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Estimation of cell-free fetal DNA fraction from maternal
plasma based on linkage disequilibrium information
Jia Ju 1,2, Jia Li3, Siyang Liu2, Haiqiang Zhang2, Jinjin Xu2, Yu Lin2, Ya Gao2, Yulin Zhou4✉ and Xin Jin 2,5,6✉

Cell-free fetal DNA fraction (FF) in maternal plasma is a key parameter affecting the performance of noninvasive prenatal testing
(NIPT). Accurate quantitation of FF plays a pivotal role in these tests. However, there are few methods that could determine FF with
high accuracy using shallow‐depth whole‐genome sequencing data. In this study, we hypothesized that the actual FF in maternal
plasma should be proportional to the discrepancy rate between the observed genotypes and inferred genotypes based on the
linkage disequilibrium rule in certain polymorphism sites. Based on this hypothesis, we developed a method named Linkage
Disequilibrium information-based cell-free Fetal DNA Fraction (LDFF) to accurately quantify FF in maternal plasma. This method
achieves a high performance and outperforms existing methods in the fetal DNA fraction estimation. As LDFF is a gender-
independent method and developed on shallow-depth samples, it can be easily incorporated into routine NIPT test and may
enhance the current NIPT performance.
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INTRODUCTION
Cell-free fetal DNA (cffDNA) in maternal peripheral blood,
discovered by Lo et al.1, makes it possible to infer the fetal
inheritance in a noninvasive way and led to the development of
noninvasive prenatal applications, such as fetal sex determination
for sex-linked disorders2, detection of fetal chromosomal abnorm-
alities3,4, and detection of monogenic diseases5–8. Compared with
the traditional methods for fetal trisomy screening by the
measurement of nuchal translucency and biochemical analytes,
noninvasive prenatal testing (NIPT) using cffDNA in maternal
blood can be non-invasively performed at early trimester with
lower false positive rates9–11. In the clinical practice of NIPT, the
concentration of cell-free DNA (cfDNA) of fetal origin circulating in
maternal plasma, referred to as fetal fraction (FF), is a fundamental
parameter in the accurate and robust measurement of fetal
trisomy. Currently, the minimum FF required for a reliable NIPT
result is ~4% due to the fact that low concentration of fetal cfDNA
in maternal plasma may cause a false negative result12,13. Thus,
accurate determination of FF is critical to NIPT performance.
To date, many approaches have been proposed for the

determination of FF in maternal plasma. The methods based on
the reads or genetic markers from chromosome Y14–17 are accurate
and direct, but they are only applicable to pregnancies with male
fetuses. Several gender-independent methods rely upon the
differential patterns between the maternal and fetal cfDNA, such
as the distribution difference of fragment length18, DNA methyla-
tion difference19,20, and the fetal-specific alleles5,21–24. However,
these methods need additional laboratory test and are not cost-
effective for practical use. Recently, three kinds of methods have
been developed to estimate the FF independent of fetal gender
without additional data. Given the fact that fetal cfDNA non-
uniformly distributes across the genome relative to maternal cfDNA,
the method SeqFF25 uses regional read counts to estimate FF. But
this method might not be robust for predicting low FF. Another

method calculates the distribution of reads starting around
nucleosome positions based on the different DNA digestion
between fetal and maternal cfDNA26, but its accuracy is relatively
poor27. The third one makes use of the heterozygosity of single
nucleotide polymorphisms (SNPs), however its accuracy might be
limited for samples with sequencing depth <0.5x28.
The maternal plasma of pregnancies contains fetal-specific

haplotypes inherited from the father. We assume that the allele
types on one of three haplotypes in certain sites might be rectified
by imputation process under the assumption that the analyzed
samples are diploid, the probability of which should be correlated
with the FF in maternal plasma. We confirmed this hypothesis and
trained a multivariate model to quantify the FF in maternal
plasma.
In this study, we aim to develop a gender-independent method,

named Linkage Disequilibrium information-based cell-free Fetal
DNA Fraction (LDFF), to accurately and robustly measure the FF in
maternal plasma by only utilizing shallow-depth random sequen-
cing (0.1x) of maternal plasma DNA. Compared with other existing
methods, our LDFF method shows its distinct advantage in
accurate determination of FF, even for low FF below 5%.
Moreover, our results demonstrate that LDFF could be robustly
applied to pregnancies with female fetus or pregnancies with
complications. As this method is developed on the shallow-depth
data, it could be readily integrated into the current NIPT practice
to enhance the clinical performance.

