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A B S T R A C T

TheCOVID-19 epidemichas been causing aglobal problemsinceDecember 2019. COVID-19 is

highly contagious and spreads rapidly throughout the world. Thus, early detection is essen-

tial. The progression of COVID-19 lung illness has been demonstrated to be aided by chest

imaging. The respiratory system is the most vulnerable component of the human body to

theCOVIDvirus. COVID canbediagnosedpromptly and accurately using images fromachest

X-ray and a computed tomography scan. CT scans are preferred over X-rays to rule out other

pulmonary illnesses, assist venous entry, and pinpoint any new heart problems. The tradi-

tional and trending tools are physical, time-inefficient, and not more accurate. Many tech-

niques for detecting COVID utilizing CT scan images have recently been developed, yet

none of them can efficiently detect COVID at an early stage. We proposed a two-

dimensional Flexible analyticalwavelet transform (FAWT) based on a novel technique in this

work. This method is decomposed pre-processed images into sub-bands. Then statistical-

based relevant features are extracted, and principal component analysis (PCA) is used to

identify robust features. After that, robust features are rankedwith the help of the Student’s

t-value algorithm. Finally, features are applied to Least Square-SVM (RBF) for classification.

According to the experimental outcomes, our model beat state-of-the-art approaches for

COVID classification. Thismodel attained better classification accuracy of 93.47%, specificity

93.34%, sensitivity 93.6% and F1-score 0.93 using tenfold cross-validation.
� 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

Coronaviruses are a group of enveloped Ribonucleic acid (RNA)

viruses found in mammals and birds and cause respiratory
and gastrointestinal disorders, neurological sickness, andhep-

atitis in rare cases [1]. The coronavirus infection was first

reported in Wuhan, China. On the 30th of January 2020, the

WorldHealthOrganization (WHO) proclaimed the Coronavirus
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Fig. 1 – CT image acquisition process.

Fig. 2 – Lungs CT scan images (a) COVID-19 (b) Normal.
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Disease 2019 (COVID-19) epidemic to be a public health emer-

gency of worldwide significance [2]. Although the virus has

harmed people all over the world, it has had the most signifi-

cant influence in nations such as theUnited States, Italy, India,

China, Spain, Brazil, Russia, the United Kingdom, Peru, Iran,

and Turkey, where over a million people have been infected.

The typical clinical symptoms of COVID are fever, cough,

breathing shortness, and body pain. The real-time reverse

transcription-polymerase chain reaction (RT-PCR) is a labora-

tory and frequently used testing tool for COVID detection,

but it takes approximately 10–15 h to declare the results.

Another way of testing is the rapid diagnostic test (RDT).

Hence, to overcome these problems, the available medical

modalities are beneficial for fast identification.

because they save time and avoid unnecessary treatment

delays [3]. These methods are high false-negative rate, labori-

ous, less efficient, and time-consuming. Because of a false-

negative result, the infected can sometimes be labeled as

COVID-19 negative [4]. If the infected persons are not identi-

fied promptly, they do not receive appropriate treatment pre-

cisely. The RT-PCR test is not sufficient in the current

pandemic due to the high false detection and alarm rate.

Although RT-PCR provides good results, it needs high skilled

persons to handle the sample of COVID patients. Due to this

cause, in March 2020, US-based Disease control and preven-

tion withdrew the RT-PCR testing kits [5]. Biomedical imaging

has shown to be a fantastic tool for non-invasively diagnosing

a wide range of disorders. The discovery of X-rays was the

catalyst for the development of medical imaging [7]. However,

as technology has advanced, several imaging models have

emerged, including the electromagnetic spectrum, radio,

ultrasound, microscope, and many more [8]. Furthermore,

multimodal imaging exists in which more than one imaging

model is used for effective diagnosis. Hence, the available

medical modalities are beneficial for fast identification to

overcome these problems because they save time and avoid

unnecessary treatment delays. Presently two Medical modal-

ities like, CT scans and X-rays, are utilized, but available tools

for reading images is less accurate. It is also found that for

COVID identification, X-ray provides more promising results

[6], but CT images are a better choice because it provides more

details than X-ray. Fig. 1 represents the image collection pro-

cess from the CT scan machine, and Fig. 2 shows the CT scan

image of COVID and normal.

