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Abstract: Sepsis is a serious infection-induced syndrome with serious ramifications, especially
in intensive care units. Global concern motivated the investigation of the role of related genes’
polymorphism in predicting the liability to infection, sepsis, septic shock and survival. Among
these genes is the gene encoding mannose-binding lectin (MBL), with its remarkable importance
in the immune system. However, the previous studies showed conflicting results and ambiguity
that urged us to engage with this issue in the Egyptian population. Prediction of functional and
structural impacts of single nucleotide polymorphisms (SNPs) was done using in silico methods.
A prospective observational study was conducted in intensive care units; one hundred and thirty
patients were followed up. Genotyping was performed using real-time polymerase chain reaction
(RT-PCR) technology. MBL SNPs showed a remarkable high frequency in our population, as well. No
significant association was found between MBL2 genotypes and any of our analyses (sepsis, septic
shock and survival). Only septic shock and age were independently associated with time of survival
by Cox regression analysis. Our study may confirm the redundancy of MBL and the absence of
significant impact on sepsis liability and mortality in adult patients.

Keywords: MBL; polymorphism; infection; sepsis; survival

1. Introduction

Sepsis is “a life-threatening organ dysfunction caused by a dysregulated host response
to infection” [1]. This infection-induced syndrome is a major concern, especially in intensive
care units, beyond its complicated manifestation, septic shock [2]. A recent global study
estimated that, in 2017, the world witnessed 48.9 million cases of sepsis worldwide with
11 million sepsis-related deaths representing one fifth of all world deaths [3]. Moreover, the
mortality of hospital-treated sepsis was estimated to be 26.7%, and the mortality of ICU-
treated sepsis was estimated to reach 41.9% [4]. In addition, World Health Organization’s
(WHO) seventieth assembly urged all WHO member states to improve the prevention,
recognition and management of sepsis, considering it a global priority [5].
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This global concern led to continuous efforts to search for robust diagnostic methods
for the early prediction of sepsis, as early diagnosis is considered a priority for proper
management of sepsis, leading to investigating the role of genetic polymorphisms in both
the prediction of sepsis and its mortality rate, as well [6]. The believed role of genetic
variants in sepsis pathogenesis and in individual sepsis susceptibility in addition to the
importance of mannose-binding lectin (MBL) in the immune system attracted attention
to its encoding gene, MBL2, and the possible roles of its variants in increasing liability to
developing infection and sepsis [7,8].

MBL is a key player of the innate systemic protection against invading pathogens [9].
MBL is a pattern-recognition molecule that activates the complement system through
the lectin pathway [10]. The MBL could identify a wide array of pathogens through
carbohydrate moieties on their surfaces leading to complement activation in addition
to further opsonization, phagocytosis enhancement and enhancement of the adaptive
immune system [11,12]. The MBL2 gene is located on chromosome 10 (q11.2–q21); this gene
has three commonly studied polymorphisms on exon 1: rs1800450G/A, termed A/B in
codon 54; rs1800451G/A, termed A/C in codon 57; and rs5030737C/T, termed A/D [13,14].
These three polymorphisms are called structural variants due to their modification of the
subsequent protein structures and their role in preventing the assembly of oligomers of
MBL2 [14,15]. Moreover, mutations in codon 54 and codon 57 are found to be associated
with dramatically low concentrations of mannose-binding protein, with its ramifications
for immune function [16,17]. Meanwhile, MBL studies have found an astonishing high
level of mutations in codon 54 and codon 57 in many populations, which lead to many
hypotheses and much debate about the real role of these mutations and pushed for more
investigation into their implications for infectious diseases [18,19]. Therefore, many studies
investigated the association of exon 1 polymorphisms with the risk of infectious diseases
and sepsis, and gave conflicting results [14,20–23]. These conflicted results indicated the
need to further investigate, to identify whether single-nucleotide polymorphisms (SNPs)
in this significantly important gene could be used for predicting a defect in our immunity
towards infection and sepsis.

In this study, our aim was to investigate the potential role of codon 54 and codon
57 polymorphisms in the susceptibility to sepsis and septic shock in Egyptian population
and in survival as well.

2. Materials and Methods
2.1. Ethics Statement

The protocol of this study was approved by the Research Ethics Committee at Suez
Canal University with the reference No. (201911PHDH1). All subjects gave an informed
consent or it was given by their next of kin. A chart illustrating the specific objectives of
our work is shown in (Figure 1).
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Figure 1. The specific objectives of the study work.

2.2. In Silico Analysis
2.2.1. General Information

General information about MBL2 gene was obtained from Ensembl and the National
Center for Biotechnology Information (NCBI) databases. Gene ontology information
was collected from Genecards.org, and we depended on compartments.jensenlab.org for
subcellular localization data. The STRING biological database was used for analyzing
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predicted protein–protein interaction and gene co-expression. Ensembl and dbSNP were
used for obtaining general information about our two SNPs: rs1800450 and rs1800451. We
also depended on (https://web.expasy.org (last accessed on 17 August 2021)) for data
related to the impact of these variants on protein sequences, for which UniProtKB/Swiss-
Prot databases were used as the source of this information.

2.2.2. Analyzing the Effect of Variants on Protein Function

The functional consequences of our two variants on protein function were predicted
using five bioinformatics tools in order to strengthen the accuracy and efficacy of our
analysis: 1—SIFT (sorting intolerant from tolerant) uses sequence homology, in addition
to amino acids’ physical properties, to predict the impact of variants on protein function
(https://sift.bii.a-star.edu.sg (last accessed on 17 August 2021)) [24]; 2—PolyPhen-2 (poly-
morphism phenotyping v2), depends on a comparative approach in additional to a physical
one for predicting the impacts of variants (http://genet-ics.bwh.harvard.edu/pph2 (last
accessed on 17 August 2021)) [25]; 3—PANTHER (protein analysis through evolution-
ary relationship) uses calculations of the evolutionary preservation of amino acids for
predicting whether there is a likelihood that a nonsynonymous variant has functional
consequences (http://www.pantherdb.org/tools/csnpScoreForm.jsp (last accessed on
21 September 2021)) [26]; 4—PROVEAN (protein variation effect analyzer) depends on
blast hits for calculating delta alignment scores and eventually computing a PROVEAN
score, with −2.5 being the cutoff (http://provean.jcvi.org/seq_submit.php (last accessed
on 21 September 2021)) [27]; 5—SNPs and GO uses a protein’s functional annotation to
predict the effects of SNPs (https://snps.biofold.org/snps-and-go/snps-and-go.html (last
accessed on 21 September 2021)) [28].

