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ABSTRACT Microbe-microbe interactions can strongly influence growth and biofilm
formation kinetics. For Pseudomonas aeruginosa and Candida albicans, which are found
together in diverse clinical sites, including urinary and intravenous catheters and the
lungs of individuals with cystic fibrosis (CF), we compared the kinetics of biofilm forma-
tion by each species in dual-species and single-species biofilms. We engineered fluores-
cent protein constructs for P. aeruginosa (producing mKO-κ) and C. albicans (producing
mKate2) that did not alter growth and enabled single-cell resolution imaging by live-
sample microscopy. Using these strains in an optically clear derivative of synthetic CF
sputum medium, we found that both P. aeruginosa and C. albicans displayed increased
biovolume accumulation—by three- and sixfold, respectively—in dual-species biofilms
relative to single-species biofilms. This result was specific to the biofilm environment, as
enhanced growth was not observed in planktonic cocultures. Stimulation of C. albicans
biofilm formation occurred regardless of whether P. aeruginosa was added at the time
of fungal inoculation or 24 h after the initiation of biofilm development. P. aeruginosa
biofilm increases in cocultures did not require the Pel extracellular polysaccharide, phe-
nazines, and siderophores known to influence C. albicans. P. aeruginosa mutants lacking
Anr, LasR, and BapA were not significantly stimulated by C. albicans, but they still pro-
moted a significant enhancement of biofilm development of the fungus, suggesting a
fungal response to the presence of bacteria. Last, we showed that a set of P. aeruginosa
clinical isolates also prompted an increase of biovolume by C. albicans in coculture.

IMPORTANCE There is an abundance of work on both P. aeruginosa and C. albicans in
isolation, and quite some work as well on the way these two microbes interact. These
studies do not, however, consider biofilm environments under flow, and our results
here show that the expected outcome of interaction between these two pathogens
can actually be reversed under flow, from pure antagonism to an increase in biomass
on the part of both. Our work also highlights the importance of cellular-scale spatial
structure in biofilms for understanding multispecies population dynamics.
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Microbial biofilm growth, even in monospecies contexts, involves the interplay of
many biological and physical factors that are dynamic in space and time (1–3). In

many natural environments, including numerous chronic infections, biofilms are multi-
species mixtures whose collective properties and dynamics may be difficult to predict
from those of each constituent’s monospecies biofilm growth. In the context of infec-
tion, the extent and kind of interactions among different biofilm-dwelling microbes
also govern clinically relevant factors, such as drug resistance and virulence (4). For
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example, multispecies biofilm growth has been implicated in conjunctivitis (5), tooth decay
(6), prosthesis and wound infections (7, 8), and respiratory diseases (9, 10). Clinical microbi-
ologists are just starting to consider the multispecies nature of pathogenic biofilms and its
implications for prevention and treatment (11).

Exemplars of chronic, multispecies biofilm infections are those that occur consis-
tently in the lungs of patients with cystic fibrosis (CF), a genetic disorder in humans as
a result of mutations in the cystic fibrosis transmembrane conductance regulator.
Disruption of this protein’s function results in pathologies throughout the body includ-
ing the accumulation of highly viscous mucus in the lungs, which hinders normal
mucociliary clearance. As a result, bacterial and fungal pathogens that would otherwise
be easily removed from healthy lungs instead accumulate and lead to chronic infec-
tions (12). Chronic CF lung infections are caused by diverse and metabolically flexible
populations and consortia, and they are extremely recalcitrant to antibiotic and phago-
cytic clearance (13). While the ecology of the infecting species shapes the community
and potentially has a profound influence on disease severity in the CF lung, it remains
poorly understood (9). Given that the spatial interactions of pathogens can strongly
affect disease outcome (14), we aimed to create an experimental model in vitro to
investigate the biofilm formation kinetics of one or more species in coculture. Studies
of multispecies biofilm formation and biofilm dynamics in general benefit tremen-
dously from high-resolution imaging, which allows for studying the cell-length-scale
behaviors and higher-order structures that contribute to the community’s cumulative
growth, organization, and function. However, imaging live biofilms in situ is often diffi-
cult, if not impossible, in many natural contexts. A helpful strategy to mitigate this
problem is to reconstitute key features of the in situ environment using an in vitro sys-
tem that is more amenable to imaging.