Recently, various models have been developed for the

automated detection of COVID based on traditional machines

and deep learning. Related to CT scans, various models have

been proposed based on machine learning with ensemble

mechanisms. In related work, Pramod et al. [7] proposed a

wavelet and transfer learning-based model for denoising

and classifying COVID using CT images with an accuracy of

85.5 %. Kassania et al. [8] proposed a deep learning-based fea-

tures extraction model, and these features are fed into a

machine learning model for COVID classification. In this pro-

posed mechanism author attains the highest classification

using the DenseNet121 feature extractor with a Bagging tree

classifier. Amyar et al. [9] proposed a method based on deep

learning using CT images with 0.86 accuracy and sensitivity

are 0.94. Yasar et al. [10] developed a texture-based model

for COVID classification from the CT lung images. 23– layer
CNN is used with.91sensitivity 0.90 F1-score. Wu et al. [11]

suggested a model with 0.93 specificity and 0.95 sensitivity

for classification and segmentation of lung lesion areas

affected by COVID. Abraham et al. [12] proposed a model for

COVID detection, which combines features extracted from

multi-CNN with correlation-based feature selection (CFS)

technique and Bayesnet classifier with an AUC of 0.963 and

an accuracy of 91.16%. Pradeep et al. [13] suggested FBSED

based decomposition for denoising and enhancing the classi-

fication rate of the model with different channels. Gaur et al.

[14] proposed a model based on stacked ensemble CNNwith a

sensitivity of 97.62% for multi-classification (COVID, Normal,

Pneumonia) using X-ray images and 98.31% sensitivity for

binary classification using CT images. Wang et al. [15] pro-

posed a model based on a residual deep structural design that

uses chest images for COVID-19 detection with an accuracy of

83.5%. Sarkisov [16] suggested the COVID-CT mask net model.

Here R-CNN is used to detect the lesion area of the lung, and

then it is fed to the classifier. The accuracy of the model is

91.66%, F1 score is 0.91. Rashid et al. [17] developed a model

for COVID recognition using an auto encoder-decoder with

merging features. It has a multi-class classification capacity

with 90.13% and 96.45% accuracy for three and four classes.

Ewen et al. [18] proposed a model based on targeted self-

supervision for classification with 0.86 accuracy on a small

dataset. Mishra et al. [19] proposed transfer learning (TL) tech-

niques based on VGG 16 and RseNet50 for COVID detection

from lung CT images. This model provides an average classi-

fication accuracy of 86.74% with VGG16 and 88.52% with
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ResNet50. Ahmed et al. [20] suggested a model based on slice

(2D) and volume (3D) for COVID detection using deep learning

with 90.8% accuracy. Islam et al. [21] proposed a model in

which deep features are extracted into CNN, and then

extracted features are applied to machine learning mecha-

nisms like SVM, RF, and Decision tree. CLAHE is also used to

enhance the quality of CT images. Ebenezer et al. [22] sug-

gested mechanism for image enhancement of CT scan like

wavelet, Laplace transform and CLACHE. After this images

are applied to EfficientNet for COVID classification. Bernheim

et al. [3], Singh et al. [23], and Das et al. [24], all demonstrate

that patients with COVID have observable abnormalities in

chest imaging, such as bilateral disorders, revealing that RT-

PCR is not the only approach for COVID diagnosis. The avail-

able conventional tools for decomposition like DWT, EWT,

wavelet packet decomposition (WPD), and a combination of

empirical wavelet transform (EWT) and discrete wavelet

transform (DWT) are non-adaptive and restrained to the dya-

dic range [25]. Bayram [26] has currently developed a valuable

wavelet transform based on Hilbert transform atoms couples

and rational responses of frequencies to overcome the draw-

backs of DWT like shift-invariance, fixed time–frequency, and

the bad result of frequency responses. In this work, FAWT is

utilized because it has analytic frequency response, fractional

scaling, and shifting parameters to cover flexible time–fre-

quency. Also, it has a good quality resolution of frequency

[26,27]. These advantages prosperities of FAWT is attractive

and it is also observed from literatures this decomposition

method is not used till now very efficiently for COVID diagno-

sis. Our work’s main contributions are as follows: 1) Com-

puter tomography images are used for COVID-19 detection

to overcome the RT-PCR false negative value. 2) The proposed

two-dimensional FAWT technique is utilized for removing the

noisy pixels and artifacts from images. 3) The constructed

model has been tested on a publically available dataset and

compared with state-of-art methods in terms of performance

parameters like accuracy, sensitivity, and specificity.

The remaining part of this paper is arranged as follows:

Section 2 describes datasets, Section 3 discusses the pre-

processing andmethodology of proposedworks, and Section 4

presents the results of the proposed methodology with exist-

ing methods. The final part of the paper is the conclusion

Section 5.

2. Database

We use 2482 images (1252 COVID and 1230 Normal) from the

SARS-CoV-CT database for binary classification [28]. Here,
Fig. 3 – Dataset images.
images are resized by a resolution of 240X240 pixels and

stored in 24-bit PNG format. The database is publicly

available https://www.kaggle.com/plameneduardo/sarscov2-

ctscan-dataset. These images of the dataset are obtained

from Sao Paulo hospital, Brazil. In this dataset 60 COVID+

(32M & 28F) and 60 COVID – (30M & 30F) CT images are pre-

sented. Fig. 3 shows dataset images, and Fig. 4 shows graphs

of patients.