RESULTS
Positive correlation between regional LD-ratios and FFs
The detailed hypothesis and illustration are shown in principle of
the LDFF in the method section and Fig. 1. To confirm this
hypothesis, we grouped 10,000 male-bearing pregnancies in the
training set into five groups by the FFs estimated by chromosome
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Y-based (chrY-based) method. From previous study25,we know
that the fetal cfDNA is nonuniformly distributed across the whole
genome, so we divided the genome into 5 Mb region, resulting in
567 regions across 22 autosomes (N-regions were excluded). The
regional LD-ratio was calculated in each region for each sample.
Averaging the regional LD-ratios of samples in each group per
region, we observed that FFs were indeed linked to the average
regional LD-ratios in each bin across 22 autosomes (Fig. 2a, b). We
compared the distributions of the average regional LD-ratios of
samples in each group across different regions by Kruskal–Wallis
test and the results demonstrated values were significantly
different among the five groups (p-value < 2.2e-16, Fig. 2c).
Multiple comparison was further performed to determine
difference of the regional LD-ratio levels between groups by
Dunn’s test. Significant differences were observed between any
two of the five groups (all the adjusted p-values < 3e-9, p-values
were adjusted by the Benjamini–Hochberg method, Supplemen-
tary Table 1). We also analyzed the correlation between the FFs
and regional LD-ratios in the training set. Taking the genome
region chr1:1–5,000,000 for instance, the regional LD-ratios and
the chrY-based FFs were significantly positively correlated
(Pearson’s correlation coefficient, R= 0.174, p-value < 2.2e-16,
Supplementary Fig. 1a). Significant positive correlations between
the regional LD-ratios and chrY-based FFs were observed in
92.24% (523/567) of the tested genomic regions (adjusted p-value
< 0.05, p-values were adjusted with the Benjamini–Hochberg
method, Supplementary Fig. 1b, c). These results suggest that FFs
are positively correlated with regional LD-ratios.

LDFF model’s performance is improved by minor allele
frequency filtering
Then, we constructed a multivariate linear regression model,
named LDFF, to determine the relationship between the regional
LD-ratios in each bin and the chrY-based FFs using the training
data (Supplementary Fig. 2).
Due to the genetic difference, the genotypes of father and

mother are more likely to be different at more common SNPs loci
in the population. Previous studies29 found that variants with low

minor allele frequency (MAF) are difficult to impute, as the
imputation errors may increase with the decreased MAF. Thus,
Pearson’s correlation coefficient (R) between the chrY-based FFs
and predicted values and the mean absolute error in the training
set without outliers were summarized using different MAF cutoff
values (Supplementary Table 2). When the MAF cutoff was set to
0.2, the model (Supplementary Data 1) showed the optimal
performance, with a correlation coefficient of 0.956 and the mean
absolute error (MAE) of 0.01001. Therefore, 0.2 was finally chosen
as the MAF filtering cutoff. Thus, SNPs loci with MAF larger than
0.2 were used in the calculation of regional LD-ratios, which
included 2.88 million SNPs on the 19 autosomes in 1000 Genomes
Project Phase 3 (1KGP3) East Asian population. The number of
SNPs located in each 5M bin ranged from 35 to 211,187, with a
median of 5534 (Supplementary Data 2).