Here, we chose to study Pseudomonas aeruginosa and Candida albicans as represen-
tatives of potentially interacting species in a polymicrobial CF infection, as both these
species are commonly isolated from CF lung infections and believed to be important
copathogens in patients (15). They are also thought to cooccur in other infection envi-
ronments, including trauma wounds and surrounding urinary catheters (16). C. albicans
is a polymorphic and opportunistic pathogen with the ability to form invasive hyphal
filaments and drug-resistant biofilms (17). P. aeruginosa is another opportunistic patho-
gen with diverse virulence mechanisms, to which biofilm formation contributes
directly and indirectly (18). P. aeruginosa-C. albicans interactions are well studied in liq-
uid and agar colony models. Among the primary findings from this literature, P. aerugi-
nosa has been shown to preferentially attach to and form biofilms on C. albicans
hyphae in static culture, eventually killing them (19), but P. aeruginosa also inhibits the
yeast-to-hyphal switch of C. albicans in liquid and agar colony cultures, enhancing C.
albicans survival (20). Prior work has intimated a feedback loop whereby C. albicans
produces ethanol, which increases biofilm formation, inhibits swarming motility, and
enhances the production of antifungal phenazines on the part of P. aeruginosa (21, 22).
These phenotypes in turn cause downregulation of the central pathway that induces
hyphal growth and inhibit mitochondrial activity, stimulating further ethanol produc-
tion by C. albicans (23). On the other hand, some in vivo experiments using a zebrafish
model have indicated mutually enhanced virulence of the two species, suggesting that
environmental shifts may have strong impacts on the properties of cocultures of these
microbes (24). As local concentrations of metabolic products involved in interspecies
interactions are determined by the relative and absolute abundances, it is critical to
understand the dynamics of biofilm formation for each species in mixed culture.

Using engineered strains with novel fluorescent protein constructs and microfluidic
culture with a modified synthetic sputum medium allowing for high-resolution imag-
ing of C. albicans and P. aeruginosa, we show that their biofilm architecture, rates of
biovolume accumulation, and total biovolume is higher for each species in coculture
versus monococulture. Growth stimulation for either species was not observed in
planktonic coculture conditions. This result is robust to different clinical strains of

Kasetty et al.

May/June 2021 Volume 6 Issue 3 e00416-21 msphere.asm.org 2

https://msphere.asm.org


P. aeruginosa and a variety of deletion mutants lacking factors known to participate in
P. aeruginosa-C. albicans interactions.

RESULTS
Biofilm profiles in mono- and dual-species culture. We aimed to characterize the

architecture of monospecies and dual-species biofilms of P. aeruginosa and C. albicans
under flow in a medium that represents the chemical composition of CF sputum.
Synthetic cystic fibrosis medium (SCFM2), developed and refined by the Whiteley
group (25, 26), is a field standard for this purpose, but this medium is not optically clear
due to the presence of reconstituted mucins. To generate an optically clear medium
for imaging—and supported by data showing that P. aeruginosa does not degrade
mucins itself (27)—we made a modified version of SCFM in which the major mucin gly-
cans were substituted for mucin; we term this modified medium artificial sputum me-
dium for imaging, or ASMi (see Materials and Methods). Each species’ growth profile
was the same SCFM2 as it was in ASMi (see Fig. S1 in the supplemental material).

P. aeruginosa and C. albicans were modified by allelic exchange to contain a chromo-
somal construct for constitutive expression of tandem, codon-optimized copies of mKO-κ
(P. aeruginosa) or a single copy of mKate2 (C. albicans) (see Materials and Methods). mKO-κ
or mKate2 was selected for these studies for their brightness and because they could be
easily distinguished by fluorescence microscopy. The fluorescent protein expression con-
structs did not alter the growth rate of either species (Fig. S2).

To investigate mono- and dual-culture biofilm growth under flow of ASMi, we ino-
culated derivatives of P. aeruginosa strain PA14 and C. albicans strains CAI4 either alone
or together in microfluidic devices (see Materials and Methods). Monococulture P. aeru-
ginosa chambers contained small biofilms with compact microcolonies on the order of
10mm in height (Fig. 1A). Monococulture biofilms of C. albicans contained scattered
clusters of groups of elongated yeast, many pseudohyphae, and some true hyphae
that spanned the height of the chamber (Fig. 1B). By visual inspection of confocal
images, it was quickly clear that the architecture and total accumulation of both spe-
cies were quite different in dual-inoculated conditions compared to the monococul-
ture biofilms. In coculture, C. albicans had largely formed true hyphae (Fig. 1C).
Quantification of C. albicans biovolume found a higher biovolume density near the
base of the biofilm in coculture conditions (Fig. 1D). In coculture, P. aeruginosa biofilms
localized to the hyphae of the highly filamentous C. albicans biofilms (Fig. 1C). The bio-
volume accumulation of P. aeruginosa in coculture appeared greater, particularly in the
regions also colonized by C. albicans (0 to 12mm from the glass substratum) (Fig. 1D).

Quantitative analysis of image stacks from replicate biofilms collected from inde-
pendent experiments found that the total biovolume of both species increased sub-
stantially in coculture relative to monococulture (Fig. 2A and B). The increase in biofilm
biovolume in coculture was significant by 24 h for C. albicans (Fig. 2A) and for P. aerugi-
nosa (Fig. 2B). In order to determine whether the increase in biovolume required the
presence of P. aeruginosa at the time of initial colonization, we added P. aeruginosa or
a medium-only control to C. albicans 24-h-old biofilms. In these experiments, the P. aer-
uginosa cells were spiked into the chambers for 1 h, followed by a return to sterile
ASMi medium. In control experiments, the same spiking procedure was performed but
with sterile ASMi medium. While C. albicans biofilm accumulation followed its normal
monococulture profile in the control condition, C. albicans biofilm development signifi-
cantly increased over the subsequent 12 h after the introduction of P. aeruginosa
(Fig. 2C). To determine whether any mechanical disturbance was sufficient to induce
the increase in C. albicans biomass accumulation, we introduced 1-mm-diameter inert
fluorescent beads to the chambers containing C. albicans, but we saw no change in
biofilm architecture or biomass (Fig. S3).