3. Proposed methodology

In the proposed method, images are split into their red (R),

blue (B), and green (G) channels. We select the green channel

because it contains more appropriate information, and the

vision of humans is more sensitive to green color [7]. Then

contrast-limited adaptive histogram equalization (CLAHE) is

used to enhance the channel contrast and consistency of

pixel strength [29]. Fig. 5 shows the block diagram of the pro-

posed methodology.

3.1. Two dimensional FAWT

For image decomposition, Flexible Analytic wavelet transform

(FAWT) is an advanced version of DWT, and they have allures

properties like time and frequency, covering high-quality fre-

quency resolution and basic controlling parameters like dila-

tion factor (D), quality factor (Q), and redundancy (R) [26,30].

For discrete-time signal, a thin chirp let frame is formed using

Hilbert transform, which contains a pair of atoms and helps

for time–frequency study [31–33]. The ith decomposition level

can be achieved by combining one low pass filter (LPF) and

two high pass filters (HPF). Here, one HPF is positive, and

the other is negative frequencies [34,35]. Q-factor (Q) controls

the number of oscillations, while redundancy (R) stands for

time localization in wavelets. For wavelets, both of these fac-

tors are defined with the help of sampling parameters like p,

q, r, and s. Here, p and q using for up and down-sampling in

low pass filters, whereas r and s using for up and down-

sampling in high pass filters [27].

b ¼ 2
Q þ 1

Q ¼ x0

Dx
ð1Þ
Fig. 4 – Number of subjects and patients used for composing

this dataset.

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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Fig. 5 – Proposed framework of methodology.
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Here, x0 is the center frequency and Dx is bandwidth. L(x)

is used for low pass filter response for scaling, while H (x) is

for high pass filter. The H (x) and H*(-x) represent positive

and negative frequencies, respectively shown in Fig. 2. L (x)

in Eq. (2) and H (x) in Eq. (3) expressed as below [26,27]:

LðxÞ ¼

ffiffiffiffiffiffi
pq

p
; jxj < x1ffiffiffiffiffiffi

pq
p

P x�x1
x2�x1

� �
; x1 6 x 6 x2ffiffiffiffiffiffi

pq
p

;P p�ðx�x1Þ
x2�x1

� �
; �x2 6 x 6 �x1

0; jxj P x2

8>>>>><
>>>>>:

ð2Þ

HðxÞ ¼

ffiffiffiffiffi
rs

p
P p�ðx�x0Þ

ðx3�x0Þ

� �
; x0 6 x 6 x3ffiffiffiffiffi

rs
p

; x3 6 x 6 x4ffiffiffiffiffi
rs

p
P ðx�x4Þ

ðx5�x4

� �
; x4 6 x 6 x5

0; x 2 0;x0ð Þ \ x5;2pð Þ½ �

8>>>>><
>>>>>:

ð3Þ

x1 ¼ ð1�bÞpþ2
p ; x2 ¼ p

q ; x0 ¼ ð1�bÞpþ2
r

x3 ¼ pp
qr ; x4 ¼ p�2

r ; x5 ¼ pþ2
r ; 26 p�qþbq

pþq

� �
p

PðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcos xð Þ½ � 2�cos xð Þ½ �

p
2 ; x 2 0; p½ �

The filter banks reconstruction in FAWT is represented in

Equ.4 and 5. The appropriate value for the selection of Q

(Eq. (5)) and R (Eq. (6)) explains below:

jPðp� xÞj2 þ jPðxÞj2 ¼ 1 ð4Þ

1� p
q
6 b 6 r

s
Q ¼ 2� b

b
ð5Þ

R � g
h

1

ð1� p
qÞ

() p
q
� Rð1� dÞ&R >

b
ð1� p

qÞ
ð6Þ

An image I (X, Y) has rows (X) and columns (Y) with posi-

tive values in a 2D array. 2D FAWT performs the operation

columns-wise (1-D FAWT) followed by row-wise (1-D-FAWT).

The output of rows is used as input for columns [36,37]. In this
mechanism, we are producing two sub-bands. Approximation

coefficients (cA) result from combining all row values with

low-frequency, and this coefficient is a thin version (X � Y/2)

of the images. Detailed Coefficients (cV, cH, cD) are obtained

by combining high-frequency bands for all rows. Figs. 6 and

7 depicted the internal structure of the FAWT methodology

and the first level of image decomposition, respectively. With

the help of multi-resolution analysis, approximation coeffi-

cients are further decomposed into two sub-bands like cA1,

cV1, cH1, and cD1 with the image size (X/2, Y/2). This opera-

tion of the wavelet decomposition of approximation coeffi-

cients continues till the appropriate level of wavelet

decomposition is not obtained. To obtain a proper decomposi-

tion level, examine the performance parameters of the mod-

els [38].