LDFF is accurate for predicting FF regardless of fetal gender
and complications
To validate the performance, we applied this regression model to
two datasets, including male fetus testing set and external test set.
The FFs estimated by LDFF were then compared with expected FFs
predicted by the chrY-based method or MAF-based method. FFs
predicted by LDFF correlated strongly with the chrY-based FFs for
the male fetus testing set (R= 0.933, p-value < 2.2e-16), and the
corresponding MAE was 0.012 (Fig. 3). For male-bearing pregnan-
cies in the external testing set, FFs from LDFF and chrY-based FFs
were also highly correlated, with a Pearson’s correlation coefficient
of 0.975 (p-value < 2.2e-16) and a MAE of 0.024 (Fig. 4a, b).
We further validated the accuracy of our method for

pregnancies carrying either male or female fetus in external
testing set. The high correlation (R= 0.971, p-value < 2.2e-16) and
the low MAE (0.019) were observed between the chrY-based FFs
and MAF-based FFs in pregnancies with male fetuses of the
external testing set (Fig. 4c, d). Thus, we can conclude that MAF-
based method has a high accuracy for FF estimation. Ultimately,
we further validated the accuracy of our method for both male-
bearing and female-bearing pregnancies in the external testing
set, we found a significant correlation coefficient of 0.968 (p-value
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< 2.2e-16) and a MAE of 0.015 between LDFF and MAF-based
method (Fig. 4e, f).
To test whether our method performs differently between

pregnancies with female fetus and male fetus, we compared the
MAF-based FFs and the FFs predicted by LDFF in 29 male-bearing
pregnancies of the external testing set (Supplementary Fig. 3a, b,
R= 0.981, MAE= 0.013) and 21 female-bearing pregnancies
(Supplementary Fig. 3c, d, R= 0.961, MAE= 0.019), respectively.
As expected, both groups showed a significant high correlation
and a low MAE value, suggesting that LDFF is robust for predicting
FF regardless of the fetal gender. To investigate whether the
pregnancy complications alter the results, we calculated Pearson’s
correlation coefficients and MAE values between the FF infer-
enced by LDFF and MAF-based FF in the samples with
(Supplementary Fig. 3e, f, R= 0.959, MAE= 0.013) and without
(Supplementary Fig. 3g, h, R= 0.969, MAE= 0.016) complications
or β-thalassemia in the external testing set. The results demon-
strated that the LDFF is able to give a reliable result for the
samples with complications or β-thalassemia.

LDFF outperforms existing methods in the estimation of FF
We further compared the performance of LDFF with other gender-
independent FF estimation methods including SeqFF25 and
PREFACE30 using the same testing sets (Table 1). These two
methods were widely used for FF estimation by low-depth
sequencing data and without the requirement of pre-knowledge
of parental genotype information. Here, we used the pre-trained
SeqFF model from Kim’s article25. The PREFACE model was trained
with 3000 male-bearing pregnancies and 2000 female-bearing
pregnancies in the first cohort. As compared with SeqFF and
PREFACE, LDFF showed the highest correlations with chrY-based
method or MAF-based method and the smallest MAE in all the test
sets. We applied these methods to 185 samples with FFs <5%
from the male fetus test set, our LDFF still had the highest
Pearson’s correlation with chrY-based method and the smallest
MAE (Supplementary Fig. 4). We also divided the samples in male
fetus testing set into four groups according to different chrY-
based FF and compared the performances of the three methods in
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each group. The correlation coefficients and the MAE values
between chrY-based FF of these three methods demonstrated
that in each FF interval, LDFF exhibited higher correlations and
lower MAEs than other two methods (Supplementary Fig. 5).
Therefore, our LDFF method exhibited a higher accuracy than
other existing methods in the estimation of cell-free fetal DNA
fraction.

