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Abstract

Accessible interactive tools that integrate machine learning methods with clinical research and 

reduce the programming experience required are needed to move science forward. Here, we 

present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-

and-click, interactive tool with a visual interface for facilitating machine learning and statistical 

analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) 

Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-

MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two 

case studies in collaboration with clinical domain experts. A domain expert review was also 

conducted to obtain an impression of the usability and potential limitations.
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1. Introduction

Machine learning continues to show great promise in its ability to extract new biomedical 

insights or predict clinical outcomes, which requires medical researchers to be able to 

understand and interpret machine learning models in a clinically translatable manner. The 

translation of these models is often challenging due to the experience needed for clinical 

interpretation, validation of machine learning models, coding expertise among clinical 
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researchers, security associated with biomedical datasets, and accessibility of computational 

tools to run machine learning pipelines in clinical settings [1–5].

The use of point-and-click, interactive tools that are accessible in secure internet access 

settings can be an effective medium to engage medical researchers in data analytics because 

they provide potential solutions to challenges associated with the clinical adoption of 

machine learning. Reactive and visual point-and-click tools limit the need for rewriting 

analyses when parameterizing and optimizing machine learning pipelines as well as enable 

users to visually compare and interpret multiple models without requiring coding expertise 

[6,7].

We present Machine Learning for Medical Exploration and Data-Inspired Care (ML-

MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine 

learning and statistical analyses in clinical research. ML-MEDIC’s efficacy for facilitating 

the adoption of machine learning was evaluated through two case studies in collaboration 

with clinical domain experts. A domain expert review was also conducted as a preliminary 

study to obtain preliminary evidence regarding tool usability and potential limitations.

2. Materials and Methods

2.1. Data

To demonstrate the utility and usability of ML-MEDIC, we constructed two case study 

exercises. Longitudinal study data from the Framingham Heart Study (FHS) was used for 

case study 1. A pooled dataset containing data combined from the Framingham Heart Study 

(FHS), Cardiovascular Health Study, Multi-Ethnic Study of Atherosclerosis (MESA), and 

Atherosclerosis Risk in Communities Study (ARIC) was used for case study 2. The study 

design, response rates, and methodologies for each study are reported elsewhere [8–10].

2.2. Specified User Tasks

We iteratively consulted domain experts in the medical, statistical, and informatics fields to 

determine the most appropriate user tasks ML-MEDIC needed to address to aid in 

facilitating the adoption of machine learning in medicine. We consulted a cardiologist with 

extensive predictive analytics experience as well as a data science expert with experience in 

clinically applying contemporary statistical and machine learning methods. Additional 

cross-domain experts were consulted as needed, including an applied behavior analyst, a 

human–computer interaction (Graphical user interface/visualization) specialist, an 

epidemiologist, and a clinical psychologist.

In collaboration with the domain experts, we identified the following user-specified tasks 

that ML-MEDIC needed to facilitate the clinical application and adoption of machine 

learning:

1. Task 1: A tool that facilitates interpretable machine learning, through multiple 

model comparison, possible understanding of variables input into a model, and 

validation of machine learning methods with traditional statistical models. The 

clinical experts we spoke with all expressed concerns regarding the “black-box” 
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nature of machine learning algorithms and the potential for spurious applications 

and conclusions. They expressed the need to be able to understand what input 

variables were most important to a model’s predictive output and the ability to 

compare and validate this with other commonly used statistical methods. When 

asked to consider trade-o s such as improved performance with “black-box” 

methods vs. worse performing methods with clearer interpretability, the domain 

experts suggested a preference for understandability initially and suggested that 

they would be more likely to use less interpretable methods only after evaluating 

more familiar, explicable methods.

2. Task 2: Ability to implement machine learning analyses without learning new 

coding languages, accessing new software, and collaborating on platforms 

without worrying about data security. The medical, data science, and statistical 

experts we interviewed expressed that software and pipelines designed for 

machine learning and statistical modeling require collaboration from multiple 

domains to be employed successfully and to meet data security standards. The 

collaborative nature of these analyses often means installing and running 

computational pipelines on multiple computers. Accessing software and 

pipelines in multiple environments often requires permission and assistance from 

one or multiple institutions and can often lead to challenges with accessibility, 

interoperability, and reusability. Even with correct versioning and identical data, 

differences in local hardware and operating systems can prevent interoperability 

and reproducibility.

2.3. Tool Design

The overall design goal for ML-MEDIC was to provide a point-and-click user-friendly tool 

that could facilitate the adoption of machine learning and data science in medical settings. 