3.2. Feature extraction using LBP and VAR

After the decomposition of processed images, statistical fea-

tures are extracted using local binary pattern (L) (LBP) and

Value at Risk (VAR) histogram (V) [29,39]. These features are

mainly known as median, Entropy, mean, standard deviation,

skewness, and kurtosis. The mathematical expression of L

and V is as follows:

LP;R ¼ PP�1

p¼1
Tðnp � cf Þ2p;TðyÞ ¼ 1; if y P 0

0; if y 6 0

�

VP;R ¼ 1
P

PP�1

p¼1
np � 1

P

PP�1

p¼1
np

 ! ð7Þ

where P is the pixel number of circular radius (R), np is the

neighborhood pixel around the center pixel (cf). Total

12 � B � Split channel (C = 1) features are extracted where B

is sub-band which is four after decomposition.

3.3. Feature normalization, feature selection, ranking

Now feature normalization is applied because it helps

enhance the performance of the classifier. In this work, differ-

ent types of Texture-based feature extraction methods are

utilized, so the range values of features are different. The

available traditional classifier like SVM, LS-SVM, RF, XGboost,

and ANN use distance measures while updating constraints.

Low-magnitude features are less weighted than high magni-

tude features [40]. With the help of the min–max normaliza-

tion method (0–1), this difficulty can be determined. The

mathematical expression of Min-max normalization (M) as

below [41]:

MðiÞ ¼ fðiÞ � fmin

fmax � fmin

ð8Þ

where M (i) is ith normalized feature, f (i) is ith feature value,

and in feature vector fmin- fmax are minimum and maximum

values. Whether medical or natural, min–max normalization

is best suited because they have a fixed range (0–255) value.

After normalization of features, PCA is used for feature selec-

tion, and then selected features are ranked using a student’s

t-test [42,40]. The feature selection and feature ranking meth-

ods explain below:
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1. Principal component analysis (PCA): Commonly, obtained

features size from Texture based extraction is large due

to this classification performance of the model is time-

consuming [43]. So it is necessary to reduce the size of fea-

tures because all extracted features are not playing an

important role in classification, and it is necessary to

select only relevant or significant features. Traditionally,

various dimension reduction techniques are available, like

PCA and LDA. In this work, PCA is used for reducing the

size of features [44]. In this method, data is represented

in a set of new orthogonal variables called principal com-

ponents (PCs), and the dimension of these components is

less compared to the original. Let’s consider that D is our

data represented in the N-dimensional plane, and then

PCA is utilized to represent our model data (D) in M dimen-

sional subspace. It can be stated mathematically as:
D 2 RN � RM;M < N ð9Þ
2. Feature ranking: it is necessary to arrange selected fea-
tures in a ranked form because applying all features with-

out provided rank makes the model complex and may also

affect the classification performance. So for reasonable

classifications, arrange the selected features such that

there is a large variance between classes and small within

classes. We used the Student’s t-value to arrange features

with high to low ranks [40]. After ranking features, they are

applied to the classifier. Here high-rank features followed

by low-rank features are provided to the selected classifier.

3.4. Least square support vector machine (LS-SVM)
classifier

LS-SVM is an advanced version of SVM. It can work with lin-

ear, non-linear, small, and large datasets [45]. LS-SVM work

with linear equation while SVM work with quadratic [46].

Here, the hyper plan is used for boundary creation, and radial

basis function (RBF) kernels are used for distinct non-linear

features. RBF is a flexible kernel [47], and it is suitable for sep-

arating our non-linear data. Our proposed method has been

evaluated based on various parameters like accuracy, speci-

ficity, sensitivity, and F-score [48]. The kernel function of

SVM is as follows:

i. Linear kernel (LK)
Kðx; yÞ ¼ yT:x ð10Þ
ii. polynomial kernel (PK)
Kðx; yÞ ¼ yT:xþ 1
� �n ð11Þ
iii. Radial basis function (RBF)
Kðx; yÞ ¼ e�fjjx�yjj2 ð12Þ
Fig. 6 – Internal structure of the FAWT.

Here, >0f (scale parameter), and its value is f ¼ 1=r2.

To separate the data, SVM used kernel (k), which is

expressed as:

fðyiÞ ¼ signð
Xn
i¼1

fðxÞ:ai:Kðx; yÞ þ bÞ ð13Þ

Here,fðxÞ ¼ wTx� b, ai is langrage multiplier, w is weight, T

stands for transpose, and b is a constant coefficient. If the

sigma value is overestimated, it is treated as linear, and if it
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is underestimated, it loses normality. The PCA ranked fea-

tures are fed to the SVM classifier for COVID classification.

The performance of our proposed method has been observed

based on various parameters like accuracy, specificity, sensi-

tivity, and F-score discussed below [48]. The model sensitivity

indicates how well it can classify positive classes. The

model specificity reveals how well it can categorize the nega-

tive class. The model accuracy measures how well it can cat-

egorize positive class images into positive classes and

negative class images into negative classes. The harmonic

mean of Precision and Recall is the F1 score. The AUC mea-

sures how well a model can distinguish between different

classes [49,50].