2.2.3. Identifying Variants’ Locations on MBL Protein Domains

InterPro tool was used to identify the SNPs locations on MBL protein conserved
domains (https://www.ebi.ac.uk/interpro/ (last accessed on 21 September 2021)). InterPro
is a bioinformatics tool used to analyze the function of protein and identify its functional
sites and domains [29].

2.2.4. Analyzing Variants Impact on Protein Stability

I-Mutant 2.0 was used for predicting the stabilities of MBL proteins from the rs1800450
and rs1800451 SNPs (https://folding.biofold.org/i-mutant/i-mutant2.0.html (last accessed
on 21 September 2021)) [30]. I-Mutant 2.0 was tested effectively on the ProTherm database,
considered the largest experimental database regarding protein mutations [31].

2.2.5. Analysis of Evolutionary Conservation of MBL Protein Sequences

The ConSurf server was used for this analysis (https://consurf.tau.ac.il (last accessed
on 13 September 2021)). This bioinformatics tool was used to analyze MBL protein se-
quences for evolutionarily conserved positions using phylogenetic relationships found in
homologous sequences [32,33].

2.2.6. Analyzing Structural Impacts of Variants

The HOPE tool was used to analyze the structural impacts of rs1800450 and rs1800451
on the MBL protein (https://www3.cmbi.umcn.nl/hope (last accessed on 13 September
2021)). The HOPE tool is a variant analysis server with which SNPs’ impacts on protein
structures could be analyzed (Venselaar et al., 2010) [34].

2.3. Study Design

This is a prospective observational study that was conducted in intensive care units in
Suez Canal university hospitals. All patients with a proven infection were included for a
period of 7 months which was extended for another 5 months with the further inclusion of
all admitted patients, including control patients without infection or sepsis in these last

https://web.expasy.org
https://sift.bii.a-star.edu.sg
http://genet-ics.bwh.harvard.edu/pph2
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://provean.jcvi.org/seq_submit.php
https://snps.biofold.org/snps-and-go/snps-and-go.html
https://www.ebi.ac.uk/interpro/
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://consurf.tau.ac.il
https://www3.cmbi.umcn.nl/hope
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5 months. The exclusion criteria were age less than 18 years, pregnancy, immunodeficiency
and receiving radiation therapy or chemotherapy. All patients were followed during
their hospital stay for developing infection, sepsis or septic shock and for their fate and
survival. Routine cultures of blood, urine, sputum and pus were drawn to inspect infection
and identify causative pathogens. Daily assessment and evaluation were performed to
inspect the development of sepsis and septic shock according to “The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)” [1].

In addition, upon admission a general examination was performed accompanied by
measuring vital signs (heart rate, blood pressure, temperature respiratory rate and central
venous pressure) and performing the needed laboratory investigations (complete blood
count, creatinine, serum calcium, potassium, sodium, arterial blood gas). Additionally,
calculating ICU score systems, such as Acute Physiology and Chronic Health Evaluation
(APACHE II) score and sequential organ failure assessment (SOFA) score, was conducted
as well.

2.4. Genotyping

DNA extraction from venous blood was performed using a QIAamp DNA Blood
Mini kit (Cat. No. 51104, QIAGEN; Hilden, Germany). The purity and the concentra-
tion were checked using a NanoDrop ND-1000 (NanoDrop Tech., Inc. Wilmington, DE,
USA). DNA samples were stored at −80 ◦C until further processing. SNPs of MBL2, both
codon 54 (rs1800450G/A, termed A/B) and codon 57 (rs1800451G/A, termed A/C), were
identified using the real-time polymerase chain reaction (RT-PCR) protocol with TaqMan
Genotyping assays. The assay ID for rs1800451 was C___2336608_20 and the assay ID
for rs1800450 was C___2336609_20. Reaction components were obtained from Applied
Biosystems (Foster City, CA, USA). The PCR was performed in a reaction volume of 25 µL,
including 12.5 µL TaqMan genotyping master mix, No AmpErase UNG (2×), 1.25 µL
TaqMan SNP genotyping assay mix and 20 ng genomic DNA diluted with DNase-RNase
free water to 11.25µL. After that, StepOne™ real time PCR system (Applied Biosystems,
Foster City, CA, USA) was used for the amplification, under the following conditions:
initial holding step of 95 ◦C for 10 min, then 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min.
The allelic discrimination depended on SDS software version 1.3.1 (Applied Biosystems).
The steps were carried out blindly with regard to sepsis/culture/control groups. Addition-
ally, re-genotyping of 20% of the samples was done on randomly selected samples with
100% concordance.

2.5. Statistical Analysis

Statistical Package for the Social Sciences (SPSS) for windows software, version 24
and Microsoft® Excel 2010 was used for statistical analysis. Qualitative variables were
expressed as frequency and percentage, the comparison between groups was performed
by Chi-square (χ2) test or Fisher’s exact tests. Quantitative variables were expressed as
mean ± standard deviation (SD), normally distributed quantitative variables were com-
pared using student’s t test and one-way ANOVA tests, while non-normally distributed
variables were compared using Mann–Whitney U test and Kruskal–Wallis test. A p-value
less than 0.05 was considered statistically significant. Odds ratios (OR) were calculated
with a 95% confidence interval (CI). Hardy–Weinberg equilibria (HWE) were calculated.
Survival analysis was performed beginning with calculating Kaplan–Meier estimates of
overall survival and performing log rank, Breslow, and Tarone–Ware tests to find Kaplan–
Meier estimates for survival. Cox regression analysis was performed as well, to explore the
independent associations with time of survival.
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3. Results
3.1. In Silico Analysis
3.1.1. General Information

