on DL and EE. In addition, increased lipid to drug ratio 

significantly decreased DL (Figure 3B,C), which might due to the increase of lipid content and 

reduction of EE (Figure 2B,C). 

Figure 3. Response surface plots showing the effects of variables on DL of TP-SLN.  

(A) fraction of lipid and surfactant to co-surfactant ratio, (B) fraction of lipid and lipid to 

drug ratio, and (C) surfactant to co-surfactant ratio and lipid to drug ratio. 

 

 

2.4. Optimization and Validation 

After analyzing the polynomial equations depicting the independent variables and responses, the 

formulation was optimized targeting the prescriptive criteria of low particle size, maximum EE and 

DL. The composition of optimum formulation was predicted as: level of fraction of lipid of 49.73%, 

surfactant to co-surfactant ratio of 3.25, and lipid to drug ratio of 55.27. The predicted values of 

particle size, EE and DL were 189.6 nm, 55.1% and 1.10%, respectively. The observed optimized 
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formulation had particle size of (179.8 ± 5.7) nm, EE of (56.5 ± 0.18)% and DL of (1.02 ± 0.003)%, 

which were in good agreement with the predicted values. 

2.5. In Vitro Release 

Figure 4 shows the cumulative release of drug from control TP-suspension and optimized TP-SLN. 

Complete release (100%) was achieved within 2 h from TP-suspension, which indicated rapid 

diffusion of TP. This confirmed that a sink condition was accomplished and that the dialysis 

membrane used did not limit drug release [29]. In contrast, the release of TP from TP-SLN was about 

1.68-fold slower than that from the suspension (59.4%). In addition, TP showed 53.3% of drug release 

within the first hour followed by sustained release from TP-SLN. The presence of the free TP in the 

external phase and on the surface of the nanoparticles might be the reason for the burst release [30]. 

Because of the solid matrix of the SLN and the subsequent drug immobilization [13], a slow and 

sustained release profile would therefore be expected. 

Figure 4. In vitro release profile of TP-suspension and optimized TP-SLN. 0.1 M HCl  

(pH 1.2) containing 10% (v/v) ethanol was selected as the release medium and the 

experiment was performed by the dialysis bag diffusion technique at 37 °C. Results are 

expressed as mean ± SD (n = 3). 

 

2.6. Stability Study in Simulated Gastric Fluid 

The results of the stability of optimized TP-SLN in simulated gastric fluids are shown in Figure 5, 

which revealed a slight but insignificant decrease in the particle size (p > 0.05). EE of TP-SLN was 

measured during 3 h of incubation in gastric medium and a release of 9.3% of the initial amount of 

encapsulated TP was detected. These changes might be attributed to the protective coating of 

Cremophor RH40 (polyoxyl 40 hydrogenated castor oil) on the surface of SLN, it could protect 

Compritol 888 ATO (glyceryl behenate) and Lipoid E 80 (egg lecithin) from the acidic environment 
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and against enzyme degradation, but some TP could still diffuse from the shell of SLN [31,32]. It is 

worth mentioning that the majority of the drug (91%) was protected. 

Figure 5. Stability study of optimized TP-SLN in simulated gastric fluid. Results are 

expressed as mean ± SD (n = 3). 

 

2.7. Assessment of Gastric Mucosa Irritation  

It is well recognized that oxidative stress mediates cellular injury in the gastrointestinal tract [33–35], 

and that glutathione (GSH) is one of the important components presenting in high concentration in the 

gastric tissues, depletion of GSH in gastric mucosa can result in lipid peroxidation and gastric  

damage [36]. As shown in Figure 6A,B, there were significant increase in malonyldialdehyde  

(MDA, p < 0.001) and reduction in GSH (p < 0.01) in the TP (ig)-treated group compared with the 

control group. However, when TP was administrated by intraperitoneal injection, no obvious changes 

of MDA and GSH were observed. On the other hand, SLN significantly reduced the lipid peroxidation 

levels induced by oral administration of TP. Myeloperoxidase (MPO) was measured as a maker of 

neutrophil infiltration into the gastric mucosal tissues [37–39]. As shown in Figure 6C, TP 

significantly increased (p < 0.001) the activity of myeloperoxidase after administration by intragastric 

route (but not after intraperitoneal injection). In contrast, the oral administration of TP-SLN 

significantly reduced (p < 0.05) MPO activity compared with the TP (ig)-treated group. 

