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Abstract
This narrative review intends to provide the anesthesiologist with the basic knowledge of the Bayesian concepts and should 
be considered as a tutorial for anesthesiologists in the concept of Bayesian statistics. The Bayesian approach represents the 
mathematical formulation of the idea that we can update our initial belief about data with the evidence obtained from any 
kind of acquired data. It provides a theoretical framework and a statistical method to use pre-existing information within 
the context of new evidence. Several authors have described the Bayesian approach as capable of dealing with uncertainty 
in medical decision-making. This review describes the Bayes theorem and how it is used in clinical studies in anesthesia 
and critical care. It starts with a general introduction to the theorem and its related concepts of prior and posterior prob-
abilities. Second, there is an explanation of the basic concepts of the Bayesian statistical inference. Last, a summary of the 
applicability of some of the Bayesian statistics in current literature is provided, such as Bayesian analysis of clinical trials 
and PKPD modeling.
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Introduction

The Bayes theorem was developed over 250 years ago by 
Bayes [1], a Presbyterian minister. For a long era the “Bayes-
ian” approach to inferential statistics has been dominated by 
the “frequentist approach”. However, since the 1980s, there 
has been a renewed interest in the possibilities offered by 
the applications of this theorem in many fields of medical 
research, including anesthesiology [2–4]. In contrast to the 
more conventional frequentist approach which focuses on 
the frequency that an event occurs, the Bayesian approach 
is concerned with the uncertainty about data. As such it is 
a very useful technique for biostatistics and is commonly 
applied in anesthetic literature. This recent renaissance can 

challenge readers with complex literature, which can be dif-
ficult to understand for clinicians. This review introduces 
the reader to the basics of the Bayesian framework and how 
this can be encountered in scientific research in the field of 
anesthesia.

The frequentist and Bayesian approach

The process of gaining knowledge from experience follows 
a consistent pattern. The crucial step is to assess whether 
evidence from clinical trials, experiments, clinical data, etc. 
is strong enough to change an a priori belief about any phe-
nomenon or whether the a priori belief remains unchanged. 
The Bayesian approach provides a theoretical framework 
and a mathematical method to use pre-existing information 
within the context of new evidence.

The well-established frequentist statistical methods are 
based on the process of estimating the characteristics (or 
parameters) of a population, by the analysis of a randomly 
selected sample from this population. As such, with an 
increasing number of samples, the relative change of the 
estimation of parameters will decline. This approach has 
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been historically called “frequentist”, because the process 
of inference demands many repeated events.

Under the frequentist approach, the “true” parameters 
to be estimated in the population are fixed, but unknown. 
The estimation of such parameters can be done through a 
sampling of the population. This generates a distribution of 
estimates that quantifies how uncertain we are about them. 
A significant difference between two groups regarding a 
parameter implies that the difference in the distribution 
of the estimates is unlikely to come by chance alone. The 
result of statistical frequentist tests that compare quantities 
in two or more groups generates a normal distribution of 
the differences and calculates a P value (probability value), 
confronted with a pre-specified cutoff value. “The P value 
tells us how likely it would be to observe results at least as 
extreme as what we saw in our study if the null hypothesis 
is true” ( H0 , that there is no real difference between groups) 
[5]. Like in any diagnostic test, a positive result and the 
knowledge of its sensitivity or specificity does not provide 
any information regarding the probabilities of finding the 
disease. In the same way, the P value cannot give any state-
ment regarding the probability that the results of the trial are 
representative of the underlying reality [6]. These miscon-
ceptions are known as “base rate fallacy” [7]. The P value 
should be interpreted as the clinician interprets the result 
of a test in light of the pre-test probabilities [8]. It should 
be calibrated with respect to the probabilities that the test 
result does not represent a first or second type error (alpha 
and beta), not provided by the P value per se. Unfortunately, 
in the frequentist approach it is not possible to explicitly 
include this information in the statistical calculation.