The human MBL2 gene (ENSG00000165471) is located on 10q21.1, the gene localization
and the MBL2 region in detail are illustrated in Figure 2A,B. It is a protein-coding gene with
a length of 7405 nt., its location is at the Chromosome 10: 52,765,380–52,772,784 reverse
strand according to the Genome Reference Consortium Human Build 38 patch release
13 (GRCh38.p13) and its NCBI reference sequence is (NC_000010.11). The gene has three
transcripts (ensemble.org). The MBL2 gene encodes mannose-binding lectin (also called
mannose-binding protein C or mannan-binding protein), which belongs to the collectin fam-
ily. Figure 2C illustrates a MBL protein diagram representing its important domains and the
positions of the SNPs under study. Figure 3A illustrates the subcellular localization of MBL
protein. It plays an important role in innate immunity by recognizing N-acetylglucosamine
and mannose on microorganisms, such as bacteria, viruses and yeasts, and binds to them,
leading to the activation of the complement system. (https://www.ncbi.nlm.nih.gov/gene?
cmd=Re-trieve&dopt=Graphics&list_uids=4153# (last accessed on 17 August 2021)). The
gene ontology (Figure 3B) shows that the biological process of our gene includes com-
plement activation, opsonization and defense response to bacterium, while MBL2 gene
molecular functions comprise signaling receptor binding, protein binding, mannose and
carbohydrate binding (https://www.genecards.org/cgi-bin/carddisp.pl?gene=MBL2 (last
accessed on 16 August 2021)). Figure 4A illustrates the predicted interactions between MBL
and other proteins that shows the existing interaction between MBL and many important
proteins in the complement system and immune system that indicate the importance of
MBL in the immune system, as the functional interactions of proteins represent a basis for
completing biological functions [35]. In addition, the gene’s co-expression is illustrated in
Figure 4B.

Diagnostics 2022, 12, x FOR PEER REVIEW  6  of  23 
 

 

 

Figure 2. (A) Gene localization of the MBL2 gene in the long arm of chromosome 10 generated by 

ensemble databases (http://ensembl.org/ (last accessed on 4 February 2022). (B) MBL2 gene region 

in detail generated by ensemble databases (http://ensembl.org/ (last accessed on 4 February 2022). 

(C) MBL protein diagram representing its important domains and the positions of the SNPs under 

study. 

Figure 2. (A) Gene localization of the MBL2 gene in the long arm of chromosome 10 generated
by ensemble databases (http://ensembl.org/ (last accessed on 4 February 2022). (B) MBL2 gene
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2022). (C) MBL protein diagram representing its important domains and the positions of the SNPs
under study.
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Figure 3. MBL protein functional analysis. (A) Subcellular localization of MBL protein. Confidence
of association is color-coded with a gradient from light green, indicating low confidence, to dark
green, for high confidence; from (https://www.genecards.org/ (last accessed on 4 February 2022)),
with (https://compartments.jensenlab.org/ (last accessed on 4 February 2022)) as the source of the
image. (B) Analysis of gene ontology. The cellular components, biological process and molecular
function of MBL are illustrated.
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Figure 4. (A) Network of predicted protein–protein interactions of MBL protein. Analysis by STRING
databases (version 11.5). The network shows the predicted summary of associations of a specific
group of proteins. The nodes represent proteins, while the edges signify the predicted associations.
The edges may have any of seven different colored lines, with different indications. Red lines—
fusion evidence; blue lines—co-occurrence evidence; green lines—neighborhood evidence; light blue
lines—database evidence; purple lines—experimental evidence; yellow lines—text-mining evidence;
black lines—co-expression evidence. MASP1—mannan-binding lectin serine peptidase 1; MASP2—
Mannan-binding lectin serine protease 2; FCN2—Ficolin-2; PTX3—pentraxin-related protein PTX3;
C4B—complement C4-B; C4A—complement C4-A; C2—complement C2; FCN3—ficolin-3; C1S—
complement C1s subcomponent; C1R—complement C1r subcomponent. (B) Gene co-expression
matrix. In the triangular matrices, it is the intensity of color that indicates the level of confidence about
the functional association between two proteins, given data about overall expression in the organism.
Functional association is predicted by co-expression. MBL2 shows co-expression with FCN2, C4B,
C4A and C2 with scores of 0.114, 0.099, 0.103 and 0.096, respectively (https://string-db.org (last
accessed on 15 August 2021)).

SNP rs1800450 is located at chromosome 10, position 52771475 (forward strand); it
is also an exonic variant that comprises two alleles, C and T, where C is the ancestral
allele. The minor allele frequency is 0.12 (T). This variant is a missense mutation that
causes change of the amino acid glycine (G) to the amino acid aspartate (D) at position
54 (Figure 5A,B). Meanwhile, rs1800451 is located at chromosome 10 position 52771466
(forward strand), it is also an exonic variant with two alleles, C and T. The ancestral allele is
C and the minor allele frequency equals 0.08 (T). It is also a missense mutation that causes
the change of the amino acid glycine (G) to the amino acid glutamate (E) at position 57
(Figure 5C,D).

https://string-db.org
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Figure 5. Structural and functional consequences of SNPs under study. (A) Prediction of the effect of
rs1800450 on the function of human protein, depending on evolutionary and physical considerations,
with a score varying from zero (benign) to one (damaging) (https://doi.org/10.1038/nmeth0410-248
(last accessed on 17 August 2021)). (B) Table displaying the different transcripts of rs1800450, alleles,
consequence type, fate of amino acid, codons, SIFT score and PolyPhen score. G—glycine; D—
aspartate (source of data: ensemble.org). (C) prediction of the effect of rs1800451 on the function
of human protein depending on evolutionary and physical considerations, with a score varying
from zero (benign) to one (damaging) (https://doi.org/10.1038/nmeth0410-248 (last accessed on
17 August 2021)). (D) Table displaying the different transcripts of rs1800451, alleles, consequence
type, fate of amino acid, codons, SIFT score and PolyPhen score. G—glycine; E—glutamate (source of
data: ensemble.org).