The enhancement of C. albicans biofilm volume by the presence of P. aeruginosa was
not likely due to an overall improvement in growth when both species are present. In com-
parison experiments in which both organisms were cultivated planktonically in shaking
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liquid ASMi medium, the reverse pattern was seen for C. albicans: its population density was
substantially lower in the presence of P. aeruginosa than in its absence (Fig. 2D), recapitulat-
ing previously established antagonistic C. albicans-P. aeruginosa interaction in liquid growth
conditions (19, 28, 29). The population density of P. aeruginosa did not change in the
presence of C. albicans in liquid culture (Fig. 2E). We infer from this outcome that the
increase in accumulation of both species in microfluidic coculture is specific to the biofilm
environment.

Because increased rate of biovolume increase can result from higher retention of
cells in the chambers due to decreases in active dispersal or disruption by fluid flow,
we quantified the cells in the effluent collected from the outlet of the microfluidic
chambers (see Materials and Methods). Significantly fewer C. albicans cells were found
in the effluent from dual-species biofilms (Fig. 2F). P. aeruginosa cell concentration in
effluent stayed the same in absolute terms (Fig. 2F) but was lower upon normalization
to the amount of biovolume in the biofilm chamber (Fig. S4).

Exploration of P. aeruginosa genes potentially involved in augmenting C.
albicans biofilms in coculture. We repeated the mono- and coculture experiments
above with mutants of P. aeruginosa that have been implicated in altered biofilm mor-
phology or interspecies interaction in prior work. Analyses included mutants defective
in the Pel exopolysaccharide production (DpelA [30, 31] and DwspR [32]), metabolic

FIG 1 Representative images of mono- and dual-species biofilms of P. aeruginosa and C. albicans. Three-dimensional (3-D)
renderings of 24-h-old monospecies biofilms of P. aeruginosa (A) and C. albicans (B). Bottom panels show side views of the same
images as those above them. (C) P. aeruginosa-C. albicans dual-species biofilm at 24 h. Split channel of C. albicans biofilm (i) and
P. aeruginosa biofilm (ii) from the P. aeruginosa-C. albicans dual-species biofilm. (D) Heat maps of C. albicans and P. aeruginosa
biovolume as a function of height from the base substratum in mono- and dual-species biofilms from panels A to C.
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regulators and products important for biofilm formation (Danr [33] and Dphz [34]),
extracellular adhesins (DbapA [35], DpilY1 [36]), quorum sensing (DlasR [37]), and side-
rophore production (DpvdApchE [38]). C. albicans increased its accumulation by an
order of magnitude or higher in biofilms with any of these mutants, maintaining the
trend seen with wild-type P. aeruginosa PA14 (Fig. 3A and Fig. S5). In contrast, not all P.
aeruginosamutants were equal in their capacity for biofilm formation or for stimulation
of biofilm biovolume in the presence of C. albicans (Fig. 3B). The DpelA and DwspR
mutants were not defective in biofilm biovolume compared to the wild type, which is
consistent with the low detection of Pel extracellular matrix carbohydrate (Fig. S6).
Thus, the increased biovolume of P. aeruginosa was not due to increased P. aeruginosa
matrix production. Previously characterized mutants defective in secreted phenazine
toxins and pyochelin and pyoverdine siderophores also caused the stimulation of C.
albicans biofilm accumulation. P. aeruginosa mutants with lower levels of monospecies
biofilm (Danr, DlasR, DbapA, and DpilY1) were less stimulated by C. albicans at the 24-h
time point. It is interesting to note that the amount of P. aeruginosa biofilm biomass
present did not correlate with the degree of biomass increase in C. albicans (Fig. 3C);
that is, any addition of P. aeruginosa, regardless of its native biofilm-producing
capacity, was sufficient to produce a similar increase in accumulation of C. albicans.

P. aeruginosa-C. albicans interaction is robust to CF isolate variation. After doc-
umenting that wild-type PA14 could induce an increase in biofilm biomass accumula-
tion of C. albicans, we were curious to see whether this effect was consistent across
recent CF clinical isolates of P. aeruginosa as well. To explore this question, we
obtained P. aeruginosa clinical isolates from a patient who was infected with both P.
aeruginosa and C. albicans, and we grew them in mono- or coculture with C. albicans in
our microfluidic model under flow of ASMi. We found that C. albicans biofilm increased