The above-mentioned issues with some aspects of the 
frequentism have motivated researchers and statisticians 
to find other ways of analyzing their data and expressing 
the results. The Bayesian approach to statistical inference 

has some unique aspects that can be of use to address these 
issues. Knowing the probability of a hypothesis given the 
observed results (combined with information prior to the 
trial itself) could be more useful for the clinicians. This 
is the reason why there has been a substantial increase in 
the interest of the Bayesian techniques in data analysis in 
recent years [9]. However, several authors have expressed 
concerns regarding the application of Bayesian inference 
in the clinical decision-making process. Probabilistic rea-
soning involves mental processing of probabilities in a 
single event format (e.g., 1% probability). This type of 
modality may be less intuitive in the clinician’s mind than 
reasoning based on event rates (e.g., 1 event in 100) [10]. 
For that reason, in a setting of time-pressured medical 
decisions, the probabilistic reasoning can be challenged 
by heuristics and cognitive bias, leading to errors. Consid-
ering this, there is a growing need for probability reason-
ing tools and Bayesian inference principles, to help the 
clinicians in their correct application [11]. This review 
has been developed to introduce the anesthesiologist to 
the Bayesian framework, emphasizing its advantages and 
clarifying its limitations.

Thus, the limitation of the frequentist approach resides 
in its logical inconsistency with the clinical decision-
making process, if not correctly interpreted. On the other 
hand, the Bayesian approach logic is intrinsically consist-
ent with the inductive nature of the clinical reasoning, but 
it suffers from other limitations, addressed in the following 
paragraphs (e.g., the subjective choice of the priors). It is 
important to understand and correctly interpret both the 
frequentist and Bayesian approaches, each with advantages 
and drawbacks, as summarized in Table 1.

In the table, an overview of the differences, strengths, 
and limitations of both the frequentist and the Bayesian 
approach is given.

Table 1  Comparison of the frequentist and the Bayesian approach

Frequentist Bayesian

Answer given The probability of the observed data given an underlying 
(unknown) truth

The probability of the underlying truth given the observed 
data

Population parameter Fixed, but uknown Probability distribution of values (quantifying uncertainty)
Outcome measure The probability of observing results at least as extreme as 

the study data, assuming true the null hypothesis (P value)
The posterior probability of the hypothesis

Weaknesses Logical inconsistency with the clinical decision-making 
process

Subjectivity in the priors’ choice; non-traditional methods 
(statistical complexity); does not always work well dur-
ing rapid changes in PKPD modeling

Strengths No need for priors (objectivity); traditional, well-known 
methods

Consistency with the clinical (inductive) decision-making 
process

PKPD application Good estimates with large quantity of data (population) Adaptation of population data to the single individual 
through feedback systems
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The conditional and inverse probability

Two essential mathematical concepts are essential to 
understand the Bayesian theorem: the conditional and 
inverse probability. A conditional probability is the prob-
ability of an event A occurring given that another event 
B occurred. In mathematical notation, this is p(A|B). In a 
deck of 52 cards, the probability of getting a queen (event 
A) given that someone drew a black card (event B) is noted 
as p(Queen|black). There are 26 black cards, so the con-
ditional probability is equal to the number of times black 
cards with a queen divided by the total number of black 
cards in the deck: P(Queen|black) = 2/26. The probability 
of event A can therefore depend on whether event B was 
observed or not. The Bayes theorem is a formula (Eq. 1) 
that permits calculating the reverse of a conditional prob-
ability. In our example, it answers the reverse question, 
namely the probability of getting a black card given that 
someone drew a queen. Formula (2) describes our exam-
ple. The mathematical derivation of the formula can be 
found in the mathematical box below (Fig. 1).

Sometimes, in real-world cases, the P(B) term is quite 
difficult to obtain. The most common form of the Bayes 
theorem is, therefore, P(A|B) α P(B|A) * P(A), using P(B) 
as a constant of proportionality. This formula can be 
applied whenever a probability calculation is involved, like 
the probability of the observed evidence to be true given 
any a priori belief, or the inverse, using the formula above.