DISCUSSION
The methodology described in this study for the detection of fetal
fraction relies on a simple and fundamental assumption that the
fetal cfDNA has different alleles from the mother’s and this allele
information is mixed in maternal plasma. Moreover, this difference
can be quantified from the level of discrepancy between observed

genotypes and imputed genotypes based on the known
haplotypes in a population, which is proportional to the fetal
fraction. We have tested this hypothesis over a set of 10,000
pregnancies bearing a male fetus and have demonstrated it to be
consistent with these assumptions. The regional LD-ratios were
found to be positively correlated with the FFs in most of genomic
regions, although the correlation coefficients were relatively low,
with a median of 0.106 (interquartile range, 0.089–0.120,
Supplementary Fig. 1b). However, high dimensional machine
learning approach can uncover the relationships in a large cohort
of samples. A weighted multivariate model was applied to
determine the relationship between FFs and regional LD-ratios.
Furthermore, the accuracy of the LDFF method was verified in two
cohorts. The FFs estimated by the LDFF method were significantly
correlated with those predicted by the chrY-based method in two
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male-bearing pregnancies data sets and those calculated by the
MAF-based method in pregnancies either with male or female
fetus set. By comparing the performance of LDFF with other FF
estimation methods, we showed that LDFF has higher accuracy
than the other methods.
The core theory of our innovation is that existing fetal alleles are

different from the maternal alleles in the low coverage sequencing
data of maternal plasma. Thus, parts of these loci might be
rectified by imputation process and this information could be
used for FF estimation. Several methods have been previously
established to estimate FF values using the fetal-specific alleles.
However, the limitation for these approaches is maternal
genotype22,31 or even parental genotype5,21 information needs
to be identified by microarray-based genotyping technologies.
Therefore, these methods require extra laboratory tests, causing
increased cost to patients. It is necessary to determine the FF
directly from the same next generation sequencing (NGS) data
that used for NIPT. Our algorithm was developed on the shallow-
depth data without requiring the prior knowledge of fetal gender
and parental genotype information, thus expensive paired-end
sequencing or additional laboratory assay is not required. There-
fore, this method can be easily integrated into the current NIPT
protocol in a cost-effective manner. Furthermore, we demon-
strated that LDFF was capable of accurately estimating FF
independently of fetal gender.
Accurate measurement of fetal fraction in maternal plasma is

essential to the NIPT practice, bringing several benefits. Firstly, if
the FF is below the limit of detection, a “no call” report is an
effective way to reduce false negatives in fetal trisomy screening.
Secondly, studies suggest pregnancies with small FFs may
increase the risk of fetal aneuploidy10,32. Therefore, samples with
low FF can be re-sequenced at an increased sequencing depth to
achieve sufficient power for the fetal aneuploidy determination.
Thirdly, in the prediction of monogenic disease, the FF is also a key
parameter5,6 to determine the statistical thresholds to ensure the
statistical significance. Lastly, when FF is accurately known, a more
powerful test to screen for fetal trisomy can be developed28,33 and
the fetal sex determination in twin pregnancies34,35 also becomes
a much simpler problem. The ability of measuring FF with high
accuracy would make LDFF serve as a valuable tool to improve
NIPT performance.
However, two kinds of maternal characteristics might affect the

fetal fraction estimation of LDFF. First, when there are more than
three haplotypes exist in maternal plasma per genomic region,
including maternal chromosomal mosaicism, maternal chromoso-
mal aneuploidy and transplants of donor tissues, the regional LD-
ratio may be skewed. And also, when a pregnant woman harbors a
malignant tumor, the apoptotic cell-free tumor DNA can shed into
the circulation, then an increased tendency of genomic abnorm-
alities including long-term copy-number variation (CNV) and
mutations may be detected by whole-genome sequencing and
skew the regional LD-ratio. All these maternal incidental biological
causes may result in an altered fetal fraction when using LDFF for
FF estimation, and false results may also occur in NIPT. Second, the
benign long-term copy-number variation (>5 M) in maternal
genome is an extra factor that may affect the fetal fraction
estimation. However, as the number of regions (521) and the
number of SNP loci (~2 million) used for estimating FF are large
enough, the frequency of CNV in the human genome is relatively
low36, especially for the large CNVs, the specific bias caused by the
certain CNV would contribute little to the multiple linear
regression model.
As the participate in this study all come from Chinese

