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Abstract: The bacteriostatic antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP),
have frequently been found in wastewater and surface water, which raises the concerns about
their ecotoxicological effects. The indirect photochemical transformation has been proven to be an
efficient way to degrade SMX and TMP. In this study, the reaction mechanisms of the degradation
by SMX and TMF by OH radicals were investigated by theoretical calculations. Corresponding rate
constants were determined and the eco-toxicity of SMX and TMP and its degradations products were
predicted using theoretical models. The results indicate that the most favorable pathways for the
transformation of SMX and TMP are both •OH-addition reaction of benzene ring site with lowest
Gibbs free energy barriers (6.86 and 6.21 kcal mol−1). It was found that the overall reaction rate
constants of •OH-initial reaction of SMX and TMP are 1.28 × 108 M−1 s−1 and 6.21 × 108 M−1 s−1

at 298 K, respectively. When comparing the eco-toxicity of transformation products with parent
SMX and TMP, it can be concluded that the acute and chronic toxicities of the degraded products are
reduced, but some products remain harmful for organisms, especially for daphnid (toxic or very toxic
level). This study can give greater insight into the degradation of SMX and TMP by •OH through
theoretical calculations in aquatic environment.

Keywords: sulfamethoxazole (SMX); trimethoprim (TMP); hydroxyl radical (•OH); transformation
mechanisms; photoproducts; eco-toxicity

1. Introduction

Pharmaceuticals and personal care products (PPCPs) as emerging organic micropollutants in the
environment have been receiving increased attention due to their possible adverse effects on the aquatic
organism and human health [1–5]. Sulfamethoxazole (SMX) and trimethoprim (TMP), as important
antibiotics, have been widely used in the treatment of human and animal diseases and infections [6–9].
Excessive amounts of SMX and TMP are discharged into water for a wide range transmission to
wastewater treatment plants [10], which cannot be effectively removed by conventional wastewater
treatment technologies [11–14]. This has led to widespread transport of pharmaceutical contaminants
in aquatic environment around the world [15].

SMX has regularly been detected in wastewater effluents and surface water with a concentration
range of 100–2500 ng/L and 60–150 ng/L, even in drinking water at 12 ng/L [16–18]. Previous
studies have reported that the residual concentration of TMP are 0.1–5 µg/L in wastewater effluents.
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Additionally, traces of TMP (2.2–10.9 ng/L and 0–19.8 ng/L) have been detected in surface and drinking
water [19–23]. Based on the concentrations of SMX and TMP in the aquatic environment, it may induce
the ecotoxicological concern about the chronic exposure of bacteria to trace level of antibiotics [24].
More importantly, the transformed products may retain the same level of biological properties as
original compounds or even have a higher biological activity. Also, previous studies about the
transformation of TMP exhibit some differences [25–27]. Thus, the chemical transformation of SMX and
TMP deserve more attention due to their biological activity and adverse effects on aquatic ecosystems.

Much efforts have been spent on researching the degradation and environmental impact of SMX
and TMP in aquatic environment. When compared with biodegradation, the photodegradation of
SMX and TMP is identified as a predominant pathway in surface water [28–30]. Previous studies have
focused on the degradation rate constant of SMX direct photolysis, which is 22.3± 1.86 h−1 at 3.2 pH [31].
In addition to the direct photolysis of pollutants, indirect photodegradation has been regarded as an
important elimination way of organic contaminants, such as SMX and TMP in aquatic environment.
In fact, advanced oxidation processes (AOPs) are broadly applied for removing organic materials
of wastewaters [32,33]. Hydroxyl radical-based AOPs (such as UV/H2O2) treatments are strongly
correlated with removal of pharmaceuticals with the rate constants on the order of 108–109 M−1 s−1 [34].
The experimental results shown that the rate constant for the •OH-initiated reaction of SMX is
(5.8 ± 0.2) × 109 M−1 s−1 [18,35]. In addition, many researchers have studied the degradation
rate constants of SMX and TMP with carbonate radical (k = 2.68 × 108 and 3.45 × 107 M−1 s−1,
respectively) [36]. When combined with the experimental research, a deeper understanding of the
performance of SXM/TMP transformation mechanisms and kinetics is warranted.