FIG 2 P. aeruginosa and C. albicans in mono- and dual-species culture. (A) Biovolume of C. albicans
in mono- and dual-species biofilms (n= 24). (B) Biovolume of P. aeruginosa in mono- and dual-species
biofilms (n= 24). (C) Biovolume of C. albicans biofilms initially grown in monococulture, with the
addition of P. aeruginosa at the time point indicated by the vertical arrow. For the control, sterile
medium was added in place of P. aeruginosa (n= 18). (D) Fluorescence counts of C. albicans in mono-
and dual-species shaking liquid cultures (n= 10). (E) Fluorescence counts of P. aeruginosa (in arbitrary
units [A.U.]) in mono- and dual-species shaking liquid cultures (n= 10). (F) Dispersing cells of P.
aeruginosa and C. albicans in mono- and dual-species biofilms (n= 11). Error bars in panels A to E
denote standard deviations; error bars in panel F denote standard errors. *, P, 0.05 by Wilcoxon
signed-rank test with Bonferroni correction; ns, not significant.
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significantly in coculture with all clinical isolates, consistent with the results reported
above for wild-type PA14 (Fig. 4A). Likewise, for all but one isolate, the biofilm growth
of P. aeruginosa was greater in coculture with C. albicans than it was in monococulture
(Fig. 4B).

Though all clinical P. aeruginosa isolates prompted an increase in C. albicans biofilm
accumulation, there was some variance in the degree to which this was the case
(Fig. 4A). This variation made us wonder whether the spatial association between C.
albicans and different clinical isolates of P. aeruginosa might differ as well. To assess
this possibility, we grew the different clinical isolates together with C. albicans,
acquired high-resolution images of coculture biofilms, and quantified the spatial cooc-
currence of the two species via their density correlation (39). When averaged across all
image replicates, the spatial correlations between C. albicans and clinical isolates of P.
aeruginosa generally were not different from that between C. albicans and wild-type
PA14 (Fig. 4C). After visualizing the density correlation measurement at high spatial re-
solution, on the other hand (Fig. 4D), it was clear that for some clinical P. aeruginosa
isolates, the spatial association with C. albicans was homogenous, while for others it
was patchy. Previous work has suggested that heterogeneity within a strain popula-
tion—here, with respect to spatial cooccurrence with P. aeruginosa and C. albicans—
can impact survival in variable environmental conditions (40–42). The significance of
this result for the infection ecology of these two species is not yet clear, but it is nota-
ble that among isolates of P. aeruginosa from the same patient, the architecture of joint
biofilms with C. albicans can differ substantially at the micrometer scale (Fig. 4D) even
when they appear to be the same or similar when averaged on a larger spatial scale
(Fig. 4C).

DISCUSSION

Interest in multispecies biofilms including microbes from different domains of life
has been intensifying in recent years, as it is increasingly appreciated that many micro-
bial communities—both inside and outside host organisms—are polymicrobial (43).
One of the most highly referenced examples of polymicrobial infections are those
within the lungs of patients with CF, and two of the common members of these com-
munities are the opportunistic pathogens P. aeruginosa and C. albicans (12). Here, we
sought to compare the kinetics of biovolume accumulation in mono- and dual-species

FIG 3 Deletion mutant assays and medium influent assays to explore the causes of mutual enhancement between P. aeruginosa and C. albicans in
biofilms. (A) Biovolume of C. albicans grown in dual-species biofilms with P. aeruginosa deletion mutants at 24 h (see main text for mutant descriptions,
n=9 to 24). (B) Biovolumes of mono- and dual-species P. aeruginosa biofilms at 24 h (n= 9 to 24). All error bars indicated are standard errors. (C) The mean
values of C. albicans biovolume are plotted against the corresponding mean value of wild-type (WT) P. aeruginosa PA14 and mutant biovolume from their
respective dual-species biofilms. There is no significant correlation between the two (linear correlation analysis; P = 0.391; r2 = 0.107). *, P , 0.05 by
Wilcoxon signed-rank test with Bonferroni correction.
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FIG 4 Biomass accumulation, density correlation analysis, and visualization of C. albicans in coculture with different CF clinical isolates of P. aeruginosa. (A)
Biovolume of C. albicans grown as dual-species biofilms with P. aeruginosa clinical isolates along with wild-type (WT) PA14 for comparison at 24 h (n=18). (B)
Biovolumes of P. aeruginosa clinical isolates in monococulture and dual culture with C. albicans at 24 h (n=18). (C) Global density correlation measurements of
WT P. aeruginosa and clinical isolates and C. albicans biofilms (n=6). *, P , 0.05. (D) Visualization of dual-species biofilms of P. aeruginosa and C. albicans. From
top to bottom, spatially resolved density correlation, 3-D renderings of dual-species biofilms, C. albicans channel split, and P. aeruginosa channel split.
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biofilms of these two organisms using a new model of biofilm growth under flow of
optically clear artificial sputum medium. We demonstrated a marked increase of bio-
film biomass accumulation as well as a decrease in cells in biofilm effluent in dual-spe-
cies culture relative to monococulture. These results were robust to a variety of mutant
and clinical strain backgrounds of P. aeruginosa, and they contrast with the findings of
some previous studies of these two organisms in static liquid or agar colony culture
(44, 45). We identify an important element driving the increase in biomass accumula-
tion as fluid flow in the dual-species biofilm milieu, which is a key novelty of this exper-
imental approach for the study of P. aeruginosa-C. albicans interactions.