3.1.2. Prediction of SNPs Impact on MBL Protein Function

For rs1800450, the SIFT tool revealed a score of 0.999. Thus, the SNP prediction showed
a deleterious effect, which indicated that the substitution of the amino acid would lead to
adverse effects on the function of the protein [24]. Moreover, the PolyPhen-2 tool revealed
a score of 1.00 using the HumVar model, which designated the variant as a probably
damaging mutation (Figure 5A). The Panther tool showed a probably damaging effect
that the missense mutation may lead to a main role in causing human disease [26] with a
probability of deleterious effect (Pdel) of 0.57. PROVEAN tool showed deleterious effect
with a PROVEAN score of (−6.104). SNPs and GO indicated a prediction of a disease-
associated SNP, with a reliability index of 7.

https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
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Meanwhile, for rs1800451, the SIFT tool revealed a score of 0.999. Consequently, the
SNP prediction showed a deleterious effect, and an effect on protein function as well.
PolyPhen-2 gave a score of 0.975 with the HumVar model, which designated the variant
as a probably damaging mutation as well (Figure 5C). Panther also showed a probably
damaging effect with rs1800451, with the probability of a deleterious effect (Pdel) of 0.57 as
well. PROVEAN showed a deleterious effect, with PROVEAN score of −7.428. SNPs and
GO predicted a disease-associated SNP with a reliability index of 6.

3.1.3. Determining Variants’ Locations on Protein Domains

Using InterPro showed that MBL protein is composed of a C-type lectin-like domain
and a collagen triple-helix repeat (collagen-like). Both rs1800450 and rs1800451 are located
on a collagen triple-helix repeat (Interpro entry: IPR008160).

3.1.4. Predicting MBL Protein Stability with rs1800450 and rs1800451 SNPs

The impact of our variants (rs1800450 and rs1800451) on MBL protein stability was
analyzed by I-Mutant 2.0 in terms of reliability index value (RI) and free-energy change
values (DDG). The rs1800450 was revealed to cause a decrease in MBL protein stability
with a reliability index of 5 and free energy change values (DDG) of (−1.37) Kcal/mol.
Meanwhile, the rs1800451 was revealed to cause an increase in MBL protein stability with a
reliability index of 4 and a free-energy change value (DDG) of (0.32) Kcal/mol.

3.1.5. Evolutionary Conservation Analysis

Evolutionary conservation analysis of MBL protein was performed on the ConSurf
server to estimate the degree of evolutionary conservation of MBL amino acids positions
(Figure 6). The position 54 was revealed to be a functional residue, which is exposed and
highly conserved. The position 57 was revealed also to be a functional residue, exposed
and highly conserved as well.

3.1.6. Analyzing Structural Effects of MBL Variants

Project HOPE was used to analyze structural effects of variants. With both SNPs, there
was difference in size and charge between the new amino acid (aspartate and glutamic
acid, for rs1800450 and rs1800451, respectively) and the original one, glycine. Unlike
the neutral charge of glycine, both new amino acids had negative charges, which could
cause repulsion of other negatively charged residues. Moreover, the bigger size of the new
ones could cause bumps. Furthermore, the lost flexibility of glycine caused problems in
this residue, with its unusual torsion angle that could cause disruption in structure. In
addition, both aspartate and glutamic acid could disturb the collagen-like domain with
their new properties, especially without the flexibility of glycine, which could be necessary
to protein function.

3.2. Study Population

One-hundred-and-thirty patients were included in the study, of which 53 patients
developed infection without developing sepsis, 38 patients developed sepsis and 39 patients
did not develop infection or sepsis, composing the control group. The demographic
and clinical features of ICU-admitted patients are summarized in (Table 1) according to
their group. Some admission categories (neurology, infection, respiratory, trauma and
gastrointestinal categories) and some variables, such as age, vital signs, Apache score and
vascular concomitant disease, showed significant p-values. In addition, the frequencies of
different causative microorganisms in the sepsis group and the infection group without
sepsis were analyzed, as shown in (Table 2). However, no significant association was
found between microorganisms’ frequency and the development of sepsis. Moreover,
no significant value was found, with an odds ratio and 95% confidence interval as well
(Table 2).
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Table 1. Demographic and clinical features of ICU-admitted patients (control, infection without
sepsis, sepsis groups) (n = 130).

Variables All Control Infection
without Sepsis Sepsis p-Value

Demographic Characteristics

Number 130 39 53 38

Age, years

median (IQR) 60.0 (22.3) 55.0 (29.0) 59.0 (33.5) 65.0 (17.3) 0.005

≤40 years 28 (21.5%) 12 (30.8%) 14 (26.4%) 2 (5.3%)

≤60 years 40 (30.8%) 14 (35.9%) 15 (28.3%) 11 (28.9%) 0.020

>60 years 62 (47.7%) 13 (33.3%) 24 (45.3%) 25 (65.8%)

Sex
Male 76 (58.5%) 24 (61.5%) 33 (62.3%) 19 (50.0%) 0.45

Female 54 (41.5%) 15 (38.5%) 20 (37.7%) 19 (50.0%)

Vital signs
HR 90.0 (17.0) 90.0 (00.0) 100.0 (24.0) 90.0 (20.8) 0.008

MAP 83.0 (14.0) 83.0 (00.0) 83.0 (24.5) 75.0 (20.0) 0.047
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Table 1. Cont.

Variables All Control Infection
without Sepsis Sepsis p-Value

Concomitant diseases

Diabetes positive 45 (34.6%) 10 (25.6%) 17 (32.1%) 18 (47.4%) 0.12

Hypertension positive 65 (50.0%) 16 (41.0%) 28 (52.8%) 21 (55.3%) 0.40

Vascular
disease positive 34 (26.2%) 4 (10.3%) 17 (32.1%) 13 (34.2%) 0.025

Chronic lung
disease positive 8 (6.2%) 2 (5.1%) 5 (9.4%) 1 (2.6%) 0.54

Chronic liver
disease positive 10 (7.7%) 2 (5.1%) 3 (5.7%) 5 (13.2%) 0.42

Chronic renal
disease positive 25 (19.2%) 5 (12.8%) 11 (20.8%) 9 (23.7%) 0.45

ICU assessment

APACHE score median (IQR) 15.0 (7.3) 12.0 (7.0) 16.0 (7.0) 16.5 (6.8) 0.001

Glasgow scale median (IQR) 11.5 (8.0) 14.0 (9.0) 9.0 (7.5) 14.0 (8.0) 0.057

Length of stay,
days median (IQR) 13.0 (19.3) 10.0 (16.0) 15.0 (18.5) 13.5 (25.8) 0.386

Consequence

discharge 54 (41.5%) 19 (48.7%) 21 (39.6%) 14 (36.8%)

transferred 6 (4.6%) 1 (2.6%) 3 (5.7%) 2 (5.3%) 0.82

death 70 (53.9%) 19 (48.7%) 29 (54.7%) 22 (57.9%)