Therefore, the objective of this work is to make a detailed elucidation for the indirect photochemical
transformation and environmental impacts of SMX and TMP with •OH in aquatic environment by
quantum chemical calculation and computational toxicology method. In this paper, the transformation
mechanism and kinetic calculation of •OH-initiated reaction are expounded thoroughly. Furthermore,
the ecotoxicity risk of SMX and TMP and their products during indirect photolysis process is evaluated
while using the ECOSAR program. The study will provide theoretical insight into the indirect
photochemical behavior and ecotoxicity prediction of SMX and TMP in aquatic environments.

2. Results and Discussion

2.1. Transformation Mechanisms of SMX and TMP with •OH

In this study, the indirect photochemical transformations of SMX and TMP towards •OH in
aqueous phase were investigated. For the initial reaction of SMX and TMP with •OH, the degradation
mechanisms are described in Figure 1. •OH attack SMX and TMP through the three basic pathways:
(i) hydrogen abstraction (Rabs), •OH extracts one H atom from SMX and TMP to form the
dehydrogenated radical intermediates and H2O; (ii) hydroxylation reaction (Radd), •OH adds to
the C atom of reactants to form •OH-complexes; and, (iii) electron transfer (Rset), the single-electron
transfer from the reactants to •OH and generating the radical cation of reactants and •OH−.
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2.1.1. •OH-initiated reaction of SMX 

For the Rset process of SMX, the radical cation species (SMX⁺•) and hydroxyl anion (OH⁻) were 
formed via the electron transfer. The reaction of SMX with •OH is an endothermic process by Rset 
pathway, which absorbs 26.33 kcal mol−1 of reaction energy. The results indicate that the Rset pathway 
is not a spontaneous reaction, and it is not easy to occur by single-electron transfer mechanism of 
SMX from a thermodynamic standpoint. In addition, the Marcus theory was used to calculate the 
energy barrier of the Rset pathway (∆𝐺ௌா்ஷ = 33.08 kcal mol−1), further implying that the reactant has a 
low reactivity during this process, and Rset process has low reaction activity during •OH-initiated 
degradation of SMX. In general, Rset pathway is not the primary mechanism during the •OH-initiated 
indirect photodegradation process in the aquatic environment. Thus, the two mechanisms (H-
abstraction reaction and •OH-addition reaction) were taken into consideration, primarily in the 
following discussion. 

•OH reacts easily with olefinic double bonds and anilines owing to the high reactivity. As shown 
in Figure 1, H atom of SMX can be divided to five categories (benzene ring, isoxazole, methyl, and 
two nitrogen-atoms), which provides the different reaction site for H-abstraction reaction (Rabs). 
Additionally, hydroxylation reaction (Radd) can occur at the benzene ring and isoxazole ring. The free 
energy profile for the •OH-initiated mechanism of the most favorable pathways of SMX and the 
optimized geometries of the major categories (namely, Radd3, Radd5, Radd8, Rabs1a, Rabs8a, Rabs10–12a) 
are provided in Figure 2. Figure S1 provides other pathways and Gibbs free energies. It is worth 
noting that the •OH-addition products are different at C3 site of benzene ring from other sites. The 
C-S bond breaks when •OH is added to C3 site, leading to the phenolic product. The Gibbs free 
energy barrier of the addition process (Radd3) is 7.83 kcal mol−1. For the Rabs pathways, the free energy 
barriers are within a range of 9.71~16.82 kcal mol−1, which is higher than the Radd pathways (6.86~9.96 
kcal mol−1). The results implying that, compared with H-abstraction reactions, hydroxylation 
pathways of SMX have higher reactivity in aquatic environments. In addition, the reaction energies 
of all •OH-initiated reaction are negative (−3.11~−28.39 kcal mol−1), except a small positive number 
(1.48 kcal mol−1) at C8 atom of abstraction reaction. The results mean that the Radd and Rabs pathways 
are exothermic processes, and they can be more favorable from the standpoint of thermodynamics. 
Comparing the thermodynamic and kinetic data of •OH-initiated reaction at different sites of SMX, 
the addition reaction occurred at C5 site on the benzene ring is the most advantageous channel for 
the degradation of SMX. The conclusion is verified by the lowest Gibbs free energy barrier (6.86 kcal 
mol−1) and the highest rate constants (6.18 × 107 M−1 s−1) of Radd5 pathway. In summary, Radd and Rabs 

Figure 1. All the reaction pathways in the initial reaction of sulfamethoxazole (SMX) and trimethoprim
(TMP) with •OH.