Extensive prior work has shown that P. aeruginosa and C. albicans interact with
each other through a complex web of secreted factors, including phenazines, sidero-
phores, ethanol, and quorum-sensing autoinducers, which altogether alter environ-
mental iron availability, pH, and oxygen tension. Under static culture conditions (i.e.,
liquid batch culture or agar colonies), the net result of these interactions is usually an-
tagonism of P. aeruginosa against C. albicans. It is important to note as well that
secreted factors from each species have different and sometimes opposite effects on
each other’s propensity to produce biofilms or to remain in a dispersive, planktonic
state (28, 46). As noted above, when flow—known to impact microbial physiology and
surface interaction—is introduced into the two-species system, we see increased fila-
mentation of C. albicans and increased biofilm biomass accumulation by both species,
accompanied by a decrease in cells exiting the chamber.

While at first glance this may give the impression of mutual benefit, it is also possi-
ble that the two species are simply competing for access to space and resources by
upregulating adhesion factors (47–49). But why is P. aeruginosa no longer able to
directly antagonize and kill C. albicans, as has been shown previously in static culture?
We speculate that introduction of flow fundamentally changes the secreted solute
environment created by the two organisms, perhaps with some secreted factors more
strongly retained in the biofilm matrix than others, and that this change in solute envi-
ronment relative to static culture shifts the ecological pattern of biomass accumulation
to one in which both species are augmented. It is also possible that over time the dual-
species biofilms become densely packed enough to block flow within some regions,
allowing secreted products and variation in iron/oxygen availability to accumulate in a
patchy manner that contributes to induction of biofilm production by both species.
The precise spatial patterns of exoproduct accumulation in relation to cells and the
highly complex matrix that Candida secretes is an important area for future work
(50–52).

Our deletion mutant analysis included all the major classes of behavior in P. aerugi-
nosa currently known to mediate solute-based interactions with C. albicans, but in all
cases, the presence of P. aeruginosa caused qualitatively the same increase in C. albi-
cans biofilm. This suggests that there may be other factors in addition to flow-medi-
ated changes in solute environment contributing to our results. For example, the intro-
duction of shear stress under flow is an entirely new environmental stimulus relative to
static culture, and one which is known via extensive work to be crucial to microbial
ecology and evolution (53–58). The flow regime can dramatically alter the morphology
and resilience of bacterial biofilms down to their cellular resolution architecture (59,
60), with important implications for pathogenesis in the case of infections (61).
Adaptation to the challenges of flow at submillimeter spatial scales has influenced the
evolution of bacterial surface motility (2), optimal growth rate in porous media (62),
surface colonization mechanisms (63–65), extracellular matrix secretion (66, 67), bacte-
rial cell shape (64, 68–70), planktonic aggregate formation (71), and biofilm community
assembly and function (62, 72–75), among many other examples.

The range of spatial structures of P. aeruginosa clinical isolates that we observed in
dual-species biofilms with C. albicans suggests the possibility of between-strain var-
iance in spatial occupation strategy within the CF lung. Since the clinical isolates come
from a single CF patient, this variation in biofilm morphology could be the outcome of
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selection in different spatial locations in the lung, which may have variable C. albicans
abundance or exposure to antibiotics, toxins, mutagens, nutrient availability, or host
immune attack (40, 41). Although the increase in biovolume of both species in dual P.
aeruginosa-C. albicans biofilms varied to an extent, increase of C. albicans accumulation
was consistent across P. aeruginosa isolates. This result prompts us to speculate that
the chance encounter of C. albicans with P. aeruginosa in the CF environment could
ultimately lead to changes in disease progression by altering the tendency of the fun-
gus to locally accumulate.

In light of our results, it is important to note that the flow regime has documented
effects on biofilm formation for both P. aeruginosa and C. albicans. The surface resi-
dence time of P. aeruginosa, for example, increases linearly as shear stress increases
(76), and flow promotes upstream surface motility in addition to the formation of bio-
film aggregates (77). P. aeruginosa has also recently been shown to be highly respon-
sive to mechanical stress induced by flow, with downstream effects on biofilm forma-
tion that have yet to be fully clarified (36, 78). There has been less investigation of the
effects of shear flow on C. albicans biofilms: existing work does not agree completely
on whether shear stress increases total biomass of C. albicans biofilms but does agree
that biofilms formed under shear are more highly compacted and physically robust rel-
ative to those grown in static conditions (79). Importantly, given that dual-species
culture produced substantial biomass accumulation for both species relative to mono-
coculture under the same flow conditions, flow-induced shear cannot on its own
explain our results. Rather we infer that a combination of physical forces resulting from
flow in addition to biological interaction between the two species must be responsible
for the results obtained here. Dissecting the precise molecular mechanisms of these
interspecies interactions is an important area for future study that may bear directly on
the outcome of multispecies biofilm growth in the context of infection.