We integrated visual and reactive computational approaches into the design to create an 

easy-to-use application that can engage domain experts, independent of their coding 

expertise. We chose R/Shiny as a framework to implement ML-MEDIC because of its open-

source nature, interactive capabilities, and ability to re-compute calculations as necessary 

based on user input [11].

We deployed ML-MEDIC in a cloud environment for accessibility and reproducibility. 

Cloud-based environments have recently been developed to improve data access, sharing, 

and collaboration, as well as provide means for managing computational load and challenges 

associated with storing and analyzing big data [12,13]. We chose to deploy ML-MEDIC in 

an Amazon Web Services cloud environment built by the American Heart Association 

(AHA) for Precision Cardiovascular Medicine. The Precision Medicine Platform, a secure, 

Health Insurance Portability and Accountability Act (HIPPA)- and Federal Risk and 

Authorization Management Program (FedRAMP)-certified cloud-based ecosystem, is an 

interactive environment for facilitating data sharing, collaboration, and power computing. 

The platform is comprised of common machine learning tools and biomedical datasets, 

which enables researchers to easily store, analyze, and build analysis pipelines 

collaboratively without worrying about data security through the use of workspaces. 
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Workspaces enable users to share data privately or with the public, perform analytics, and 

securely access and reuse analytic pipelines virtually [14].

Given input from clinical domain experts, we chose to focus on supervised machine learning 

methods for ML-MEDIC due to their ability to provide more clinically relevant results, and 

the domain experts identified noted supervised models as some of the models they most 

frequently rely on for their data analysis. However, the ML-MEDIC was designed in a 

modular manner to facilitate the addition of other models, including unsupervised ones. The 

machine learning algorithms were implemented using Caret, with parallelized options to 

optimize the computing time and improve reactivity [15–18].

We deployed ML-MEDIC in the Precision Medicine Platform to limit challenges associated 

with reusing or installing the tool on multiple computers, providing secure internet access to 

the tool, and allowing users to collaborate in real time (Figure 1). The AHA’s HIPPA- and 

FedRAMP-certified Precision Medicine Platform facilitates reusability and reproducibility 

by creating a virtual environment and a workspace that segregates the computation from the 

underlying hardware and host’s operating system [14,19]. The platform currently uses Chef 

to ensure the correct versioning and configurations are applied consistently at any scale [20]. 

The cloud-based ecosystem also includes a data marketplace for data contributors to 

securely share datasets and analytics with the public, even if data is codified in Data Use 

Agreements (DUAs). A variety of datasets are accessible through the platform, and users can 

share analytic pipelines, results, and code through traditional methods such as GitHub, as 

well as the through the platform itself [21–23].

To create an “easy-to-use” interface, we structured the menu design to reflect the flow of a 

typical predictive analysis to align the interface design with the steps one would expect to 

implement when building a predictive model [5,24]. We identified these steps to be: (1) 

loading data; (2) building one or multiple models for comparison, including the ability to 

build the same model on two different datasets; (3) setting optional training and control 

parameters; (4) testing and evaluation (Figures 2 and 3).

2.4. Visual Analytics and Computational Approach—Task 1

Interactive visualizations were implemented to facilitate model implementation and 

interpretation. Interactive tabular and graphical summaries displaying the loaded data’s 

variable count and total sample size, and each variable’s distribution and missingness were 

implemented to visually support the user in setting the outcome variable and variables input 

into the model (steps 1 and 2) Additional tabular and graphical summaries are displayed to 

show the distribution of each variable when a response variable has been set (Figure 4). 

Default values for model parameters, cross-validation metrics, and splitting the data into 

training and testing sets were added to facilitate model implementation (steps 2 and 3). 

Tabular and graphical displays for model performance and variable importance were added 

to provide insight into how each model made predictions (step 4) (Figures 4 and 5). 

Graphical and tabular displays are displayed side by side, with custom settings for the user. 

The layout and display were added to facilitate the comparison of multiple models (Figures 

3–5).
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Literature reviews combined with the input from domain experts drove the selection of the 

machine learning and statistical methods available in ML-MEDIC [25,26]. Random forest 

(RF), elastic net, support vector machines (including polynomial, linear, and radial kernels), 

and gradient boosted modeling (GBM) (boosted classification and regression) (Figure 3) 

were selected as optional machine learning methods. We confined the methods available to 

models that were suggested by domain experts to be easily received by clinicians, could 

provide variable importance measures, and could serve as an intuitive gateway to ML from 

traditional regression and statistical models. To be able to compare machine learning 

methods to traditional statistical models, Cox proportional hazards, linear, and logistic 

regression were included in the models available for selection.