2.1.1. •OH-Initiated Reaction of SMX

For the Rset process of SMX, the radical cation species (SMX+
•) and hydroxyl anion (OH−)

were formed via the electron transfer. The reaction of SMX with •OH is an endothermic process
by Rset pathway, which absorbs 26.33 kcal mol−1 of reaction energy. The results indicate that the
Rset pathway is not a spontaneous reaction, and it is not easy to occur by single-electron transfer
mechanism of SMX from a thermodynamic standpoint. In addition, the Marcus theory was used to
calculate the energy barrier of the Rset pathway (∆G,SET= 33.08 kcal mol−1), further implying that the
reactant has a low reactivity during this process, and Rset process has low reaction activity during
•OH-initiated degradation of SMX. In general, Rset pathway is not the primary mechanism during the
•OH-initiated indirect photodegradation process in the aquatic environment. Thus, the two mechanisms
(H-abstraction reaction and •OH-addition reaction) were taken into consideration, primarily in the
following discussion.

•OH reacts easily with olefinic double bonds and anilines owing to the high reactivity. As shown
in Figure 1, H atom of SMX can be divided to five categories (benzene ring, isoxazole, methyl,
and two nitrogen-atoms), which provides the different reaction site for H-abstraction reaction (Rabs).
Additionally, hydroxylation reaction (Radd) can occur at the benzene ring and isoxazole ring. The free
energy profile for the •OH-initiated mechanism of the most favorable pathways of SMX and the
optimized geometries of the major categories (namely, Radd3, Radd5, Radd8, Rabs1a, Rabs8a, Rabs10–12a)
are provided in Figure 2. Figure S1 provides other pathways and Gibbs free energies. It is worth noting
that the •OH-addition products are different at C3 site of benzene ring from other sites. The C-S bond
breaks when •OH is added to C3 site, leading to the phenolic product. The Gibbs free energy barrier of
the addition process (Radd3) is 7.83 kcal mol−1. For the Rabs pathways, the free energy barriers are
within a range of 9.71~16.82 kcal mol−1, which is higher than the Radd pathways (6.86~9.96 kcal mol−1).
The results implying that, compared with H-abstraction reactions, hydroxylation pathways of SMX
have higher reactivity in aquatic environments. In addition, the reaction energies of all •OH-initiated
reaction are negative (−3.11~−28.39 kcal mol−1), except a small positive number (1.48 kcal mol−1) at
C8 atom of abstraction reaction. The results mean that the Radd and Rabs pathways are exothermic
processes, and they can be more favorable from the standpoint of thermodynamics. Comparing the
thermodynamic and kinetic data of •OH-initiated reaction at different sites of SMX, the addition
reaction occurred at C5 site on the benzene ring is the most advantageous channel for the degradation
of SMX. The conclusion is verified by the lowest Gibbs free energy barrier (6.86 kcal mol−1) and the
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highest rate constants (6.18 × 107 M−1 s−1) of Radd5 pathway. In summary, Radd and Rabs pathways
predictably play an important role in the •OH-initiated photodegradation mechanisms of SMX in an
aquatic environment.
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2.1.2. •OH-Initiated Reaction of TMP

The indirect photolysis mechanisms of •OH-initiated reaction of TMP are similar with the
photochemical transformations of SMX. For the Rset pathway, the single-electron transfer from the TMP
to •OH. The radical cation intermediate (TMP+

•) and hydroxyl anion (OH−) are formed in this process.
The Gibbs free energy of activation (∆G,SET) of the SET reaction is 23.13 kcal mol−1 calculated by Marcus
theory at 298.15 K. Simultaneously, the Rset mechanism of •OH-initiated reaction is endothermic with
21.88 kcal mol−1 of reaction energy. The results mean that the electron transfer reactions are not easy to
occur from a thermodynamic point of view.