Beyond their prevalence in lung infections among patients with CF, P. aeruginosa
and C. albicans individually are among the most common agents of nosocomial infec-
tion currently known (16). They are both frequently isolated from device-related infec-
tions, including implanted medical devices, prosthetic implants in wounds and joint
replacements, and urinary catheters (16). Both species participate in multispecies infec-
tions, for example, with Staphylococcus spp. (80–82), with Streptococcus spp. (83, 84),
and with each other (85). Reports of dual isolation of P. aeruginosa and C. albicans are
increasingly reported in the clinical literature in sites such as ventilator tubing (86), and
our results of biofilm dual-species culture in microfluidic devices suggest that dual
Pseudomonas-Candida biofilms may be especially problematic in this setting because
they tend to accumulate more biofilm biomass together than alone. Such rapidly accu-
mulating biofilms can potentially clog catheter flow environments and seed systemic
infections as cells disperse from the device-attached biofilm into the bloodstream.

Though recent studies have made tremendous strides in imaging microbiomes
within in situ samples that have been fixed (87–90), dissecting live microbial commu-
nity structure in space and time within native environments remains a challenging task
and one of the important frontiers of modern microbiology. Here, we use an in vitro
model with medium tuned to the CF sputum environment to assess live biofilm popu-
lation dynamics for both members and find that this step toward environmental real-
ism has a strong impact on the ecology of dual-species biofilms of P. aeruginosa and C.
albicans. Many native factors are still missing, however: the mucosal environment is
quite different in the native lung, for example, and recent work has suggested that mu-
cus has a strong impact on P. aeruginosa physiology, including reducing its propensity
toward virulence and biofilm formation (91, 92). Though not an exact match to the in
situ infection environment, our system nevertheless suggests that modest changes to
the environmental context in which multispecies interactions are studied can have a
large impact on the observed outcome, namely, in this case, a shift toward far higher
accumulation of biofilm on the part of P. aeruginosa and C. albicans when they are to-
gether versus when they are alone. On the basis of this observation, we speculate that
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pushing toward realism and high-resolution image analysis of biofilm communities will
yield important and unexpected insights for many other microbial systems of interest.

MATERIALS ANDMETHODS
Strains and media. Table 1 includes a full list of strains and plasmids used in this study. Strains of P.

aeruginosa are either derivatives of strain PA14 or clinical isolates. C. albicans strains are derivatives of
strain CAI4. All strains were grown on LB (10 g tryptone, 5 g NaCl, 5 g yeast extract [all amounts per liter])
and artificial sputum medium for imaging (ASMi) (P. aeruginosa) or YPD (10 g yeast extract, 20 g pep-
tone, and 20 g dextrose [all amounts per liter]) and ASMi (C. albicans). The medium recipes and concen-
trations of reagents used for ASMi are listed below at the end of Materials and Methods. All chemicals
and reagents were purchased from Millipore Sigma unless otherwise stated.

Plasmid and strain construction. All restriction enzymes and ligase were purchased from New
England Biolabs, and PCR reagents were purchased from Bio-Rad. The P. aeruginosa tandem codon-opti-
mized version of mKO-κ was custom synthesized by Invitrogen. The construct contains two copies of
mKO-κ in tandem, each with its own ribosome binding site, and with different codon composition to
prevent excision by recombination. Fluorescent P. aeruginosa derivatives were constructed by amplifica-
tion of the flanking regions upstream and downstream of the Tn7 att site and fusion of the custom fluo-
rescent protein construct to a synthetic tac promoter for high expression from a single chromosomal
locus. This fused construct was cloned into the pMQ30 plasmid used for allelic exchange in P. aeruginosa
(93). This plasmid was then introduced into Escherichia coli S17-lpir by electroporation and conjugated
into P. aeruginosa, and recombinants were obtained using selection on gentamicin and sucrose counter-
selection for loss of the integrated plasmid backbone. For C. albicans, a single codon-optimized version
of mKate2 was custom synthesized by Invitrogen. The RP10 integrative plasmid, pACT-GFP (94), has
been shown to have constant expression levels through C. albicans growth cycle. We replaced the green
fluorescent protein (GFP) in pACT-GFP (94) with mKate2. For transformation into C. albicans, the mKate2-
containing plasmid was linearized by BglII restriction digestion and concentrated using the Zymo
Research DNA Clean & Concentrator-5 kit (catalog no. 11-303), and 1mg was electroporated into electro-
competent C. albicans CAI4 prepared as previously described (95). Prototrophic recombinants were
selected for on uracil drop-out medium.