OS, days median (IQR) 13.0 (20.5) 11.0 (15.0) 15.0 (20.0) 16.5 (28.3) 0.424

Admission category

Renal positive 4 (3.1%) 1 (2.6%) 1 (1.9%) 2 (5.3%) 0.69

Cardiovascular positive 5 (3.8%) 2 (5.1%) 2 (3.8%) 1 (2.6%) 1.00

Infection positive 24 (18.5%) 0 (0.0%) 8 (15.1%) 16 (42.1%) 0.000

Neurology positive 36 (27.7%) 13 (33.3%) 19 (35.8%) 4 (10.5%) 0.019

Post-surgical positive 19 (14.6%) 4 (10.3%) 6 (11.3%) 9 (23.7%) 0.17

Respiratory positive 14 (10.8%) 2 (5.1%) 11 (20.8%) 1 (2.6%) 0.013

Trauma positive 10 (7.7%) 7 (17.9%) 3 (5.7%) 0 (0.0%) 0.009

Other causes positive 9 (6.9%) 4 (10.3%) 2 (3.8%) 3 (7.9%) 0.52

Gastrointestinal positive 9 (6.9%) 6 (15.4%) 1 (1.9%) 2 (5.3%) 0.042

Data is shown as number (percentage) or median (IQR) for non-parametric statistics. IQR—interquartile range;
HR—heart rate, in beats per minute; MAP—mean arterial pressure, in mmHg; OS—overall survival. Chi
square (χ2) or Fisher’s exact tests were used for qualitative variables and the Kruskal–Wallis test was used for
non-normally distributed quantitative attributes. Bold values are statistically significant at p-value < 0.05.

3.3. Genotype Analysis

Genotype frequencies, allele frequencies and carriage rate are mentioned in detail
in (Table 3) with the odds ratio and confidence interval calculated. The frequency of the
AA, AC and CC genotypes of rs1800451 were 109, 19 and 2, respectively, in accordance
with Hardy–Weinberg equilibrium. While the genotypes of rs1800450 frequency were
90, 40 and 0 for AB, AA and BB, respectively, which gave significant value with Hardy–
Weinberg equilibrium. Rs1800451 and rs1800450 did not show significant relationships
with developing sepsis. In addition, all genetic association models were investigated with
risk of sepsis (Table 4), but no significant association was observed.
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Table 2. Analysis of causative organisms in sepsis group and infection group without sepsis (n = 91).

Causative Organism All Infection without
Sepsis Sepsis p-Value Odds Ratio

(95% CI)

Enterobacter spp. 10 (11.0%) 4 (7.5%) 6 (15.8%) 0.31 2.30 (0.60–8.78)

Acinetobacter spp. 11 (12.1%) 7 (13.2%) 4 (10.5%) 0.76 0.77 (0.21–2.85)

Candida spp. 3 (3.3%) 1 (1.9%) 2 (5.3%) 0.57 2.89 (0.25–33.07)

Escherichia coli 16 (17.6%) 11 (20.8%) 5 (13.2%) 0.35 0.58 (0.18–1.83)

Gram negative bacilli 9 (9.9%) 5 (9.4%) 4 (10.5%) 1.00 1.13 (0.28–4.52)

Klebsiella spp. 21 (23.1%) 13 (24.5%) 8 (21.1%) 0.70 0.82 (0.30–2.23)

Pseudomonas spp. 13 (14.3%) 6 (11.3%) 7 (18.4%) 0.34 1.77 (0.54–5.76)

Staph spp. 18 (19.8%) 12 (22.6%) 6 (15.8%) 0.42 0.64 (0.22–1.89)

Streptococcus spp. 4 (4.4%) 3 (5.7%) 1 (2.6%) 0.64 0.45 (0.05–4.51)

Aeromonas spp. 1 (1.1%) 1 (1.9%) 0 (0.0%) 1.00 0.45 (0.02 to 11.46)

Proteus spp. 2 (2.2%) 1 (1.9%) 1 (2.6%) 1.00 1.41 (0.09–23.20)

Citrobacter spp. 1 (1.1%) 1 (1.9%) 0 (0.0%) 1.00 0.45 (0.02 to 11.46)

Serratia spp. 1 (1.1%) 1 (1.9%) 0 (0.0%) 1.00 0.45 (0.02 to 11.46)

Data is shown as number (percentage). Chi square (χ2) or Fisher’s exact tests were used for qualitative variables.
Statistical analysis at p-value <0.05.

Table 3. Genotype frequencies, allele frequencies and carriage rate with risk of sepsis.

All Control
Infection
without
Sepsis

Sepsis p-Value

OR (95% CI)

Sepsis Group
against Control

Group

Sepsis Group
against Infection

Group

Infection Group
against Control

Group

Genotype Frequencies

Rs1800451

A/A 109
(83.8%) 32 (82.1%) 45 (84.9%) 32 (84.2%) 0.91 Reference

A/C 19 (14.6%) 7 (17.9%) 7 (13.2%) 5 (13.2%) 0.71 (0.21 to 2.49) 1.00 (0.29 to 3.45) 0.71 (0.23 to 2.23)

C/C 2 (1.6%) 0 (0.0%) 1 (1.9%) 1 (2.6%) 3.00 (0.12 to 76.40) 1.41 (0.08 to 23.33) 2.14 (0.09 to 54.29)

P HWE 0.90 1.00 1.00 1.00

Rs1800450

A/A 40 (30.8%) 11 (28.2%) 15 (28.3%) 14 (36.8%) 0.63 Reference

A/B 90 (69.2%) 28 (71.8%) 38 (71.7%) 24 (63.2%) 0.68 (0.28 to 1.65) 0.67 (0.26 to 1.76) 1.00 (0.40 to 2.49)

B/B 0 0 0 0 0.79 (0.01 to 43.12) 1.07 (0.02 to 57.49) 0.74 (0.01 to 40.25)

P HWE 0.000 0.012 0.002 0.039

Allele frequencies

Rs1800451

A 237
(91.15%) 71 (91.0%) 97 (91.5%) 69 (90.8%) 0.98 Reference

C 23 (8.85%) 7 (9.0%) 9 (8.5%) 7 (9.2%) 1.03 (0.34 to 3.09) 1.09 (0.39 to 3.08) 0.94 (0.33 to 2.64)

Rs1800450

A 170
(65.4%) 50 (64.1%) 68 (64.2%) 52 (68.4%) 0.80 Reference

B 90 (34.6%) 28 (35.9%) 38 (35.8%) 24 (31.6%) 0.82 (0.42 to 1.61) 0.83 (0.44 to 1.54) 1.00 (0.54 to 1.84)
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Table 3. Cont.