Accuracy ¼ NTP þNTN

NTP þNTN þNFP þNFN
ð14Þ

Specificity ¼ NTN

NTN þNFP
ð15Þ

Sensitivity ¼ NTP

NTP þNFN
ð14Þ

F1� score ¼ 2NTP

2NTP þNFN þNFP
ð15Þ

True positive, true negative, false positive, and false nega-

tive are represented by the letters NTP, NTN, NFP, and NFN.

4. Result and discussions

4.1. Results

A COVID-19 illness classification model is provided in this

work, which uses a CT scan of a lung to classify whether or

not a person is infected with COVID. When it comes to illness

identification, feature extraction is essential. The importance

of frequency-oriented data has been demonstrated in previ-

ous research such as. Data is extracted from CT-scan sub-

band pictures using the FAWT approach. Recent work

employed wavelet transformation for classification utilizing

CT scans and basic machine learning techniques such as

principal component analysis (PCA), LDA, RF, SVM, and K-

nearest neighbors (KNN). A unique process is proposed that
Fig. 7 – First level decompos
combines FAWT for image decomposition, statistical feature

extraction, and machine learning algorithms for classifica-

tion, and the results show a considerable improvement over

previous work. In the current investigation, three preliminary

experiments were conducted. The first experiment was con-

ducted to determine the appropriate level of decomposition

of the FAWT approach for COVID-19 diagnosis. A second

experiment was conducted in order to determine the best

classifier. The robust and important features are extracted

and examined in the second experiment. The best-proposed

model was investigated using different fold cross-

validations in the third experiment. In this work, images are

decomposed into sub-band images with the help of 2D-

FAWT. Afore, Statistical based LBP and VAR features are

extracted from sub-band images, and then PCA is utilized

for dimensionality reduction and ranked the robust features

with the help of the Student’s t-value [51]. Finally, Least

Square-SVM has been used for COVID stage classification

[52]. Tenfold cross-validation has been used to test our pro-

posed model performance. The proposed novel method has

desirable properties like time–frequency covering, better fre-

quency resolution, and effortless control on main parameters

like d, R, and Q [26]. With the help of the 2D- FAWT method,

processed images are decomposed into sub-bands images of

different scales of frequencies. The number of decomposition

levels and the parameters of the FAWT channel are chosen

through the experiment to achieve the maximum classifica-

tion accuracy feasible. The model accuracy is examined at

every level of decomposition from one to six, represented in

Fig. 8. After observation, we found that performance parame-

ters are enhanced up to the 6th level. After this, parameters

are not improved at the 7th and 8th levels compared to previ-

ous levels. As the number of decompositions increases, the

computational time increases. Hence, after the fixed decom-

position level, different values of p, q, r, and s are examined

with different D, R, and Q- factors [26,27,33]. The values of

these parameters are p = 1, q = 2, r = 1, s = 2, and beta value

is 0.5. After selection of beta value Q- factor is fixed at 3 (var-

ies from 2 to 4). The value of beta and Q-factor is decided

according to the Eq. (5). D factor varies from 0.5 to 1 (0.5,

0.6, 0.75 0.83, 1). The value of D is 0.83, and R is 1. Table 3
ition structure of FAWT.



Table 1 – Confusion matrix of model.

COVID Non-COVID

COVID 1170 82
Non-COVID 80 1150

Table 2 – Comparison of various Image decomposition
methods.

Decomposition ACC. (%) Spec. (%) Sens. (%)

DWT 86.56 88.2 85.1
EWT 89.26 90.86 87.47
Curvelet 89.26 90.86 87.47
Contourlet 90.28 91.3 88.83
CWT 90.56 91.46 89.62
2D-FAWT* 93.4 93.34 93.62

*Our selected decomposition method.
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shows all selected parameters of FAWT. Fig. 8 shows the max-

imum accuracy of 93.47%, the sensitivity of 93.6%, specificity

of 93.34% at the 6th level of image decomposition for classifi-

cation. Beta.5 Q-factor 3, D.83, and R are the optimal parame-

ters for designing an FAWT filter bank. On the database,

conventional decomposition methods such as DWT [53],

EWT [7,54], CWT, Curvelet [55], and Contourlet [56] perform

poorly when compared to the proposed 2D-FAWT method

illustrated in Table 2. The classification accuracy of our pro-

posed decomposition approach was 93.47. Constant-Q trans-

forms like the DWT and X-let allow dyadic scale

decomposition. As a consequence, their frequency resolution

will be less. As a result, these strategies required more

decomposition levels and computing effort to get similar

results as our proposed methodology. From each images total

of 48 (12xBxC) features are extracted. Here, sub-band (B) is 4,

and Channel (C) is only the green channel.