A ROC curve with AUC and tables displaying performance metrics from both training and 

test datasets are displayed to assist users in comparing and evaluating models. Performance 

metrics include accuracy, AUC (c-statistic), and kappa for classification analyses, with 

options to include additional metrics such as precision, recall, F1, specificity, and 

multinomial log likelihood. For regression modelling, metrics such as mean absolute error, 

root mean square error, and others, are available for display (Figures 3 and 6). For all 

methods in which variable importance is available (RF, GBM, elastic net, CPH, regression), 

a user-specified view of feature importance is displayed, and the user can choose a tabular or 

interactive bar chart display (Figure 6). If Cox proportional hazards, linear, or logistic 

regression is selected as a model, a forest plot or tabular display of the results is included to 

compare with the variable importance of other models.

2.5. Visual Analytics and Computational Approach—Task 2

Dropdown menus, auto-completion, checkboxes, and buttons were used to create a reactive 

point-and-click interface consistent with the design and allow users to specify parameters 

and display preferences without coding expertise (Figures 2 and 3). Verification hints and 

error messages were implemented to reduce the error rate while enabling collaborators of all 

levels of coding expertise to iteratively adjust and implement machine learning. The ability 

to save a summary report of the data, model, and results was enabled to support publication 

or share pipelines with users without data access.

3. Results

3.1. Domain Expert Reviews

Domain expert reviews provide an impression of a visual interface’s usability and identify 

pitfalls without having to perform a full-fledged user study [27]. To initially evaluate and 

improve ML-MEDIC, we asked three clinical researchers to be involved in an initial review. 

After a short introduction, each clinician was paired with the tool developer to use the tool 

and explore machine learning applications in the context of their research. Five additional 

clinical researchers were given a demonstration of the tool using data and methods to 

evaluate its potential to facilitate machine learning adoption. All clinicians were asked to (1) 

give comments regarding their data, research context, and overall impression of the tool, and 

(2) rate the tool (“positively”, “neither-nor”, or “negatively”) with respect to ease of use, 

layout, and likeliness to use.

Stevens et al. Page 5

Appl Sci (Basel). Author manuscript; available in PMC 2021 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The overall opinion of the domain experts was positive regarding ease of use, layout, and 

likeliness to use, including comments such as “The general design is easy to follow, the 

tables and graphics are well done, and is useable without having to code” and “It runs very 

fast, and is something I could use when collaborating with colleagues who have limited 

machine learning experience or are just getting started.” Some experts explicitly appreciated 

the collaborative aspect and the compute power of ML-MEDIC implemented in the 

Precision Medicine Platform and liked not having to worry about installation or reusability. 

Many experts also appreciated the open-source nature of the code, with comments such as 

“this tool is easy enough to use and has the methods I need, to perform analyses without 

licensed tools like SAS or STATA” and “This is perfect for teaching machine learning”.

3.2. Case Study 1: Evaluate the Predictive Power of Various Machine Learning Methods to 
Predict Cardiovascular Risk

In 2013, the American College of Cardiology (ACC) and the American Heart Association 

(AHA) published a Cox proportional hazards model to predict patient cardiovascular (CV) 

risk in primary care. This model is one of the first cardiovascular risk models to include 

separate models based on both gender and race, comprised of a specific Cox proportional 

hazards equation for African American Men and African American women, Caucasian Men 

and Caucasian Women. Since the model’s release, the use of different statistical methods 

and cross-validation techniques have shown the potential to increase the accuracy of risk 

estimates.

Collaborating with a data scientist, biostatistician, and cardiologist, we used pair analytics 

methodology to conduct this study, in which a domain expert and a tool developer 

collaboratively analyzed the data [28]. The overall analysis session lasted three hours. Given 

research suggesting net elastic models with cross-validation showed improved accuracy for 

predicting cardiovascular disease risk, the cardiologist wanted to investigate the performance 

of a random forest model and GBM compared to elastic net, using 10-fold, repeated, cross-

validation. Using the tabular views of the data, each expert could easily see summary 

statistics of cases and controls (Figure 5). Setting each model and the cross-validation 

parameters, the input and response variables did not require any coding expertise. The total 

compute time to run all three models was less than ten minutes, which allowed all 

collaborators to reactively compute and recompute various models. Using the ROC curve, 

the clinician could easily compare each model’s predictive performance to the performance 

of the elastic net, and the accuracy table could be used to numerically evaluate the 

performance. The random forest model resulted in the highest performance of the three 

models (Figure 3).