When TP-suspension was administered orally to rats, marked hyperemia was observed on the 

gastric mucosal surface, while in other groups, hardly any hyperemia was observed. The protective 

effect of loading TP into SLN was further confirmed by histological examination. For the group given 

an oral dose of TP-suspension at 1.0 mg/kg, infiltration of inflammatory cells was clearly seen in the 

gastric mucosa of the rats (Figure 7B). However, for the TP intraperitoneal injection group and  

TP-SLN oral group, there was hardly any evidence of the gastric mucosa irritation (Figure 7C,D). 
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Figure 6. Levels of malonyldialdehyde (MDA) and glutathione (GSH), and activity of 

myeloperoxidase (MPO) in gastric mucosa after administration of TP and TP-SLN in rats. 

The results are expressed as mean ± SD (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 

compared with control group; # p < 0.05, ## p < 0.01 compared with TP (ig) group. Notes: 

ig, intragastric; ip, intraperitoneal injection. 
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Figure 7. Histological examination of gastric tissue of rats (hematoxylin and eosin 

staining, 400 ×). Results were derived from oral administration of TP (B) and TP-SLN (C), 

intraperitoneal injection of TP (D) at the dose of 1.0 mg/kg. Control group (A): oral 

administration of 0.5% sodium carboxymethyl cellulose solution. 

 

The above results suggested that SLN possessed a reducing effect against irritation in rat stomach 

tissues induced by TP. This could be attributed to the encapsulation of TP into SLN, which reduced the 

direct contact of drugs with the mucosal surface. Our findings are consistent with previous 

observations which showed that irritation to tissues induced by some drugs could be minimized by 

SLN encapsulation [40–42]. Furthermore, due to their small particle size, lipid nanoparticles exhibited 

bioadhesion to the gastric tract wall thereby achieving a longer retention time [43], releasing TP very 

gradually, which reduced local high concentration. In addition, free TP in SLN dispersion might 

dissolve in the gastric fluid in the form of solubilized surfactant micelles and was adsorbed  

in molecular form, so that no large crystals came into contact with the stomach mucosa causing 

irritation [6]. 

3. Experimental 

3.1. Materials 

Triptolide was purchased from Nanjing Zelang Medical Technology Co., Ltd (Nanjing, China, 

purity >98% by HPLC). Pepsin was supplied by Sinopharm Chemical Reagent Co., Ltd (Beijing, 

China). Cremophor RH40 (polyoxyl 40 hydrogenated castor oil) was obtained from BASF 

(Ludwigshafen, Germany). Compritol 888 ATO (glyceryl behenate) and Transcutol HP (diethylene 

glycol monoethyl ether) were from Gattefossé SAS (Saint Priest Cedex, France). Lipoid E 80  

(egg lecithin) was supplied by Lipoid GmbH (Ludwigshafen, Germany). Solvents were of HPLC grade 
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and water was obtained from a Milli-Q water purification system (Millipore, Bedford, MA, USA). 

Other chemicals were of analytical grade. 

3.2. Animals 

The protocol of this study was approved by the Ethical Committee of Huazhong University of 

Science and Technology. Male Sprague-Dawley rats (180–200 g) were purchased from Laboratory 

Animals Center of Tongji Medical College of Huazhong University of Science and Technology 

(Wuhan, China). They were housed in an air conditioned room under a 12 h light/dark cycle with free 

access to food and water. They were acclimatized for one week before the experiments. 