(1)P(A|B) =
P(B|A) ∗ P(A)

P(B)
,

(2)

p(black|Queen) =
P(Queen|black) ∗ P(black)

P(Queen)
=

2

26
∗

26

52

4

52

= 1∕2.

This could be further explained using a clinical exam-
ple, such as a laboratory blood result in the preoperative 
screening, most likely in asymptomatic patients. As such, 
tests could be false positive. Every test has a known value 
of sensitivity, which reflects the proportion of true positives 
out of the total of the positives, being false or true. It also 
has a value of specificity, which indicates the percentage of 
true negatives out of the sum of the negatives. Therefore, 
sensitivity reflects the probability of evidence (the positive 
test) in the light of a hypothesis (the patient has a disease). 
In mathematical terms, it is called conditional probability, 
and it is written as P (positive test|hypothesis). On the other 
hand, it is relevant to know the probability of a hypothesis 
considering the evidence. The critical factor that influences 
the interpretation of the results would be the prevalence of 
the disease in the patient population, not only the specific-
ity or the sensitivity of the test. If the patient was a young 
athlete undergoing surgical treatment for an inguinal hernia, 
the prevalence of an actual disease could be very low, which 
may differ from a frail, older patient.

The Bayes theorem explained

Hypothesis, prior and posterior probability

The Bayes theorem is expressed in formula (3). It derives by 
expressing the mathematical relationships of two elements 
(e.g., black and queen in the above-mentioned example). 
These two elements are the prior belief about a phenom-
enon (e.g., the hypothesis about the effects of a treatment) 
and the data from the evidence (e.g., a clinical trial). Note 
that P(data|belief) describes the knowledge about how 
the evidence would be possible if the evidence were true, 
also known as likelihood. Instead, P(belief) describes the 
prior and P(belief |data) represents the posterior (output) 
probability.

Fig. 1  The mathematical box
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The key concept of the Bayesian approach is calculating 
the posterior probability as a result of observed data and the 
prior beliefs about that data. This is proportional (α) to the 
likelihood of the data, given the hypothesis and the prior 
probability of the hypothesis. This concept can be illustrated 
by means of an example, such as the anticipation of difficult 
intubation.

The anesthesiologist often uses information that is 
acquired before (or prior) the procedure (e.g., preoperative 
tests such as a structured physical examination and Mallam-
pati score and medical history). [12, 13]. However, during 
intubation the clinician can decide to change his/her strategy 
based on new unfolding evidence [14]. Here, the hypoth-
esis is the probability of successfully intubating the patient, 
while the “data” are the pieces of evidence collected by the 
anesthesiologist before the start of the procedure that are rel-
evant to the accessibility of the patients airways. The Bayes 
theorem’s central significance in this context is to update the 
posterior chances of successful intubation by adding newly 
found information. This concept of ‘probabilistic’ thinking is 
the corner stone of the Bayes theorem, which is at the same 
time its strength and weakness. The strength of the prior 
depends on how much weight it is given (e.g., assessment 
by a junior resident might provide a weaker prior than when 
it is performed by a senior consultant). Those priors can 
therefore be expressed as probability distributions describ-
ing the uncertainty around a certain parameter (e.g., the 
treatment effect). The choice of the distribution of the prior 
probabilities is probably the most challenging and criticized 
component of any Bayesian analysis. The most often cited 
concern is the “subjectivity” that the choice of the priors 
introduces in the analysis. There are different approaches for 
dealing with the subjective nature of prior distributions, such 
as the use of uninformative or evidence-based priors. On 
the contrary, the absence for a prior choice has historically 
given the opportunity to the frequentist approach of being 
considered more objective.

Uninformative and evidence‑based prior

There can be circumstances in which there is only limited 
prior information. In our proposed example, this occurs 
before any physical examination has taken place and the 
patient presents in an emergency situation requiring imme-
diate endotracheal intubation. These priors are referred to 
as “uninformative”. It is typically handled by assigning the 
same probability for every relevant prior, with the risk of 
being overwhelmed by the new data. In broad terms, “flat” 
or “non-informative” priors are the ones that add little 
influence to the posterior distribution (e.g., the intubation 
without adequate preoperative evaluation), with the effect 

(3)P(belief |data)�P(data|belief)P(belief). of producing results mostly dependent on the data available 
(the likelihood distribution).