3.3. Case Study 2: Determine Dietary Factors Important in Predicting Congestive Heart 
Failure (CHF), and Whether They are Significant for Predicting CHF Risk

We collaborated with a cardiologist with experience in clinical research and data science to 

conduct case study 2. His research was focused on analyzing cardiovascular disease (CVD) 

datasets to identify patterns in clinical and genetic data to treat and prevent congestive heart 

failure (CHF) and stroke. The cardiologist was interested in using ML-MEDIC to perform 

feature selection using data from the Framingham Heart Study (FHS) and focused on 
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phenotypes related to diet and well-known risk factors such as age, cholesterol, blood 

pressure, and body mass index [8]. Again, pair analytics methodology was used, and the 

analysis session lasted 2 hours. The security of the Precision Medicine Platform meant that 

the data could be uploaded and used with ML-MEDIC without having to install the code.

To begin the analysis, the cardiologist input all variables into a random forest model, elastic 

net model, and a gradient boosted model. The cardiologist used the model comparisons 

layout and variable importance to evaluate important phenotypes in predicting CHF (Figure 

5). He used the importance plots and his domain expertise to interactively select features and 

identified known risk factors, but also identified unknown factors such as red meat and 

consumption, which was significantly associated with a decreased risk in all models. The 

reactive nature of the tool enabled the cardiologist to save the importance output, rerun the 

models with a select set of features from the importance plots, and add a Cox proportional 

hazards model to validate the machine learning variable importance of red meat in the 

survival of CHF. First, he started with univariate regression and then multivariate regression, 

adding known risk factors from the AHA/ACC CVD risk model. He found that red meat was 

significant in univariate and multivariate survival models for CHF and that it was associated 

with a decreased risk of CHF [29].

4. Discussion

The key findings from the development and analysis of ML-MEDIC are as follows:

• User interaction-based tools that do not require clinicians and biomedical experts 

to learn coding will facilitate machine learning due to ease of use.

• Initially learning a subset of methods minimizes the learning-curve, especially 

when more explainable methods are used, could facilitate the adoption of 

machine learning and could aid in clinician’s understanding of when certain 

machine learning methods can be applied as well as introduce trade-o s between 

interpretability and performance.

• Ability to access tools in secure internet access settings can eliminate challenges 

relating to reusability and access.

• A tool such as ML-MEDIC may provide a great educational resource for 

introducing data science and machine learning to clinical researchers.

In summary, all clinicians positively expressed the likelihood of using ML-MEDIC or 

similar pipelines and tools developed through resources such as Shiny in R or Django in 

Python to facilitate machine learning due to ease of use. They confirmed that a limited set of 

models, with references for other resources, were effective for minimizing the learning curve 

and facilitating decisions when initially learning how to implement machine learning 

methods. All clinicians appreciated the layout, tabular views, and charts when analyzing and 

comparing models and suggested that the reactive nature of the tool aided in collaboration 

and exploration. Many clinicians with private datasets appreciated the security and 

accessibility the Precision Medicine Platform provided and the use of high performance 

computing to improve compute time. Given certain requests for the ability to install ML-
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MEDIC on a personal computer or institutional servers, the code is available on GitHub 

(https://github.com/lmrstevens3/Clinical_Data_in_Shiny.git) and the learn page of the 

Precision Medicine Platform. Initial feedback on ML-MEDIC’s functionality and usability 

from the domain experts involved in the case studies was positive. An expert from case study 

1 explained that “the ability to isolate meaningful features intuitively allows users to quickly 

prototype more advanced ML models using ML-MEDIC. As a result, clinicians can bring to 

bear the full power of predictive analytics on their datasets with only a lay understanding of 

data mining algorithms.” The cardiologist from case study 2 concluded that “ML-MEDIC 

easily demonstrated machine learning models could identify known risk factors associated 

with clinical outcomes, but also identify novel potential risk factors for better prediction of 

complex disease risk.” He specified that “easy-to-use and interactive tools would most likely 

be received well from both bioinformatics, statistical, and clinical audiences if they could 

confirm known findings while shortening the time for model building and evaluation”.

These preliminary results regarding the usability of ML-MEDIC and its ability to facilitate 

learning and implementing machine learning in clinical analyses suggest the generalizability 

of the tools to other clinical domains beyond cardiology. During this review, researchers in 

psychology and other clinical domains were consulted, and they affirmed that the tools could 

expand beyond cardiology disciplines. Furthermore, researchers suggested that this type of 

tool could be very beneficial in educational settings, such as for undergraduates first learning 

machine learning or clinicians and biomedical students learning data science. Currently, a 

variety of tools offer machine learning capabilities, yet the complexity and diverse 

functionality of these tools can come at the cost of overwhelming users with options and 

potentially hinder adoption of machine learning. Tools that favor ease of use over diverse 

functionality and application, such as ML-MEDIC, limit the barrier of entry and create a 

more gradual learning curve and can potentially act as a bridge to tools with fully 

customizable user-specified settings and complex functionality.