population, thus haplotype and allele frequency information from
the Chinese population in the 1000 Genomes Project Phase 3
(1KGP3) were taken as the reference panel. When the imputation
is performed with the reference panel including the same
population or closely related populations, the accuracy of theTa
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SNP imputation can be high37. So, for other populations, the
imputation reference panel should be changed accordingly to
ensure high imputation accuracy. In the meantime, the SNPs with
MAF >0.2 were used in the regional LD-ratio calculation in this
study. However, the common SNPs might not be consistent in
different popualations38, the training process would need to be
repeated to obtain a new set of parameters for the specific
population. Once the model is well-trained on that population, it
could be readily applied to any test data, as long as they are
generated from the same population.
The time consumption of LDFF and other two commonly used

methods are also shown in Supplementary Table 3. Comparing with
SeqFF and PREFACE, our method does require more running time
due to the time-consuming step of SNP imputation. Large scale of
training samples increases the model accuracy, meanwhile, the
training time is increased. Moreover, we calculated the regional LD-
ratios for the whole genome. Advanced machine learning model
could be used to select sub-domains of the genome, which could
improve the accuracy and reduce the computational time. It is
necessary to optimize the imputation process to reduce the time
required. Furthermore, widely used hardware such as GPU and
large-scale computing resources can be used to further reduce the
running time.
In summary, the LDFF demonstrated in this study is highly

accurate and gender-independent for the prediction of FF,
showing its utility in noninvasive prenatal testing. Furthermore,
as this method is developed on shallow-depth sequencing data, it
can be easily incorporated into the clinical protocols currently
used by laboratories offering sequencing-based NIPT service.

METHODS
Sample collection and ethical statement
Two independent cohorts of samples were collected. The first cohort with
singleton pregnancies was randomly selected from a previous study39, in
which pregnant women undergoing NIPTs at BGI Clinical Laboratories
were recruited. The second cohort from another study comprised
50 samples including 29 pregnancy samples with male fetuses, 20 samples
with female fetuses, and 1 sample with female–female monozygotic twins.
All participants provided written informed consent and granted permission
to anonymously use NIPT sequencing data for research purpose. This
retrospective study was in strict compliance with regulations regarding
ethical considerations and personal data protection, and it was approved
by the Institutional Review Board of BGI.

Sequencing
For each participant in the first cohort, 5 ml of peripheral blood was
collected for the NIPT test. Briefly, plasma was extracted from whole blood
within 8 h of blood collection. After library construction and sample quality
control, sequencing was conducted on the Illumina Hiseq 2000 platform to
produce 3.72–13.34 million 49 bp single-end reads9. Each plasma sample
from the second cohort was sequenced on the DNBSEQ platform using the
100 bp paired-end mode to produce ~3900 million reads. Then we down-
sampled the sequencing data to 7 million 49 bp single-end reads from the
second cohort using the mate-pair 1 reads of each sample.

Bioinformatics analyses
Low quality reads with >30% low quality bases (Q < 20) or N bases were
removed by SOAPnuke. After data filtering, the cleaned reads were aligned
to the human reference genome(hg19) by Burrows-Wheeler Aligner
(bwa)40. The original (observed) genotypes were generated by samtools41

mpileup and stored in VCF format. The imputed genotypes were detected
by STITCH (version v1.5.3.0008)42 in a 5 Mb window with 250 kb buffer.
And this method was confirmed to have no batch effect. We took genetic
information from the Chinese population (CHB+ CHS+ CDX, n= 301) in
the 1KGP3 as reference panel. The imputed loci were composed of 7.89
million known polymorphic sites in 22 autosomes, with allele frequency
≥0.01 in 1KGP3 East Asian.

Training data and Testing data
Two independent cohorts of samples were used in this study. The first
cohort with singleton pregnancies was selected from a previous
publication39, in which all participants undergoing NIPT were recruited.
The training set is defined as the samples used to train the statistical
model. Ten thousand pregnant samples with male fetuses in the first
cohort were randomly selected and assigned to the training set, including
20 fetuses with confirmed trisomy for chromosome 13, 18, or 21 by
chorionic villus sampling or amniocentesis.
To evaluate the performance of our FF estimation method, we designed

two testing sets containing one set of pregnancies carrying male fetus
from the first cohort and the external testing set from the second cohort.
The male fetus testing set contains additional 1397 male-bearing
pregnancies randomly selected from the first cohort which are different
from the samples in the training set. Among these samples, three were
from pregnancies with trisomic fetuses of chromosome 21(Supplementary
Table 4). There is no significant difference between the FF distribution in
the male fetus testing set and training set (p-value= 0.2897, Wilcoxon
rank-sum test).
The external testing set comprised 50 additional pregnancies including