Figure 1 also shows that the hydroxylation reaction (Radd) and H-abstraction reaction (Rabs) of
TMP could occur at different sites (including benzene ring, five-membered heterocycle, and substituent
group). Figure 3 clarifies the profile of the free energy for the •OH-initiated mechanisms of the most
favorable pathways of the three major categories. Additionally, other channels of •OH-initiated
reactions are described in Figure S2. The four pathways (Radd1–4) of the benzene ring for the
hydroxylation reactions are considered due to the symmetric structure of TMP. The lowest Gibbs free
energy barrier of the addition reaction is 6.21 kcal mol−1 at C1 site, and the process releases up to
20.15 kcal mol−1 of reaction energy, as shown in Figure 3. For Rabs channels, the Gibbs free energy barrier
of Rabs15a (substituent group C15 site) is the lowest. The reaction needs to overcome the transition state
(TS15a) with the energy barrier of 7.07 kcal mol−1 and release heart of 22.69 kcal mol−1. Furthermore,
among the overall addition and abstraction pathways, the reaction energies that are released by
•OH-initiated reaction range from −0.90 to −36.53 kcal mol−1. Meanwhile, the Gibbs free energy
barriers of Radd and Rabs pathways are 6.21~18.42 kcal mol−1. All of the intermediates of •OH-initiated
reactions of TMP have one free electron, which can lead to the occurrence of subsequent reaction.

When considering all of the •OH-initiated photolysis reaction of SMX and TMP, it is clear
that hydroxylation reaction and H-abstraction mechanisms mainly contribute to the photochemical
transformation of SMX and TMP in an aquatic environment. In particularly, the most favorable
pathway of the transformation is hydroxylation reaction of benzene ring site.
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2.2. Kinetic Calculation

The kinetic calculation is carried out using the TST method in order to further confirm the
dominant pathways at the suitable temperature ranging of 273–328 K. The rate constants of the
•OH-initiated degradation of SMX and TMP are calculated based on the thermodynamic data in
aquatic environment. The bimolecular rate constants of the •OH-initiated reaction are calculated
according to the TST method, as shown before. The initial reaction of •OH can be described as:

SMX (TMP) + •OH
k1
→ •OH adducts or dehydrogenated intermediates

The total rate constant can be expressed using the formula:

ktotal = k1 (1)

The rate constants of •OH-addition and H-abstraction reaction are defined as kadd and kabs,
respectively. The rate constants (kadd, kabs, and ktotal) of the •OH-initiated reaction of SXM and TMP
at different site are displayed in Tables S1 and S2, in detail. The overall rate constants (ktotal) at
273–328 K and experimental rate constants of SMX and TMP are given in Table 1. The calculated overall
rate constant of SMX and TMP are 1.28 × 108 M−1 s−1 and 6.21 × 108 M−1 s−1 at 298 K, respectively.
Additionally, the rate constants of bimolecular reaction of SMX and TMP with •OH are obtained by
the experimental method [18,37]. The experimental results of SMX and TMP ((5.8 ± 0.2) × 109 M−1 s−1

and 8.66 × 109 M−1 s−1, respectively.) are an order of magnitude higher than the theoretical values,
which may be due to the influence of concentration of reactants, PH, aqueous medium, catalyst,
and some intermediates in the experiments. In addition, as the temperature increases, the total rate
constants of SMX and TMP degradation decreases. For example, the total rate constant for TMP of
the •OH-initiated reaction is 9.72 × 108 M−1 s−1 at 273 K, which is 2.4 times higher than that at 328 K
(4.03 × 108 M−1 s−1). The highest rate constants of •OH-initiated reaction are kadd5 (C5 site of SMX),
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kadd1 (C1 site of TMP), which are corresponding with the thermodynamic results, as shown in Tables
S1 and S2. Thus, the initiated reaction at C5 site of SMX (or at C1 site of TMP) is most favorable.

Table 1. Calculated overall rate constants (M−1 s−1) between 273 and 328 K in the reaction of SMX and
TMP with •OH.