We limited ML-MEDIC’s machine learning methods to supervised learning due to the 

ability of supervised learning to generally provide more clinically relevant results and the 

input from the medical experts interviewed. The domain experts interviewed affirmed that 

comparing predictive supervised machine learning models to statistical models such as 

survival or logistic regression was most likely to facilitate the adoption of machine learning. 

Currently, ML-MEDIC does not support interactive data preparation for machine learning 

analyses. A potential next step would be to provide interactive methods for data preparation 

prior to performing machine learning. In addition to expanding the methods available, 

features further facilitating the interpretation and evaluation of models, such as adding a 

precision-recall curve to the current tabular display, or incorporating more model specific 

visualizations, such as graphical tree displays for decision-tree-based methods, can be 

explored [30]. The current evaluation of ML-MEDIC is limited to more of a qualitative 

assessment of the benefit of GUI-based, user-interactive tools by the clinical community to 

facilitate and improve the use of ML in clinical applications. Further testing and quantitative 

analysis is needed to assess resources such as ML-MEDIC and the potential for use in 

clinical decision support and various clinical research applications [31].
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5. Conclusions

The development and implementation of effective machine learning applications in medicine 

often require collaborative effort across multiple disciplines. Part of facilitating the adoption 

of machine learning in medicine is lowering barriers associated with sharing and reusing 

data and analyses as well as supporting the collaborative efforts needed [19,32]. Here, we 

have presented ML-MEDIC, a user-interactive tool implemented in a secure, cloud-based 

environment, in order to enable accessibility and reusability, and support secure data sharing. 

This allows non-technical users to access machine learning tools and perform analyses, 

while being able to build upon already developed pipelines without worrying about 

installation or having to code. As the era of big data and cloud computing continues to 

evolve in medicine, interactive computing for predictive analytics and big data analysis will 

specifically be needed to connect expertise across multiple domains, encourage 

collaborations, and aid in reproducibility.
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Figure 1. 
The Precision Medicine Platform. (A) The landing page of the workspace for the cloud-

based, High Performance Computing-enabled platform ML-MEDIC in the Precision 

Medicine Platform that supports multiple collaborators (red box) to work in a secure virtual 

environment. (B) ML-MEDIC deployed in the platform, enabling reproducibility and 

accessibility. ML-MEDIC, Machine Learning for Medical Exploration and Data-Inspired 

Care.
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Figure 2. 
(A) Overall layout of ML-MEDIC. Expandable and Collapsible panels combined with 

tabular and graphical displays of results allows users to customize outputs and necessary 

visualizations at any point in the ML workflow. (B) Analysis dropdown menu allows for 

users to define one or multiple analyses and customize data input, training protocols, 

evaluation metrics, and run multiple ML and statistics models at once.
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Figure 3. 
Overview of menus and options available for an analysis. Training protocols include 

bootstrap, cross-validation, and hold out methods. Accuracy metrics available for 

classification as well as numeric or multiclass models. Each available method contains a 

custom menu dropdown to define tuning parameters, with default values set based on 

standard practices and the data loaded for analysis. Each method or parameter available is 

defined in a modular manner to facilitate addition of other methods and features.
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Figure 4. 
Results from case study 1 using ML-MEDIC. Three machine learning models were 

conducted to assess their potential to predict cardiovascular disease (CVD) using factors in 

the American Heart Association (AHA)/American College of Cardiology (ACC) CVD risk 

score. For comparison, random forest (RF), support vector machine (SVM), and elastic net 

plots are shown. Data tables showing distributions split by the outcome CVD (response 

variable) are on the left. ROC curve of training data (75% 10-fold repeated CV) compared to 

ROC curve of testing data on the left.
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Figure 5. 
Results from case study 2. Tabular views of the data with expandable rows to obtain 

additional information relating to variables in the data and variables with a given importance 

from machine learning output (left). Variable importance tabular layout showing importance 

metrics scaling from 1 to 100 for all variables input into the model. Weekly red meat 

consumption is in the topmost important among other known variables.
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Figure 6. 
Results from case study 2. Collapsible views enable expansion and custom displays when 

comparing model outputs. The importance of red meat consumption in predicating heart 

failure is validated in Cox proportional hazards model, and random forest accuracy for the 

model with red meat and known heart failure risk factors are displayed.
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