29 samples with male fetuses, 20 samples with female fetuses, and
1 sample with female-female monozygotic twins. Among these samples,
seven pregnancies had pregnancy complications (gestational diabetes
mellitus, premature delivery, preeclampsia, or intrahepatic cholestasis of
pregnancy), two pregnancies had β-thalassemia. The samples in this cohort
were previously collected for monogenic disease research with the raw
sequencing depth of nearly 130x. The high depth sequencing reads were
down-sampled to similar sequencing depth with NIPT (7 million reads) for
all samples, which were used as the external testing set to independently
verify the model’s accuracy and robustness in the inference of FF.
Clinical characteristics of participants of different datasets were

described in Supplementary Table 4, including gestational week, maternal
age and body mass index (BMI), karyotype, and complications. The total
read number and the mapped coverage for each group were also shown in
the Supplementary Table 4.

LDFF method
Because of the shallow sequencing depth, most of the SNP loci were
covered by only one read. Therefore, the genotypes in certain SNP sites
might be wrongly exhibited as homozygous by samtools41 mpileup
procedure due to the limited number of reads covering these SNP loci.
Genotype imputation is a commonly used statistical technique to infer the
missing data or correct low probability genotype. This technique strongly
relies on linkage disequilibrium (LD) or allelic association through
comparison with known haplotypes in a population, for instance from
the 1KGP3 or the HapMap. Genotype imputation algorithms assume the
analyzed samples are diploid. Therefore, when there are genotypes from
more than two haplotypes that contradict with this hypothesis, these loci
are regarded as the wrong locus. In fact, pregnant women’s plasma
contains three haplotypes per genomic region including two haplotypes
from the mother and one fetal haplotype inherited from the father.
Therefore, in the process of imputation, there was a certain probability that
the site on one of three haplotypes was considered as the wrong locus,
which was correlated with the fetal cfDNA concentration in maternal
plasma. When genotype imputation was performed, part of the un-
sequenced maternal alleles (red sites) and the fetal alleles inherited from
father (blue sites) could be inferred (Fig. 1). The ratio of sites whose
imputed genotypes were discordant with the observed genotypes across
the specific regions can be calculated, namely regional LD-ratio. However,
a small proportion of the inconsistent genotypes could be caused by the
sequencing errors in maternal plasma and/or the wrong imputation.
Assuming these kinds of inconsistences were relatively constant across
different samples, we hypothesized that the FF would be proportional to
regional LD-ratio.
A multivariate linear regression model was employed to predict FF. The

response variable was chrY-based FF, which can be directly calculated by
previously described method14. We then divided the hg19 autosomes into
contiguous 5 Mb regions. The regions located on chromosome 13, 18, 21,
X, and Y were excluded from our model to avoid over-fitting due to the
fetal aneuploidy or fetal gender. Hence, the final region included 521
adjacent, non-overlapping 5Mb bins on 19 autosomes (N-regions were
excluded). The start and end positions of each bin were shown in
Supplementary Data 1. We defined the regional LD-ratio as the ratio of
candidate sites changed by genotype imputation from the observed