All Control
Infection
without
Sepsis

Sepsis p-Value

OR (95% CI)

Sepsis Group
against Control

Group

Sepsis Group
against Infection

Group

Infection Group
against Control

Group

Carriage rate

Rs1800451

A 128
(98.5%) 39 (100%) 52 (98.1%) 37 (97.4%) 0.07 Reference

C 21 (16.2%) 7 (17.9%) 8 (15.1%) 6 (15.8%) 0.90 (0.28 to 2.94) 1.05 (0.34 to 3.29) 0.86 (0.29 to 2.56)

Rs1800450

A 130
(100%) 39 (100%) 53 (100%) 38 (100%) 0.17 Reference

B 90 (69.2%) 28 (71.8%) 38 (71.7%) 24 (63.2) 0.88 (0.43 to 1.78) 0.88 (0.46 to 1.70) 1.00 (0.53 to 1.89)

Values are shown as number (percentage). Chi square (χ2) or Fisher’s exact tests were used. OR (95% CI), odds
ratio and confidence interval. Statistical analysis at p value < 0.05.

Table 4. Genetic association models for sepsis risk assessment.

Genotype Control
Infection
without
Sepsis

Sepsis p-Value

OR (95% CI)

Sepsis Group
against Control

Group

Sepsis Group
against Infection

Group

Infection Group
against Control

Group

rs1800451

Codominant A/A 32 (82.1%) 45 (84.9%) 32 (84.2%) 0.91 Reference

A/C 7 (17.9%) 7 (13.2%) 5 (13.2%) 0.71 (0.21 to 2.49) 1.00 (0.29 to 3.45) 0.71 (0.23 to 2.23)

C/C 0 (0.0%) 1 (1.9%) 1 (2.6%) 3.00 (0.12 to 76.40) 1.41 (0.08 to 23.33) 2.14 (0.09 to 54.29)

Dominant A/A 32 (82.1%) 45 (84.9%) 32 (84.2%) 0.93 Reference

A/C-
C/C 7 (17.9%) 8 (15.1%) 6 (15.8%) 0.86 (0.26 to 2.83) 1.05 (0.33 to 3.34) 0.81 (0.27 to 2.47)

Recessive A/C-
A/A 39 (100%) 52 (98.1%) 37 (97.4%) 0.75 Reference

C/C 0 (0.0%) 1 (1.9%) 1 (2.6%) 3.16 (0.12 to 80.02) 1.41 (0.09 to 23.20) 2.26 (0.09 to 56.90)

Over-
dominant

A/A-
C/C 32 (82.1%) 46 (86.8%) 33 (86.8%) 0.78 Reference

A/C 7 (17.9%) 7 (13.2%) 5 (13.2%) 0.69 (0.20 to 2.41) 1.00 (0.29 to 3.41) 0.70 (0.22 to 2.18)

rs1800450

Codominant A/A 11 (28.2%) 15 (28.3%) 14 (36.8%) 0.63 Reference

A/B 28 (71.8%) 38 (71.7%) 24 (63.2%) 0.68
(0.28 to 1.65) 0.67 (0.26 to 1.76) 1.00 (0.40 to 2.49)

B/B 0 0 0 0.79
(0.01 to 43.12) 1.07 (0.02 to 57.49) 0.74 (0.01 to 40.25)

Dominant A/A 11 (28.2%) 15 (28.3%) 14 (36.8%) 0.63 Reference

A/B-B/B 28 (0.0%) 38 (0.0%) 24 (0.0%) 0.67
(0.26 to 1.76) 0.68 (0.28 to 1.65) 1.00 (0.40 to 2.49)

Recessive A/A-
A/B 39 (100%) 53 (100%) 38 (100%) 1.00 Reference

B/B 0 0 0 1.03
(0.02 to 53.02) 1.39 (0.03 to 71.58) 0.74 (0.01 to 38.02)

Over-
dominant A/A-B/B 11 (28.2%) 15 (28.3%) 14 (36.8%) 0.63 Reference

A/B 28 (0.0%) 38 (0.0%) 24 (0.0%) 0.67 (0.26 to 1.76) 0.68 (0.28 to 1.65) 1.00 (0.40 to 2.49)

Values are shown as number (percentage). Chi square (χ2) or Fisher’s exact tests were used. OR (95% CI), odds
ratio and confidence interval. Statistical analysis at p value < 0.05.
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3.4. Polymorphisms and Clinical Characteristics

Moreover, all clinical and laboratory variables were investigated for their relationships
with rs1800451 or rs1800450 (Table 5). There was no association between our SNPs and
developing septic shock or length of stay. The respiratory category of admission was found
to have a significant association with rs1800450 (p = 0.011).

Table 5. Analysis for association of variants with clinical and laboratory characteristics.

Variables
Codon 54 (rs1800450) Codon 57 (rs1800451)

p-Value p-Value

Demographic
Age, years 0.81 0.61

Sex 0.88 0.90

Vital signs

HR, beats/min 0.36 0.47

MAP, mm Hg 0.81 0.45

SBP, mm Hg 0.42 0.49

DBP, mm Hg 0.71 0.39

Concomitant diseases

Diabetes 0.65 0.44

Hypertension 0.70 1.00

Vascular disease 0.27 0.44

Chronic lung disease 0.25 1.00

Chronic liver disease 1.00 1.00

Chronic renal disease 0.53 1.00

ICU assessment

APACHE score 0.75 0.80

Glasgow scale 0.10 0.50

Length of stay 0.22 0.24

Sepsis 0.63 0.91

Septic shock 0.78 0.76

Death 0.84 0.17

Overall survival 0.97 0.40

Admission category
(cause of admission)

Renal 0.59 1.00

Cardiovascular 1.00 0.59

Infection 0.24 0.84

Neurology 0.19 0.69

Post-surgical 0.54 0.80

Respiratory 0.011 0.38

Trauma 0.72 1.00

Other causes 1.00 0.11

Gastrointestinal 1.00 0.67

Laboratory results

WBC, ×103 cells/µL 0.46 0.58

HB, g% 0.35 0.83

Creatinine, mg/dL 0.55 0.74
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Table 5. Cont.