PCA is utilized for feature reduction, and it is decided

using the cumulative sum of variances (CSoV) per principal

component (PC). The selection of PC based on the threshold

rate of the CSoV, in our work threshold rate, varies from

90% to 98% [57] and found that at 92% threshold, 11 features

are qualified out of 48 for COVID classification. The values

of PCA are shown in Table 4. Fig. 9 shows the per features per-

formance of our proposed model, and at 11 feature model

attains higher performance. Selected robust and relevant fea-

tures are applied to various classifiers, and their results are

shown in Table 6.

The Random forest (RF) [58], K-nearest Neighbour (KNN)

[59], Support vector machine (SVM), and Least-square SVM

[60] are utilized for classification with Tenfold cross-

validation. The number of decision trees in this work is set

at 100. The number of neighbors for the KNN classifier is set

to 1, and the distance metric is Euclidean distance. The SVM

classifier kernel function is a Gaussian function. The best

number of trees for Random Forest (RF) is determined by trial

and error, taking computing time and performance into

account. In the LS-SVM classifier, the value of RBF parameter

sigma (r) varies from 0.3 to 3, with the increment of 0.3 is rep-

resented in Table 5. Table 5 also shows the result with respect

to the linear and polynomial kernel. At a 2.1 sigma value, our

model attains the highest classification accuracy with Baye-

sian optimization [61]. K-fold cross-validations were con-

ducted to ensure that the model classification performance

was trustworthy and unbiased. The entire database was
Fig. 8 – Performance of model per decomposition level.
randomly partitioned into K equal sets for K-fold cross-

validation. Our model performance has been evaluated 2, 4,

6, 8, 10 fold depicted in Table 6 and observed that at the

10th fold, this model attains the highest values of parameters.

Table 1 shows the Confusion Matrix after the tenth fold for

binary classification. All of the performance metrics are gen-

erated using the confusion matrix. Our binary classification

model failed to distinguish 162 of 2,482 pictures according

to the confusion matrix. COVID positive patients accounted

for 82 of the 162 misclassified photographs, while Non-

COVID positive patients accounted for the remaining 80. This

confirms that our method correctly identifies COVID patients

with significant true positive and negative rates. In addition,

we conducted an ablation test to ensure the effectiveness of

the 2-D-FAWT shown in Table 8. In this Table, we observed

that our selected decomposition 2-D-FAWTmodule could pro-

gress the performance values in terms of Accuracy, Sensitiv-

ity, and specificity by 4.87%, 3.14%, and 6.7%, respectively.

This demonstrates the utility of utilizing a multiresolution-

based technique for disease detection. We conduct the exper-

iments to evaluate the model performance on the publicly

available dataset. The proposed model is compared with pre-

viously developed various traditional and deep learning mod-

els. We obtained that our developed model is less complex

and needs less dispensation time for COVID detection. Using

Thonny and MATLAB, we performed our experiment on an

Intel Core i3 Central processing unit (CPU), 2.27 GHz proces-

sor, and 8 GB RAM with Microsoft window (10), a 64-bit oper-

ating system (OS).

In Table 7, the performance of our model is compared to

that of existing approaches on CT scan images. Pramod

et al. [7] used empirical wavelet transform and transfer learn-

ing for COVID diagnosis. Pradeep et al. [13] used FBSE based

image decomposition, CNN network used for deep feature

extraction, and RF, Naive Bayes, Adaboost, and softmax clas-

sifier for COVID classification. Ewen et al. [18] proposed a self-

supervision method for the small labeled dataset, which is

advantageous over the transfer learning techniques. Huan

et al. [11] joint classification and segmentation method for



Table 3 – FAWT parameters.

Parameters Q = 2 (p = 1, q = 3, r = 2,s = 3) Q = 3 (p = 1, q = 2, r = 1, s = 2) Q = 4 (p = 3, q = 5, r = 2, s = 5)

RF SVM KNN LS-SVM RF SVM KNN LS-SVM RF SVM KNN LS-SVM

Accuracy 91.32 91.63 90.28 90.57 91.12 90.23 91.48 93.47 90.22 90.23 90.48 92.27
sensitivity 90.12 91.54 90.34 91.62 91.32 91.56 91.64 93.6 90.43 91.56 91.44 92.56
specificity 91.48 92.36 91.38 91.34 92.4 90.3 92.3 93.34 91.44 90.3 90.35 92.38

DF = 0.75 (p = 1, q = 2) DF = 0.83 (p = 4,q = 4) DF = 1 (p = 2,q = 2)
Accuracy 92.22 91.23 90.42 93.47 89.42 90.23 91.48 92.47 91.32 90.43 91.48 92.27
sensitivity 91.62 90.56 91.58 93.6 90.32 91.56 90.64 92.68 92.42 91.26 90.64 91.68
Specificity 90.48 91.38 92.48 93.34 91.43 90.3 92.3 91.34 91.34 90.23 92.36 90.24

R = 1 (r = 1, s = 2) R = 2 (r = 2,s = 2) R = 3(r = 3,s = 2)
Accuracy 90.42 90.63 90.8 93.47 90.62 90.63 90.48 93.67 90.32 91.23 90.28 93.07
Sensitivity 91.62 91.76 92.64 93.6 91.42 91.26 91.54 93.26 91.62 90.56 91.54 93.64
Specificity 90.48 90.34 91.36 93.34 90.58 91.38 92.36 93.62 92.48 91.32 90.34 93.24

Table 4 – Performance at different CSoV (PCA) and LDA.