3.3. Preparation of TP-SLN Using the Microemulsion Technique 

TP-SLN was prepared using the microemulsion technique [17]. Briefly, drug (TP), solid lipid 

(Compritol 888 ATO), surfactant (Cremophor RH40) and co-surfactant (Lipoid E 80 dissolved in 

Transcutol HP at a ratio of 1:1, w/w) were mixed and heated together at 85 °C under magnetic stirring, 

then water (85 °C) was added to obtain an optically transparent microemulsion. This hot 

microemulsion was dispersed into cold water (2~4 °C) under vigorous stirring using a ratio of 1:5, and 

subsequently filtered through 1 μm membrane filters. The final aqueous dispersion of TP-SLN was 

then obtained and stored at 4 °C. 

3.4. Central Composite Design (CCD) 

The critical independent variables (fraction of lipid (X1), surfactant to co-surfactant ratio (X2) and 

lipid to drug ratio (X3)) influencing the properties of the produced TP-SLN were selected, and a  

three-factor, five-level CCD was developed. Particle size (Y1), EE (Y2) and DL (Y3) were selected as 

responses. The coded and actual values of the variables are given in Table 3. According to the CCD, a 

set of 20 experiments was designed including eight factorial points, six axial points and six replicated 

central points. 

Table 3. Independent variables and their levels of CCD. 

Independent Variables 
Coded levels 

−1.732 −1 0 +1 +1.732 

X1: fraction of lipid (%, w/w) 40.00 44.23 50.00 55.77 60.00 
X2: surfactant to co-surfactant ratio (w/w) 2.00 2.85 4.00 5.15 6.00 
X3: lipid to drug ratio (w/w) 50.00 60.57 75 89.43 100.00 

Statistical analysis was performed by Design-Expert® 8.0 software (Stat-Ease Inc., Minneapolis, 

MN, USA). The best fitting mathematical model was chosen by comparing several statistical 

parameters of various polynomial models consisting of the multiple correlation coefficient (R2), the 

adjusted multiple correlation coefficient (adjusted R2), the predicted multiple correlation coefficient 

(predicted R2) and lack-of-fit [44]. Analysis of variance (ANOVA) was employed to assess the 

significance of differences. The p-values < 0.05 were considered to be statistically significant. In order 

to achieve a better understanding of the independent variables influence on responses, response surface 
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plots of the fitted models were constituted also using Design-Expert® 8.0 software. The optimized 

formulation was prepared for further evaluation. 

3.5. Characterization of TP-SLN 

3.5.1. Particle Size 

The mean particle size was measured by photon correlation spectroscopy (Nano-ZS90 zetasizer, 

Malvern Instruments Corp., Worcestershire, UK) at 25 °C with a 90° scattering angle. Milli-Q water 

was used as a dispersant medium. 

3.5.2. Encapsulation Efficiency (EE) and Drug Loading (DL) 

Triptolide was analyzed using Agilent 1100 HPLC (Agilent Technologies, Palo Alto, CA, USA). 

Analyses were performed at 25 °C using a ZORBAX Eclipse Plus C18 column (250 mm × 4.6 mm,  

5 μm) with a Agilent guard cartridge. The mobile phase consisted of methanol: water (45:55, v/v). The 

flow rate and detection wavelength were 1.0 mL/min and 218 nm, respectively. 

Free TP was separated by subjecting 0.5 mL of freshly prepared TP-SLN to ultrafiltration  

(Amicon ultra, Millipore Co., Bedford, MA, USA, molecular weight cutoff 10 kDa) for 40 min at 

4,000 g at 4 °C. Filtrate containing the free drug was taken for HPLC analysis. Total amount of drug 

was determined by disrupting TP-SLN dispersion (0.5 mL) with a mixed solvent composed of 

dichloromethane and methanol (1:10) followed by vortex for 5 min. After filtration through a 0.45 μm 

membrane filter, the resulting solution was also analyzed by HPLC. EE and DL were calculated using 

the equation given below [45]:  

EE (%) = (WTotal－WFree)/WTotal × 100 (4) 

DL (%) = (WTotal – WFree)/WLipid × 100 (5) 

in which WTotal, WFree and WLipid were the weights of total drug and the unencapsulated drug, and the 

lipid added in system, respectively. 