In contrast to “uninformative” priors, there is also the 
possibility that data are already available about the scientific 
question. Then an alternative method of choosing the priors 
can be considered by including in the analysis the data from 
relevant studies. This second strategy is called “evidence-
based prior”.

These different ways of considering the prior beliefs that 
the researchers could have regarding the outcome comprise 
the potential advantage of the Bayesian approach, but these 
can also be considered as its Achilles’ heel [15]. To address 
some issues in the interpretation of the prior probabilities, 
several guidelines are available. The reader can find use-
ful references in the review by Houle, “Bayesian Statistical 
Inference” in Anesthesiology [2]. The priors must be explic-
itly reported, justified, and subjected to a sensitivity analysis.

Iterative use of Bayes’ theorem

The elegance of the Bayesian theorem is that it can be 
applied in an iterative manner since the posterior probability 
from any calculation can serve as a prior for a subsequent 
calculation [16]. The result is a refined set of data from the 
entire experience. This can also be used to incorporate the 
probability distribution of the priors with the likelihood 
derived from the experiment to get a posterior distribution 
of the outcomes.

The ability to use Bayes theorem even when the starting 
point was affected by uncertainty is an important argument 
for the successful use in many situations.

The Bayes theorem and statistical inference

The clinician is often confronted with contradicting trial 
results which address questions about the probability of 
effectiveness of an alternative therapy, the strength of the 
available evidence and how this new information fits the 
results of previous trials [17]. These concerns are not that 
different from the considerations regarding the success of an 
intubation attempt and depend on the likeliness of a claim 
to be true given the trial results and the priors. The Bayes 
approach to statistical inference can provide a mathemati-
cal framework to answer these questions. Contrary to the 
frequentist approach in which parameters are fixed, but 
unknown, in the Bayesian framework the parameters are 
treated as random variables that are subject to a probabil-
ity distribution (Fig. 2). A probability distribution curve 
describes the probability of the variable to fall within a 
particular interval [18]. The most commonly encountered 
example is the Gaussian or “normal” distribution. Instead of 
calculating the probability of any possible outcome given an 
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underlying unknown truth, the Bayesian approach calculates 
the probability of the underlying truth given the observed 
data [19, 20]. The probability distribution of the priors is 
mathematically combined with the likelihood (the prob-
ability of the observed data given the parameters) to gener-
ate a posterior distribution of the outcomes. This posterior 
distribution (see below) is more informative for a clinician 
in terms of expected chances of the outcome than a cutoff 
level of statistical significance (i.e., the chances that a certain 
treatment exerts a pre-specified effect).

In the graph, the typical example of the probability distri-
bution for heights in the adult population (mean 176 cm, SD 
6 cm, N = 1,000,000 simulated data points, software R studio 
3.5.1) is depicted. It is a probability distribution because 
when any interval is chosen, the integral function (i.e., the 
area under the curve) calculates the probability that a ran-
dom value from the population lies within this interval. For 
example, the probability of a random individual to be taller 

than 190 cm is calculated as the AUC of the curve from 
x = 190 to x = infinite. The variance of the distribution is 
represented by the width of the distribution and is indicative 
of the certainty of the outcome considered (in this example, 
we could have a very short and wide peak, meaning scat-
tered, uncertain data).