Parameters PCA (CSoV) LDA

90% 92% 95% 98%

Features 8 11 20 30 11
Accuracy 92.62 93.47 92.56 92.6 91.38
Sensitivity 91.23 93.6 92.87 93.53 92.57
Specificity 92.3 93.34 93.40 93.28 90.4

Fig. 9 – Performance of model per feature using LS-SVM.

Table 5 – Classification performance of our model on dataset
with different kernels.

kernel parameters Acc. (%) Spe. (%) Sen. (%)

LK 88.6 87.3 89.3
PK n = 2 89.23 87.6 90.6

n = 3 90.32 89.32 91.4

RBF Different Sigma values (r)

1.5 92.46 89.5 90.2
1.8 91.78 92.4 91.7
2.1 93.47 93.34 93.6
2.4 93.1 92.6 91.4
2.7 92.7 87.2 90.2
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COVID detection with 93% and 95% average specificity and

sensitivity, respectively. Ahmed et al. [20] proposed a slice

and volume-based deep learning model for COVID detection.

Di et al. [63] propose an Uncertainty Vertex-weighted Hyper-

graph Learning (UVHL) method to identify COVID using CT

images. In this method, different features are extracted from

CT images, and the relation between different cases is built

using Hypergraph. Wang et al. [64] developed Contrastive

cross-site learning with the redesigned model for COVID clas-

sification. All existing model shown in Table 7 is restricted by

their performance parameters. Our proposed model outper-

forms or is comparable to the majority of existing research

in this domain. It can be shown that all of the approaches

had an accuracy of more than 85%. In terms of known meth-

ods, [64] achieves the highest value of parameters. Their

model has a 90.83% accuracy, a 0.9 F1 score, and a 0.96 AUC.

The lack of pictures of COVID patients could explain why

other approaches are so inaccurate. The bulk of the tech-

niques used machine and deep learning for their research

because it is the most widely used method for pattern recog-

nition and picture categorization. On COVID, the majority of

the detection and classification methods which are presented

in Table 7 are based on transfer learning, smaller dataset, and

manual feature extraction from images, for detection and

classification, only one type of image is used, i.e., X-rays or

CT scans, not both. Our model offers a lot of valuable proper-

ties, such as being more efficient with fewer features and hav-

ing lower computing complexity. Due to this fact, our

suggested methodology decomposes the COVID and Non-

COVID images into sub-band images. The statistical features

are extracted from those meaningful sub-images, which

improves classification performance effectively. Furthermore,

because the dimensions of the features acquired by the sug-

gested method are modest, doctors can use them for diagno-

sis, which is not possible with previous approaches. In our

situation, however, the image resolution is left unchanged

in order to preserve all of the image information. In outline,

the proposed method is very efficient, has less computational

complexity, and is more significant with limited features for

identifying COVID state–of–the–art approaches with high

accuracy of 93.47%, and specificity of 93.3%, a sensitivity of



Table 6 – Performance of the model with respect to the number of Fold.

Classifier Fold number ACC. (%) Spec. (%) Sens. (%)

Random Forest 2 84.23 86.4 87.2
4 86.38 88.32 86.36
6 88.46 89.27 88.4
8 87.6 88.68 89.7
10 91.05 89.3 89.9

Support vector machine 2 83.63 84.56 84.65
4 87.58 88.23 87.38
6 86.74 87.31 88.21
8 89.3 87.65 89.58
10 90.25 88.36 91.3

Least square support vector machine 2 85.3 87.78 88.6
4 87.42 89.4 91.64
6 86.12 88.62 88.4
8 91.56 93.5 92.37
10 93.47 93.34 93.6

Table 7 – Comparison of the model with existing methods.

Previous methods Acc
(%)

Spe
(%)

Sen
(%)

F1
(%)

AU C
(%)

Yang et al. [62] 89 – – 90 –
Even et al. [18] 86.6 – – 87.4 86.09
Pramod et al. [7] 85.5 – – 85.2 96.6
Di et al. [63] – 94.1 93.2 – –
Huan et al. [11] – 93 95 78.5 –
Ahmed et al. [20] 90.80 – – – 0.9
Wang et al. [64] 90.83 – – 0.90 0.96
Pradeep et al. [13] – 96.5 – 0.97 0.98
Our method 93.4 93.34 93.6 93 93.62

Table 8 – Ablation experiment result.