T(K) SMX Experiment TMP Experiment

273 1.58 × 108

(5.8 ± 0.2) × 109

9.72 × 108

8.66 × 109
288 1.39 × 108 7.35 × 108

298 1.28 × 108 6.21 × 108

313 1.15 × 108 4.94 × 108

328 1.05 × 108 4.03 × 108

Furthermore, the contributions of initiated reactions at different site to the total reactions of SMX
are expressed as a rate branching ratio, which can be expressed as rx =kX/ktotal. The calculated results
rx are shown in Figure 4. The three paths (Radd1, Radd3, and Radd5) of hydroxylation and two paths
(Rabs10a and Rabs11a) of H-abstraction reactions that are most likely to occur are select to characterize
the branching ratio of rate constants. It is obvious that the Radd1 and Radd5 pathways of •OH-addition
reactions play a dominant role in the photochemical transformation. The rate branching ratio of these
two pathways is determined as high as 89% at 298 K, and the ratio of Radd3 (C3 site) is 9% at 298 K.
In a previous study, Solar et al. [38] found that the reaction of •OH with the ortho-position (C1 or
C5) of aniline is predominant (account for 54%), and 10% with para-position (C3) by the absorbance
characteristics experiment. The results confirmed the rate branching ratio that was carried out by
theoretical calculation. Thus, the hydroxylation reaction is significant to evaluate the subsequent
transformation reaction of SMX.
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2.3. Subsequent Transformation Reaction of SMX and TMP

The intermediates generated from the •OH-initiated reaction of SXM and TMP contain a free
radical, which can undergo the subsequent reactions due to the high reactivity. For the purpose of
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identifying the transformation products of SMX during the indirect photolysis process, the intermediate
IM5 was selected to study the subsequent transformation, owing to the fastest reaction rate constant.
Figure 5 shows the profile of free energy for subsequent reaction of IM5. The subsequent reactions of
intermediate IM5 are considered in the presence of O2 in aquatic environment, as shown in Figure 5.
The reaction of IM5 with O2 is exothermic, which releases the reaction energy of 3.25 kcal mol−1. In the
process, the Gibbs free energy barrier of transition state TS-O2 is 11.61 kcal mol−1. Subsequently,
the intermediate IM-O2 can undergo the hydrogen peroxide radical stripping reaction with the Gibbs
free energy barrier of 15.54 kcal mol−1, leading to the formation of SMX transformation product (TP2).
Simultaneously, the process can release the reaction energy of 28.36 kcal mol−1. The product was
identified by the triple quadrupole TOF mass spectrometer in the experiment [35].
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Furthermore, the intermediate IM1 of TMP is considered in the photodegradation process. Figure 6
depicts the transformation pathways of IM1 with blue color. IM1 can undergo demethylation reaction
to form the IM1-1 and •OCH3 radical. The reaction requires the free energy barrier of 17.97 kcal mol−1,
and the channel is endothermic with a little reaction energy of 5.08 kcal mol−1. Subsequently,
the product TP01 is formed through hydroxylation reaction at C7 site. The formation process includes
two steps, corresponding to the reactions IM1-1 + •OH→ IM1-2, and IM1-2→ TP01. In this process,
the intermediate IM1-2 is produced through the transition state TS1-2 with the Gibbs free energy barrier
of 6.27 kcal mol−1. In addition, the next addition reaction of IM1-2 with •OH is barrier-less process
and a lot of reaction energy of 67.04 kcal mol−1 is released at the same time. The ketone product TP02
is generated through oxidation reaction by losing of a molecular H2. In this process, the oxidizing
agent captures the H from the carbon of C7 site and •OH, and it forms the C = O bond. The reaction
is not easy to occur with a high Gibbs free energy barrier of 80.27 kcal mol−1 in theory. However, in
natural water environment, the reactivity may be enhanced by the catalytic action of oxidant. Next,
TP02 reacts with H2O via the hydrolysis reaction (Gibbs free energy barriers of 78.57 kcal mol−1),
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into TP03 (2,4-diaminopyrimidine-5-carboxylic acid, DAPC), and TP04 simultaneously with releasing
energy of 6.69 kcal mol−1. The transformation products (TP01, TP02 and TP03) of TMP were verified
by HRMS and MS2 method in experiment [39].