Understanding a Bayesian paper 
in anesthesiology

We aim to illustrate the difference between the “Bayesian” 
and “frequentist” approach on the basis of a recent paper 
published in British Medical Journal Open [21]. This is a 
post hoc Bayesian analysis of the OPTIMISE study, which 
is designed as a pragmatic, multicenter, observer blinded, 
randomized controlled trial involving 734 high-risk patients 
undergoing major gastrointestinal surgery in 17 acute care 

Fig. 2  The probability distribu-
tion
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hospitals in the UK [22]. Patients were randomly assigned 
(1:1) to a cardiac output-based goal-directed hemodynamic 
therapy algorithm for intravenous fluid and inotropic drug 
administration (intervention; n = 368) or to standard care 
(n = 366). The study duration was the 6 h following sur-
gery. The primary outcome was a composite of predefined 
30-day moderate or major complications and mortality. The 
OPTIMISE study “was not powered to detect a statistically 
significant difference between the treatment arms for the 
observed side effect” (relative risk = 0.84, 95% CI 0.7–1.01; 
P value = 0.07). As such, there was no statistically signifi-
cant difference between the two groups in the standard “fre-
quentist” analysis. The re-analysis by Ryan et al. was based 
on the idea of an alternative, Bayesian-based tool for clini-
cians in interpreting the trial data.

In the case of the work by Ryan and coworkers, the two 
conventional methods for the prior choice explained above 
were used. The first one was to consider a “flat prior”, which 
implies an equal probability for every value of the relative 
risks. The second one was the “evidence-based prior”, 
including data from relevant studies from a meta-analysis 
[22, 23].

In the Ryan et al. analysis, the posterior mean relative risk 
(RR), resulting from the prior distribution that is updated 
with the trial data under the flat prior, is 0.85 (95% high 
density interval (HDI) 0.70–1.00). As this paper suffers 
from weaker priors, the strength of the data from the trial 
would give similar results to the original frequentist analy-
sis. Using the evidence-based priors instead, the posterior 
mean RR is 0.81 (95% HDI 0.67–0.95). Making use of the 
posterior probability distribution of RR obtained from the 
Bayesian analysis, the first conclusion the authors drew is 
that the probability that the intervention group has a lower 
incidence of 30-day moderate or major complications and 
mortality is 96.9% and 99.5%, assuming a flat and evidence-
based prior, respectively. It is now clear how different the 
interpretation of the trial data could be through a Bayesian 
analysis. Through the conventional approach, the difference 
between the groups is not sufficient to generate an answer 
that is useful to the clinicians. Instead of an absence of evi-
dence represented by a non-significant P value (especially in 
the case of an underpowered trial), the authors claim instead 
that the probability of an effect on the outcomes is quite high 
(more than 90%). This approach could be directly informa-
tive for treatment decisions bedside, more than a cutoff level 
of statistical significance. The advantage of the Bayesian 
approach is that if the priors and posteriors are correctly 
reported, there is room for open discussions on specific ele-
ments in the analysis.

Along with this Bayesian analysis, the authors introduce 
the concept of region of practical equivalence (ROPE). 
This tool is easily understandable for the clinicians. It rep-
resents the probability that the effects lay outside a specific 

interval of clinically insignificant results. With the ROPE, 
the authors define a region of values on the probability dis-
tribution curve of the RR that are practically equivalent to 
the null value [24]. In this particular study, the ROPE of the 
effects were pre-specified to be 0.9–1.1 regarding the RR. 
The probability of the two arms to be clinically equivalent 
(i.e., within the ROPE) regarding the RR was 24% under the 
flat priors and 9% under the evidence-based priors, respec-
tively (i.e., 76% and 91% probability of a clinically relevant 
difference).

The Bayes theorem in anesthetic 
pharmacology

Besides the analysis of new insights from literature, the 
Bayes theorem is also frequently applied in the field of 
anesthetic pharmacology, especially in pharmacokinetic and 
dynamic (PKPD) research. In this particular case, PKPD 
models are commonly used to predict a plasma or effect-
site concentration in an individual. These models incorpo-
rate specific pharmacologic parameters (i.e., clearances and 
distribution rates) that are predicted based on population 
characteristics and covariates (i.e., specific patient charac-
teristics, such as age and gender). As mentioned earlier, the 
probability is expressed in a probability distribution curve 
that commonly behaves as a Gaussian curve, which has a 
mean and a standard deviation. It is unlikely that the real 
parameter estimate exactly matches the mean value. Imple-
menting measurements can shift the prediction toward a 
more realistic value given the observations, using the Bayes-
ian concept and therefore intent to improve the model’s pre-
dictive ability.