TABLE 1 Strains and plasmids used in this study

Species and strain Relevant marker(s) or genotype(s) Reference or source
E. coli
S17-1 lpir Lorenzo and Timmis (100)

P. aeruginosa PA14
CNP17 Wild type (WT) Hogan lab
CNP26 WT with mKO-κ This study
CNP12 DpelA Friedman and Kolter (30)
CNP27 DpelA with mKO-κ This study
CNP18 DwspR Chen et al. (21)
CNP28 DwspR with mKO-κ This study
CNP70 DbapA Hogan lab
CNP77 DbapAwith mKO-κ This study
CNP65 DpilY1 Hogan lab
CNP67 DpilY1with mKO-κ This study
CNP21 Danr Hogan lab
CNP50 Danrwith mKO-κ This study
CNP69 DpchEpvdA Hogan lab
CNP76 DpchEpvdAwith mKO-κ This study
CNP22 DlasR Hogan lab
CNP56 DlasR with mKO-κ This study
CNP41 Dphz Hogan lab
CNP54 Dphzwith mKO-κ This study
CNP43 63LB4 clinical CF isolate Hogan lab
CNP44 63LG4 clinical CF isolate Hogan lab
CNP45 63RA7 clinical CF isolate Hogan lab
CNP46 63RE10 clinical CF isolate Hogan lab
CNP59 63LB4 clinical CF isolate with mKO-κ This study
CNP57 63LG4 clinical CF isolate with mKO-κ This study
CNP60 63RA7 clinical CF isolate with mKO-κ This study
CNP58 63RE10 clinical CF isolate with mKO-κ This study

C. albicans CAI4
CNC1 WT with pACT-GFP Hogan lab
CNC11 WT with pACT mKATE2 This study
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Liquid growth curve and fluorescence measurements. P. aeruginosa strains were grown at 37°C
shaking in LB overnight prior to growth curve experiments. The following morning, cultures were back-
diluted to an optical density at 600 nm (OD600) of 0.01 in ASMi in 10-ml glass tubes with 2ml medium
(for fluorescence growth curves) or 50-ml Falcon tubes with 30ml of medium (optical density growth
curves), rotating at 250 rpm on an incubated orbital shaker at 37°C. C. albicans strains were grown at
30°C shaking in YPD overnight prior to growth curve experiments. They were cultivated overnight at
30°C to maintain cells in yeast form prior to the start of growth curve or biofilm experiments (see below).
The following morning, cultures were back-diluted to an OD600 of 0.01 in ASMi in 10-ml glass tubes with
2ml medium (for fluorescence growth curves) or 50-ml Falcon tubes with 30ml of medium (optical den-
sity growth curves), rotating at 250 rpm on an incubated orbital shaker at 37°C. Fluorescence measure-
ments were made using a Synergy Neo2 every 6 h. A 543-nm excitation source was used to excite
mKO-κ, and a 594-nm excitation source was used to excite mKate2. Optical density measurements were
made every hour using a benchtop spectrophotometer (CWA Biowave CO8000 cell density meter).

Microfluidic device assembly. The microfluidic devices were made by bonding polydimethylsilox-
ane (PDMS) chamber molds to size #1.5 cover glass slips (60mm � 36mm [length L � width W],
Thermo-Fisher, Waltham, MA) using standard soft lithography techniques (96). Each PDMS mold con-
tained four chambers, each of which measured 3,000mm � 500mm � 75mm (L � W � depth D). To es-
tablish flow in these chambers, medium was loaded into 1-ml BD plastic syringes with 25-gauge needles.
These syringes were joined to #30 Cole-Parmer polytetrafluoroethylene (PTFE) tubing (inner diameter,
0.3mm), which was connected to prebored holes in the microfluidic device. Tubing was also placed on
the opposite end of the chamber to direct the effluent to a waste container. Syringes were mounted to
syringe pumps (Pico Plus Elite, Harvard Apparatus), and flow was maintained at 0.1 ml per min for all
experiments.

Biofilm growth, matrix staining, and CFU counts. Overnight cultures of P. aeruginosa were
grown at 37°C with shaking in LB, and overnight cultures of C. albicans were grown at 30°C with
shaking in YPD prior to the start of biofilm experiments. Cultures of both strains were normalized
to an OD600 of 0.05 in ASMi medium. If dual-species biofilms were to be started, equal volumes of
OD-equalized strains were mixed, inoculated into a microfluidic chamber (completely filling its
inner volume), and then allowed to rest for 1 h at 37°C to permit cells to attach to the glass sur-
face. The devices were then run at 0.1 ml per min at 37°C and imaged by confocal microscopy (see
below) at time intervals that varied per experiment as noted in each figure. All experiments were
repeated with at least five biological replicates with three or more technical replicates on different
days. Total replicates for each experiment are noted in the figure legends for each data set in the
text and supplemental material.

Wisteria floribunda lectin stain (Vector Labs) conjugated to fluorescein dye was used to visualize Pel
polysaccharide produced by P. aeruginosa (31). The lectin was added to the medium in syringes for
these experiments such that biofilms would be exposed to the lectin-dye conjugate for the entire period
of biofilm growth (20 ml stock lectin solution per ml of medium, per the manufacturer’s protocol recom-
mendation from a stock solution of 2-mg/ml dye conjugate). Biofilms were inoculated as noted above
for these experiments and grown for 24 h prior to imaging.