The mechanism studies elucidate that •OH can attack the organic contaminant (SMX and TMP)
and the two intermediates (IM5 of SMX and IM1 of TMP) are easily formed through the •OH-addition
pathway, according to above discussion. Furthermore, the transformed products of SMX (TP1 and
TP2), also with the photolysis products of TMP (TP 01, TP02, TP03, and TP04), are formed in the
indirect photochemical transformation process. The ecological risks of these products need to be
further considered in the aquatic environment.
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2.4. Eco-Toxocity Evaluation

In this work, QSAR analysis calculated by ECOSAR program was applied to predict the aquatic
toxicity for fish, daphnid, and green algae, including acute toxicity and chronic toxicity. In addition,
the values of 96-h median lethal concentration (LC50) for fish, 48-h LC50 for daphnid, and 96-h median
effective concentration (EC50) for green algae were used to analysis the acute toxicity. Additionally ChV
is defined as the geometric mean of the unobserved effect concentration and the lowest observed effect
concentration. Based on the results of EC50 for D. magna and LC50 for O. latipes, the values of aniline
derivative (unhindered) are selected for preliminary prediction of SMX, TMP, and transformation
products [40,41].

Figure 7 illustrates the acute and chronic toxicities of SMX, TMP, and transformation products.
Obviously, the acute and chronic toxicity of SMX, TP1, and TP2 to the three aquatic organisms express
the same trend. The chronic toxicity of SMX and TPs for daphnid is very low, less than 0.1 mg L−1,
which classified as very toxic substances according to Chinese hazard evaluation guidelines (Table S3).
Additionally the product TP2 shows lower toxicity than SMX, which may be due to the increased
hydrophilicity of the hydroxylated product of SMX.
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The aquatic toxicity of most transformation products for fish and green alage are lower than
TMP, as shown in Figure 7. The results indicate that the •OH-initiated degradation process of TMP
reduced the toxicity of products. Although the acute toxicity decreases with the transformation of
TMP, some of the products are classified as toxic and harmful to daphnid green alage. Similar with
SMX, the daphnid is the most sensitive organism for aquatic toxicity. In summary, the eco-toxicity
assessment of transformation products and parent compounds (SMX and TMP) become a necessary
consideration during the degradation process of contaminants in aquatic environment.
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3. Materials and Method

3.1. Mechanism Calculation

In this study, all of the quantum chemical calculations are implemented using the Gaussian 09
program [42]. The geometries of reactants, intermediates, transition states (TS), and products, as well as
its vibrational frequencies are optimized with M06-2X functionals at a level 6-31 + G (d,p) basis set [43].
The M06-2X method, as a density functional theory (DFT) model, has been successfully applied to
the mechanism studies of organic contaminants in the aquatic environment. [44–49]. The purpose
of vibrational frequency calculation is to confirm the structure of transition states and local minimal
point. Meanwhile, intrinsic reaction coordinate (IRC) calculations [49] are analyzed in order to
verify the transition states that are connected the reactants with their corresponding products for the
transformation pathway. Moreover, for a more accurate evaluation of energetic parameters, the single
point energies of all of the geometries were carried out at the M06-2X/6-311++G (3df,3pd) level.
Furthermore, the influence of solvent water is evaluated using the polarized continuum model (PCM)
within a self-consistent reaction field (SCRF) theory [50–52]. The PCM has been proven to be flexible
and accurate, in particularly, when the solute is accommodated in a cavity of realistic molecular shape
and it has been widely used for the study of many chemical processes [53].

In addition, the Marcus theory [54] was used to calculate the mechanism of single-electron
transfers (SET) pathway. The SET activation barrier (∆G,SET) is defined relying on the reaction free
energy (∆GSET) and the nuclear reorganization energy (λ):

∆G,SET =
(λ+ ∆GSET)

2

4λ
(2)

The reorganization energy (λ) is determined by two energies, which has been calculated as:

λ = ∆ESET − ∆GSET (3)

where ∆ESET is the energy difference between reactants and vertical products, which changes the spin
multiplicity and charge at the same geometries.