Maitre et al. [25] and Motamed et al. [26] showed that 
Bayesian forecasting improved the predictive performance 
of alfentanil and rocuronium PK–PD models, respectively. 
More recently, van den Berg et al. used online Bayesian 
adaptation of the model to improve the PK accuracy of the 
Eleveld model for propofol during total intravenous anes-
thesia (TIVA) using target-controlled infusion (TCI) with 
propofol [27, 28]. This study showed an improvement in 
bias, but not precision, probably due to the application of an 
already reasonably accurate population-based model. Colin 
and coworkers applied a Bayesian algorithm to improve this 
PK model based on exhaled propofol concentrations [29]. 
This contributes to the concept of posology as introduced 
by Kuck and Egan, which is the study of dose optimization 
[30]. Although these developments to improve PK are of 
limited clinical relevance in the field of anesthesia, they can 
be used in pharmacological fields in which dose optimiza-
tion is crucial, e.g., when the therapeutic range is small, such 
as antibiotics or cytostatic agents.
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Despite the availability of accurate PK models to provide 
accurate target-controlled infusions, PK parameters are not 
generally the relevant target for clinicians. It is not the plasma 
concentration that a clinician is aiming for, rather they titrate 
drug concentration to achieve pharmacodynamic end points. 
As such, it appears to be relevant to focus with drug advisory 
systems on PD end points. Feedback systems that use meas-
urements as input parameters, such as (semi) closed loop sys-
tems, could be helpful in optimizing drug titration [31–39]. In 
this situation, the population-based response model provides 
the prior distribution of the model parameter values. The pos-
terior estimated model parameter values are adjusted by the 
algorithm as observations are made. These reflect the patient’s 
parameters, expressed as a posterior distribution. The infusion 
of propofol through a TCI pump is then modified according 
to the information provided by the controller, the response of 
the patient is further observed, and the model adjusted again. 
This system has been demonstrated accurate in different clini-
cal settings: gynecological surgery [34, 36], head and neck 
surgery [36] and also for intensive care sedation [35]. Further 
clinical studies are needed to evaluate the clinical impact of 
such a technology on the optimization of propofol administra-
tion regarding the standard of care.

Accurate drug administration models applied in TCI can be 
very helpful for the reproducibility of accurate drug titration. 
Adaptation of a population-based E-max model of the relation-
ship between predicted plasma concentration and effect (e.g., 
electro-encephalographic monitoring) toward the individual, 
most likely with the application of a Bayesian algorithm (using 
the population-based model as a prior and real-time measure-
ments as data), might provide useful drug dosing advices. This 
requires further study.

Bayesian techniques rely on its users’ ability to clearly iden-
tify the mechanisms and processes to be able to assign a prior 
belief to them. This is sometimes difficult in medical sciences 
due to the gap between simplistic mathematical models and 
immensely complex biological processes. For example, the 
compartmental models widely used in pharmacokinetic are 
often obviously “wrong” for modeling the complex dynamic 
changes that can occur in the first seconds or minutes after 
drug administration. However, through Bayesian techniques, 
also the first minutes of administration can be predicted in 
a compartmental pharmacokinetic model [40]. For slower 
physiologic changes, for example during a “maintenance 
phase” these proposed mechanism are typically simpler and it 
becomes easier to assign a prior belief for subsequent applica-
tion of Bayesian techniques.

Conclusion

This review aimed to describe the application of the 
Bayesian theorem in several fields of anesthetic clinical 
research. The posterior distribution of the probabilities 
of the outcome makes the Bayesian approach very useful 
for evaluation and quantification of uncertainty [41]. Even 
in the relative absence of data, models can be structured 
starting with priors, and these can be iteratively updated 
through experimental data obtained. This behavior, united 
with its peculiar characteristic of using probability dis-
tributions of the prior and posteriors, makes it ideal to 
represent uncertain quantities in a model and how they 
relate to the available data [42].
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