3.6. In Vitro Release 

In vitro release was performed in 0.1 M HCL (pH 1.2) containing 10% (v/v) ethanol by the dialysis 

bag diffusion technique [46]. The bag (molecular weight cutoff 8~14 kDa) was soaked in water for  

12 h prior to experiment. The optimized TP-SLN or TP-suspension (TP dispersed in 0.5% sodium 

carboxymethyl cellulose solution) were placed inside the bag (equivalent to 0.5 mg TP), tied at both 

the ends and dipped into 50 mL medium in a conical flask. Then conical flask was put into an 

incubator shaker (CIMO, Shanghai, China). Shaking was maintained at 100 rpm at 37 °C. Aliquots 

(0.5 mL) were withdrawn at pre-set time intervals (0.17, 0.33, 0.50, 0.75, 1, 1.5, 2 and 3 h) and 

immediately replaced by an equal volume of fresh release medium. Amount of released drug was also 

determined by the HPLC method mentioned above. A profile showing the cumulative drug release as a 

function of time was plotted. 
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3.7. Stability Study in Simulated Gastric Fluid 

The simulated gastric fluid (SGF) was constituted with sodium chloride (0.2 g), hydrochloric acid 

(0.7 mL) and pepsin (0.32 g) in 100 mL of water [47]. The optimized TP-SLN was diluted at a final 

concentration of 10% (v/v) and incubated at 37 °C in SGF. Samples were collected at times 0, 1, 2 and 

3 h, and then evaluated for changes in particle size and EE. 

3.8. Assessment of Gastric Mucosa Irritation 

Twenty-four SD rats were divided into four groups with six rats each and fasted for 24 h but with 

free access to water. One group was given TP (aqueous solution of 20% propylene glycol) via 

intraperitoneal injection. The other three groups were orally administered with 0.5% sodium 

carboxymethyl cellulose solution (control), TP-suspension and optimized TP-SLN, respectively. Dose 

of TP was 1.0 mg/kg. One hour after administration, all rats were anesthetized and sacrificed. Their 

stomachs were removed and rinsed thoroughly with physiological saline. The stomachs were opened 

along the line of greater curvature and then spread flat and examined for signs of injury 

macroscopically. Afterward, gastric tissue samples were fixed overnight in 4% paraformaldehyde and 

processed for paraffin sectioning followed by hematoxylin and eosin (H&E) staining for microscopic 

examination. The gastric mucosa was scraped with glass slides for measurement of biochemical 

parameters [34,48] including malonyldialdehyde (MDA), glutathione (GSH) and myeloperoxidase 

(MPO). These parameters were determined using reagent kits (Nanjing Jiancheng Biotechnology 

Institute, Nanjing, China) according to the manufacturer’s protocols. The statistical analysis  

of differences between groups was performed using Student’s t-test. Results were presented as  

mean ± standard deviation (SD). p < 0.05 was considered to be significant. 

4. Conclusions 

In the present study, we report incorporation of TP into SLN by the microemulsion technique. 

Central composite design (CCD) was employed to evaluate the effect of the formulation variables on 

particle size, encapsulation efficiency (EE) and drug loading (DL). The optimized TP-SLN offered 

benefits in terms of relatively high EE, good stability in simulated gastric fluid, and prolonged release 

profile in vitro. In addition, SLN had a potential of preventing gastric mucosa irritation caused by oral 

administration of TP in rats, this could be attributed to reduced lipid peroxidation levels and 

inflammation of the stomach mucosa. 
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