Variables
Codon 54 (rs1800450) Codon 57 (rs1800451)

p-Value p-Value

Causative organism

Enterobacter spp. 0.50 1.00

Acinetobacter spp. 0.74 1.00

Candida spp. 1.00 0.41

E. coli 1.00 0.43

Gram-negative bacilli 1.00 1.00

Klebsiella spp. 0.81 0.17

Pseudomonas spp. 1.00 0.75

Staph spp. 0.42 0.30

Streptococcus spp. 0.59 0.07

Aeromonas spp. 1.00 1.00

Proteus spp. 0.52 1.00

Citrobacter spp. 1.00 1.00

Serratia spp. 1.00 1.00

Type of culture

Blood 0.40 0.18

Sputum 0.70 0.29

Urine 0.54 1.00

Pus 0.19 1.00

CSF 0.31 1.00

No. of infections 0.48 0.31

CSF—Cerebrospinal Fluid; DBP—Diastolic Blood Pressure; HB—Hemoglobin; HR—Heart Rate; MAP—Mean
Arterial Pressure; SBP—Systolic Arterial Pressure; WBC—White Blood Cell.

3.5. Survival Analysis

Survival analysis was performed in a multistep approach in our study. First, Kaplan–
Meier survival plots were created for the two SNPs (Figure 7). Then, we applied the log
rank test, Breslow test and Tarone–Ware test, investigating the associations between all
variables, including our two SNPs, and with survival (Table 6). This analysis resulted in
a significant association with length of stay p-value = 0.000, 0.000 and 0.000, respectively.
Another significant association was with infection category of admission, p-value = 0.018,
0.011 and 0.014, respectively, and with the neurology category of admission p-value = 0.030,
0.004 and 0.007, respectively. The chronic lung disease also showed significance with the
log rank test and Tarone–Ware test, with p-value = 0.026 and 0.044, respectively. In addition,
the number of infections gave a significant result with the Tarone–Ware test, giving a
p-value = 0.048.

Furthermore, performing Cox regression analysis (Table 7) resulted in an independent
association between septic shock and between time of survival, with a hazard risk of
2.882, confidence interval = 1.130–7.347 and p-value = 0.027. Additionally, an independent
association of age with time of survival was found as well, with a hazard risk of 1.018,
confidence interval = 1.004–1.034 and p-value = 0.015.
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Table 6. Survival analysis in ICU-admitted patients.

Variables
Overall Comparisons

Log Rank Breslow Tarone–Ware

Demographic data Age 0.154 0.247 0.180

Sex 0.701 0.542 0.582

Concomitant disease Diabetes 0.820 0.401 0.543

Hypertension 0.536 0.377 0.418

Vascular disease 0.141 0.361 0.271

Chronic liver disease 0.891 0.979 0.891

Chronic lung disease 0.026 0.064 0.044

Chronic renal disease 0.124 0.126 0.122

ICU assessment APACHE score 0.308 0.261 0.256

Glasgow scale 0.115 0.228 0.175

Length of stay 0.000 0.000 0.000

Sepsis 0.807 0.797 0.793

Septic shock 0.090 0.020 0.038

Admission category Renal 0.571 0.396 0.442

Cardiovascular 0.954 0.687 0.766

Infection 0.018 0.011 0.014

Neurology 0.030 0.004 0.007

Post-surgical 0.273 0.279 0.264

Respiratory 0.454 0.865 0.672

Trauma 0.111 0.200 0.155

Other causes 0.308 0.357 0.314

Gastrointestinal 0.078 0.240 0.128

Laboratory results WBC, x103 cells/µl 0.165 0.062 0.080

HB, g% 0.066 0.218 0.140

Creatinine, mg/dL 0.064 0.144 0.117

No. of infections 0.149 0.050 0.048

Molecular analysis RS1800450 0.336 0.728 0.548

RS1800451 0.116 0.093 0.102
Survival time is shown as mean and standard error. Log rank, Breslow and Tarone–Ware tests were used to find
Kaplan–Meier estimates for survival. Bold values are statistically significant at p < 0.05. Quantitative variables
were categorized by their medians. HB—Hemoglobin; WBC—White Blood Cell.
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Table 7. Survival analysis in ICU admitted patients.

Variables HR 95% CI p-Value

Demographic
data

Age 1.018 1.004–1.034 0.015

Sex 1.262 0.753–2.117 0.377

ICU assessment

APACHE core 1.003 0.970–1.036 0.866

Glasgow scale 1.056 0.988–1.129 0.107

Septic shock 2.882 1.130–7.347 0.027

Sepsis (sepsis–no sepsis) 0.455 0.191–1.084 0.075

No. of infections 0.738 0.541–1.006 0.055

Molecular
analysis

RS1800451 (AA, AC + CC) 1.599 0.742–3.444 0.231

RS1800450 (AA, AB + BB) 1.108 0.632–1.940 0.720
HR—hazard risk; CI—confidence interval. Cox proportional hazard regression analysis was performed.
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4. Discussion

The revealed contribution of polymorphisms in immune system genes to the liability
and outcome of sepsis patients [6,36], in addition to the remarkable importance of MBL
in the immune system motivated us to investigate this possible association between MBL
genes variants and the liability to and the outcomes of this serious infectious disease.

All used bioinformatics tools showed damaging and deleterious impacts of MBL
SNPs on MBL protein and that the SNPs have adverse effects on the function of our
protein. Rs1800450 SNP was showed to decrease the stability of MBL protein. Furthermore,
evolutionary conservation analysis showed that MBL SNPs were positioned at functional,
exposed and highly conserved residues. In addition, the amino acid exchanges were
predicted to cause disruption in protein structure with both variants.