To compare growth rates of P. aeruginosa and C. albicans in turbid synthetic cystic fibrosis medium
(SCFM) (25) and optically clear ASMi, both species were grown overnight, P. aeruginosa in LB at 37°C and
C. albicans in YPD at 30°C in 10-ml glass tubes with 2ml of medium. The following morning, the cultures
were back-diluted to an OD600 of 0.01 in either SCFM or ASMi in 50-ml Falcon tubes with 30ml of me-
dium, rotating at 250 rpm in an orbital shaker at 37°C. One milliliter of culture was taken from the Falcon
tube at different time points, and serial dilution was performed and plated on LB agar for P. aeruginosa
and YPD agar for C. albicans. The number of CFU from each plate was recorded and used to calculate
growth rates measured by CFU per milliliter per time.

To measure passive dispersal from biofilms as a result of exposure to fluid shear, biofilms of both
species were grown as noted above in ASMi medium for 24 h, after which the outlet tubing of the micro-
fluidic device was changed to ensure we were measuring dispersal only from the biofilms within the
chambers themselves. The flow rate was increased to 500ml per min, and outflow was collected. Serial
dilutions were performed and plated on LB agar for P. aeruginosa and YPD containing 50mg/ml chloram-
phenicol for C. albicans. The number of CFU from each plate was recorded and used to calculate the
CFU/milliliter culture density emerging from the chambers. This experiment was repeated for 11 biologi-
cal replicates with independent overnight cultures.

Microscopy and image analysis. Biofilms inside microfluidic chambers were imaged using a Zeiss
LSM 880 confocal microscope with a 40�/1.2 numerical aperture (NA) or 10�/0.4 NA water objective. A
543-nm laser line was used to excite mKO-κ, and a 594-nm laser line was used to excite mKate2. A
458-nm laser line was used to excite Wisteria floribunda lectin stain in the case of Pel quantification
experiments. All quantitative analysis of microscopy data was performed using BiofilmQ (39). Three-
dimensional (3-D) renderings of biofilms in Fig. 1 and 4 were made using Paraview.

Statistics. All statistical analyses were performed in GraphPad Prism. All reported pairwise comparisons
were performed using Wilcoxon signed-rank tests, and multiple comparisons were performed by Wilcoxon
signed-rank tests with Bonferroni correction. All error bars indicated standard errors unless otherwise noted.

Artificial sputum media for imaging (ASMi). The stocks for the base were Na2HPO4 (0.2 M, 0.69 g/
25ml), NaH2PO4 (0.2 M, 0.71 g/25ml), KNO3 (1 M, 2.53 g/25ml), K2SO4 (0.25 M, 1.09 g/25ml). Additional
stocks were glucose (20% [wt/vol]) autoclave, L-lactic acid (1 M) (adjust pH to 7 with NaOH), CaCl2·2H2O
(1 M, 3.68 g/25ml), MgCl2·6H2O (1 M, 5.08 g/25ml), FeSO4·7H2O (1mg/1ml) syringe, N-acetylglucos-
amine (0.25 M, 1.383 g/25ml), tryptophan (0.1 M, 1.021 g/50ml). Reagents were DNA (herring sperm
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DNA), fucose, GalNAc, galactose, choline chloride, sodium octanoate, yeast synthetic dropout excluding
Trp, NaCl, morpholinepropanesulfonic acid (MOPS), KCl, NH4Cl, and NaOH. Preparation of ASMi (500ml)
(2� in 250ml) was as follows: 1) add 400 ml distilled H2O (diH2O) and stir bar to a clean beaker; 2) while
stirring add 3.250 ml Na2HPO4 stock, 3.126 ml NaH2PO4 stock, 174 ml KNO3 stock, 542 ml K2SO4 stock, 2 g
yeast synthetic dropout – Trp, 1.516 g NaCl, 1.046 g morpholinepropanesulfonic acid (MOPS), 558 mg
KCl, 62 mg NH4Cl, 4.65 ml L-lactic acid stock, 1.365 ml glucose stock, 875 ml CaCl2·2H2O stock, 600 ml N-
acetylglucosamine, 500 ml FeSO4·7H2O, 330 ml tryptophan stock, 303ml MgCl2·6H2O, 300 mg DNA, 0.007
g choline chloride, 0.022 g sodium octanoate (replacement 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
[DPPC]), 400 mg fucose, 125 mg GalNAc, 90 mg galactose, (replacement for mucin; these are mucin sug-
ars); 3) adjust pH to 6.8 with HCl or NaOH and add distilled H2O to 500 ml; 4) filter sterilize.

Considerations and references. Considerations follow. (i) It lacks sphingolipids and surfactant
proteins, which are moderately abundant. (ii) Mucin sugars are used instead of mucin (97).
(iii) Reports of some concentrations vary from source to source. References follow: DPPC (98) (octa-
noate and choline are used instead at the same concentrations; 2:1 octanoate-choline, since DPPC
has two lipid chains per choline. DPPC molarity for choline and 2� that for octanoate), DNA (98),
and mucin (98).
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