J. Ju et al.

6

npj Genomic Medicine (2021)    85 Published in partnership with CEGMR, King Abdulaziz University



genotype generated by samtools in each bin. To take into account bias in
sequencing characteristics of the genome, we added total genome
coverage, coverage of the reads with a mapping quality (MQ) score >0 and
polymerase chain reaction (PCR) duplication rate as the confounders to the
model. The coefficients of the linear regression model can be determined
by the chrY-based FFs and the predictor variables, including 521 regional
LD-ratio values and all the confounders, using the training data.
To achieve the best FF inference performance, we performed MAF

filtering and removed all the SNPs with MAF values less than the cutoff to
calculate regional LD-ratios. To determine which MAF cutoff should be
used in MAF filtering, different MAF filtering values (0.15, 0.2, 0.25, 0.3) in
1KGP3 East Asian (CHB+ CHS+ CDX+ JPT+ KHV, n= 504) were analyzed.
We built several models and compared the Pearson’s correlation and MAE
between the chrY-based FFs and predicted FFs using different MAF
filtering cutoffs. Finally, MAF values were set as the cutoff values according
to the following criterion. The MAF value showed the highest Pearson’s
correlation between the chrY-based FFs and the predicted values in the
training set without outliers.
To avoid over-fitting in the training set, a custom R script was used to

detect outliers in the training set. The samples were considered as outliers
if it met any of the following criteria: (1) samples show maximum absolute
residual values; (2) samples have maximum absolute studentized residual
values (3) samples show maximum absolute standardized residual values;
(4) samples have the diagonal elements of the hat matrix >2 pþ1

n , p is the
number of coefficients in the regression model; n, the number of samples;

(5) DFFITS43 >2
ffiffiffiffiffiffiffi

pþ1
n

q

, p is the number of coefficients in the regression

model; n, the number of samples; (6) samples with the maximum Cook’s
distances;44 and (7) samples with the maximum COVRATIO distance to 1.
Once the model parameters were determined, the fetal fraction for other

data sets could be estimated by adding the regional LD-ratio in each bin
and all the confounders after weighing them by their respective
coefficient. The workflow of LDFF consisted of four steps (Supplementary
Fig. 2). First, the regional LD-ratios, the genome coverage, coverage of the
reads with a MQ score >0 and PCR duplication rate were calculated for the
521 genomic regions. Several multivariate regression models were
generated with different MAF filtering cutoffs using all training samples.
Then, the outliers in the training samples in different MAF filtering models
were identified and removed from the corresponding model to avoid over-
fitting. Finally, the model which had the best accuracy was selected as the
final model, the MAF filtering cutoff was selected accordingly.

Chromosome Y-based method
The referenced FF in male fetuses can be calculated by the method
described in Hudecova et al.14. In brief, the reads mapped to chromosome
Y(chrY) in maternal plasma consisted of the amount of chromosome Y
sequences contributed by the male fetus and sequences originated from
the maternal background DNA that were incorrectly mapped to
chromosome Y. Thus, the FF(F) was estimated using the following formula:

%chrY ¼ male%chrY ´ Fð Þ þ female%chrY ´ 1� Fð Þ; (1)

where F ¼ %chrY � female%chrY
male%chrY � female%chrY

(2)

Male %chrY, female %chrY represented the mean fraction of chrY reads of
plasma samples obtained from adult male individuals and from
pregnancies bearing euploid female fetuses respectively.

MAF-based method
After alignment, high coverage BAM files from the second cohort were
piled up by samtools mpileup and minor allele frequency (MAF) was
calculated for each locus. The MAF distribution is known to consist of reads
from pregnant women and fetuses. Assume that FF is F, so the peak of the
distribution corresponds to the MAF of F/2 for loci that are homozygous for
maternal genotype and heterozygous for fetal genotype. Therefore, for
MAF ∈ [0, 0.25], its distribution was regarded as a mixed distribution of
several normal distributions, and the peak of the MAF distribution was F/2.
Finally, the FF of the plasma cfDNA was obtained.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The cfDNA sequencing data of fifty pregnancies in the second cohort have been
deposited in the Sequence Read Archive (SRA) with the accession number
PRJNA756388. The release of the data was approved by the Ministry of Science
and Technology (MOST) of China (Project ID:2021BAT2647).

CODE AVAILABILITY
LDFF was implemented using Perl (https://www.perl.org/) and R (https://www.r-
project.org/) languages. Perl script was used to calculate the regional LD-ratio and R
language was used to construct the linear regression model. The source codes were
available at https://github.com/jujia-BGI/LDFF_V1.
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