3.2. Kinetics Computation

The transition state theory (TST) has been used to calculate the reaction kinetics, which has been
successfully used to deal with radical reaction in former studies [55–57]. In this work, the rate constants
of elementary reactions have been carried out with the effective method according to the activation
energy barrier over a suitable temperature range. The rate constants are calculated by KiSThelP
package that is based on TST with Wigner tunneling correction [58]. In order to obtain the rate constants
of aqueous bimolecular reaction, the calculated rate constants need to be converted into corresponding
aqueously values by dividing a coefficient (kc), kc is expressed by the following formular:

kc = RT/Pθ (4)

where R, T, and Pθ are gas constant, temperature, and standard atmospheric pressure, respectively.

3.3. Ecotoxicity Evaluation

The ecological structure-activity relationships (ECOSAR) model, as a practical method for
calculating toxicity, is employed to predict the ecotoxicity of SMX, TMP, and their transformation
products [59,60]. The program can be used to estimate toxicity at the screening level of organic
contaminants [61]. The eco-toxicity is evaluated by the acute toxicity (LC50 and EC50) and chronic
toxicity (ChV) of SMX, TMP, and their transformation products for three aquatic organisms (green
algae, daphnia, and fish).
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4. Conclusions

In this paper, the transformation mechanisms, rate constants, and ecological risks for the
•OH-initiated degradation process of SMX and TMP have been studied by quantum chemistry and
computational toxicology methods. The lowest Gibbs free energy barrier of SMX (or TMP) initiated by
•OH is 6.86 (or 6.21) kcal mol−1 through the Radd5 (or Radd1) pathway, which indicate that the most
favorable pathways of the transformation are both •OH-addition reaction of benzene ring site. It is
worth noting that the results shown that the hydroxylation of SMX at C3 site leading to the breaking
the C-S bond and the opening of aromatic ring. This is an important finding that •OH radicals alone
are able to cause the opening of aromatic ring. In addition, the rate constants of SMX and TMP were
calculated for the assessment of the aquatic environmental fate. The overall rate constants of SMX
and TMP reacted with •OH were 1.28 × 108 M−1 s−1 and 6.21 × 108 M−1 s−1 at 298 K, respectively.
Additionally, the Radd1 and Radd5 pathways (ortho-position of aniline) of hydroxylation reactions of
SMX play a dominant role (as high as 89% of branching ratio) in the photochemical transformation.
Moreover, the hydroxylation products are formed through the subsequent reaction of •OH-complexes
of SMX and TMP. It is noteworthy that although the aquatic toxicity decreases with the degradation of
SMX and TMP, many products still maintain harmful levels to organisms, especially to daphnid (toxic
or very toxic level).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/17/
6276/s1. Figure. S1: The pathways of •OH-initiated reaction of SMX in aquatic environment with the Gibbs free
energy barriers ∆Eb and reaction energies ∆Er (unit: kcal mol−1). Figure. S2: The pathways of •OH-initiated
reaction of TMP in aquatic environment with the Gibbs free energy barriers ∆Eb and reaction energies ∆Er (unit:
kcal mol−1). Table S1: Calculated rate constants (M−1 s−1) between 273 and 328 K in the reaction of SMX and •OH.
Table S2: Calculated rate constants (M−1 s−1) between 273 and 328 K in the reaction of TMP and •OH. Table S3:
The acute and chronic toxic criterion (unit: mg L−1).

Author Contributions: Conceptualization, J.Y. and G.L.; methodology, J.Y.; software, Z.W.; validation, X.S.; formal
analysis, J.Y.; investigation, G.L.; resources, X.S.; data curation, J.Y.; writing—original draft preparation, J.Y.;
writing—review and editing, C.Z.; visualization, G.L.; supervision, X.S.; project administration, X.S.; funding
acquisition, X.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (21976109), Natural Science
Foundation of Shandong Province (ZR2018MB043), The Fundamental Research Funds of Shandong University
(2018JC027), Shandong Province Key Research and Development Program (2019GSF109037).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T.
Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38,
2918–2926. [CrossRef] [PubMed]

2. Liu, J.-L.; Wong, M.-H. Pharmaceuticals and personal care products (PPCPs): A review on environmental
contamination in China. Environ. Int. 2013, 59, 208–224. [CrossRef] [PubMed]
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