The genotype frequencies of the SNPs in our study were in agreement with previous
published data among the Egyptian population; the genotype frequency of rs1800451 was
similar to the frequency found by Badawy and colleagues in Egyptian population [23], as
well as those from studies in other populations [14,37]. The genotype frequency results of
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rs1800450 were very similar to that found by Nasr et al. in a recent study in an Egyptian
population, with frequencies of 41.7%, 58.3%, 0.0% for the AA, AB and BB genotypes,
respectively [38], similar to the results found by Badawy and colleagues [23]. The notable
high frequency associated with these variants was observed previously, and attracted much
attention, leading to many different hypotheses and an resolved debate concerning the real
roles of these variants [18,19,39,40]. One hypothesis referred this accumulation of variants
to a protective function, due to low MBL production associated with these genotypes, thus
suggesting protection from host damage caused by excessive amount of inflammatory
mediators [39,41,42], or suggesting protection against some intracellular organisms, such as
Leishmania species, a serious intracellular parasite [43]. On the other hand, the advocates
of another hypothesis excluded any selective pressure and found no statistical evidence of
such pressure [44,45].

In our study, we found no relationship between our polymorphisms and sepsis sus-
ceptibility or susceptibility to infection, as there was no statistical difference between the
three study groups according to genotype frequency, allele frequency or carriage rate. We
found also no association between our SNPs and between developing septic shock. In
addition, we did not find any statistical difference concerning risk by calculating odds ratios
between the sepsis group, infection group and control group, according to the examined
SNPs. The debates and conflicting results extended to previous studies regarding the role
of MBL polymorphism in the susceptibility to infection, sepsis, septic shock and sepsis
outcome, Gordon et al. found significant a relationship between exon 1 polymorphisms
and between developing sepsis in adult an population in England [46]; Liu et al. also
found a significant association between codon 54 polymorphism and the risk of sepsis in
an adult Han Chinese population [8]. A South Korean study found an influence of codon
54 polymorphism on sepsis severity and developing septic shock but did not find any
independent association between exon 1 polymorphisms and between sepsis incidence [47].
On the other hand, many studies were consistent with our results; a large study that was
performed on more than 9000 adult Danish participants found no association between exon
1 polymorphisms and the risk of infectious diseases [48]. Moreover, Zhang and colleagues,
in their meta-analysis, found no statistical significance between exon 1 polymorphisms and
between sepsis susceptibility in adults [20]. In addition, a large cohort study performed
on a European population found no significant association between our SNPs and other
MBL2 SNPs and between pneumococcal sepsis and community-acquired pneumonia (CAP)
sepsis [21]. Our agreement with such large studies strengthened to our results. Moreover, a
prospective Dutch study found no association between MBL2 genotypes and the suscep-
tibility to CAP and that MBL2 genotypes could not be considered as factors with major
risk for developing infection with CAP [49]. In addition, regarding neonatal sepsis in an
Egyptian population, although an Egyptian cross sectional study found a prevalence of
mutant allele B with neonatal sepsis that might indicate a possible role of allele B of codon
54 in neonatal sepsis [50], another case-controlled study with a larger sample size was
conducted on neonates in an Egyptian population and found no association of MBL2 SNPs
with sepsis risk [23].

We did not find significant statistical association between our SNPs and between
survival by using Log rank test, Breslow test and Tarone–Ware tests. Cox regression
analyses did not reveal significance between our SNPs and survival as well. These results
regarding sepsis survival are consistent with a large study of Mills and colleagues, who
found no association between MBL variants and sepsis survival in adults [21] and with a
large study on an adult Danish population, which concluded that MBL polymorphisms
could not be considered as a major risk for mortality [48]. In addition, both Huh et al. and
Gordon et al. found no influence of MBL variants on sepsis mortality [46,47]. Yet some
inconsistent results could be noticed, as well; Garnacho-Montero and colleagues reported
that MBL2 polymorphisms were associated with mortality with pneumococcal sepsis in
adult patients in Spain [51].
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This absence of association of MBL variants with infection, sepsis and sepsis mortality
could be explained by the redundancy of MBL [52,53]. This was supported by previous
results—that other mechanisms could replace MBL function in the immune system [54].
The reason for the inconsistent findings, according to Mills and colleagues, was the under-
powered studies conducted by most researchers [21]. This explanation agreed with our
bioinformatics analysis about the deleterious effects of our SNPs on protein function and
also with previous studies [16,17], as they referred the non-significant association in spite of
these deleterious effects to the role of replacing immune mechanisms and the redundancy
of MBL.

The other explanation is that the different ethnicities and geographical regions in these
studies could be responsible for this inconsistency [20]. The susceptibility to infectious
diseases and sepsis and their outcome represent a complex process that is determined by a
combination of host genetic, environmental as well as pathogen factors [55,56]. Additionally,
these genetic factors consist of frequent genes rather than one single gene [6]. Therefore,
different ethnicities and geographical regions lead to different environmental factors and
different frequencies of polymorphisms, which could be responsible for these conflicting
results in different ethnicities and geographical regions.

Rs1800450 was found to have a significant association with the respiratory category of
admission, this category consisted mainly of respiratory failure, chronic obstructive pul-
monary disease (COPD) and pulmonary embolism patients. This group and its subgroups
were too small for further analysis, but the previous data linking MBL variants with disease
severity in noninfectious respiratory diseases [57,58] may indicate the need for further
investigation in this point.

Survival analysis showed that number of infections in patient and infection category
of admission were associated with survival time which confirmed previous results about
the role of infection in increasing mortality risk in ICU [59,60]. The length of ICU stay
was also significantly associated with survival time, in agreement with previous studies
which showed increasing rate of mortality with the increase in length of ICU stay [61,62].
In addition, analysis confirmed association of septic shock with survival time agreed with
previous studies [1,63] and performing Cox regression analysis found that only septic
shock and age factors had independent association with time of survival. Finally, there
were two limitations in the current study. First, the relatively small sample size, thus, large
multi-center studies are recommended to confirm these results. Second, having analyzed
only two polymorphisms in the MBL2 gene.

5. Conclusions

In conclusion, MBL variants were found with high frequency in our population,
agreeing with previous studies in the still unresolved debates about the nature of these
high-frequency variants. No roles of the MBL variants (rs1800450, rs1800451) were found
in the susceptibility to infection or in developing sepsis and septic shock. They also have
no role in patients’ survival. The redundancy of MBL and presence of other compensatory
immune mechanisms could be confirmed with our results; otherwise, the roles of different
ethnicities and geographical regions could be responsible for the conflicting results.
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