Dataset Module Acc. (%) Spe. (% Sen. (%)

SARS-CoV-CT W/O* 88.6 90.29 86.9
W* 93.47 93.34 93.6

W/O* without and W* means with decomposition.
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93.6%. In all Tables, bold items represent the proposed

methodology best results.

4.2. Discussions

Due to the limits of nucleic acid-based laboratory testing,

there has been an urgent demand for speedier alternatives

that front-line health care workers can use to diagnose the

condition promptly and reliably. Gray texture analysis of pic-

tures has been employed in the creation of automated diag-

nosis systems for a variety of diseases in the past [65,66].

Nucleic acid-based detection for the presence of specific

sequences of the SARS-COV-2 gene has been the gold stan-

dard for COVID-19 diagnosis. While we continue to value

nucleic acid detection in the diagnosis of SARS-COV-2 infec-

tion, it is essential to emphasize that the significant number
of false negatives caused by methodological flaws, disease

phases, and specimen collecting procedures may cause

delays in diagnosis and disease control. According to recent

research, nucleic acid testing accuracy ranges between 30

and 50 percent [67]. With the fast rise of COVID-19 suspicions

around the world, developing effective automated techniques

for COVID-19 diagnosis from CT imaging is critical in order to

increase clinical diagnosis efficiency and relieve clinicians

and radiologists of their tedious job. However, correct

COVID-19 identification from CT imaging is a non-trivial diffi-

culty, owing to the highly comparable patterns of COVID-19

and other pneumonia types and the substantial appearance

variance of COVID-19 lesions in patients with varying degrees

of severity. Recently, a number of models have been proposed

to overcome this challenge [7,11,13,18,20,62,63,64] resulting in

significant advancement in the field of automated COVID-19

diagnosis.

We developed an automated approach for COVID diagno-

sis using FAWT and statistical characteristics in this study.

COVID images are separated into distinct R, G, and B chan-

nels using the proposed methodology. Because the green

channel has the highest intensity and contrast of all the

color channels, it contains more discriminative information

than the other color channels. Even if they were to be uti-

lized for classification, the other two frames have nearly

the same information with low contrast. Thus, they will

add to pre-processing processes. Furthermore, the three

frames must be averaged as the last step to generate the

greyscale image, resulting in information loss compared to

using the green channel alone [68]. FAWT is used to decom-

pose images at various levels. It is a more sophisticated form

of DWT, with allures features such as time and frequency, as

well as basic regulating factors such as dilation factor (D),

quality factor (Q), and redundancy (R) [26]. Table 3 shows

the values of FAWT parameters. Fig. 8 and Table 2 illustrate

the results of per decomposition level and decomposition

performance compared to other methods, respectively. LBP

and VAR are texture operators that efficiently capture

changes in greyscale pixel variations. We used LBP and

VAR to capture the information present in decomposed



Table 9 – Comparison of the proposed model with previously developed models.

Ref. Methods Results (%) Limitation /challenges

Wang et al. [71] AI + Graphical features Acc- 79.3
Spe- 83
Sen- 67

Graphical features take time for feature extraction
from the COVID CT images, which is effected the
performance of the model.

Gaur et al. [7] Empirical wavelet
transformation + Transfer
learning

Acc-85.5
F1-score 85.28 Spe- -

An EWT-based method cannot discriminate the
signals if they overlap in the time and frequency
domain. Also, this method suffers from boundary
distortion and noise sensitivity.

Wang et al. [64] Modified COVID-Net Acc- 90.83
F1- score � 90
Sen- -

At the time of feature extraction from the lesion
area, the image resolution is reduced due to this, the
model performance is affected.

Chaudhary et al. [13] FBSED + ML Acc- 97.6
F1-score 98
Sen- 97

This model has higher performance, but the used
image decomposition method takes more time due to this model
suffers from higher computational complexity.

Gour et al. [14] Stacked CNN model Acc- 98.3
Spe- -
Sen- 97.6

This model is applicable only for large datasets because CNN
requried more training datasets.

Yan et al. [72] Multi-Scale CNN Acc- 87.5
Spe- 87.5
Sen- 89.1

This method is not able to identify the Unique features and Cares
about only the general pattern of CT images which is caused for miss
Classification or a high false-negative rate. It is tested only on a
small dataset.

Hasan et al. [73] DCNN + 2 D- EMD Acc �91.87
Spe � 91.24
F1 score � 91.94

EMD method suffers from boundary distortion, Noise sensitivity,
and not appropriate Mathematical proofs.

Proposed model

S.No. Method Advantages

1. FAWT The time–frequency covering is the most significant property of FAWT. FAWT
also resolves the shift-invariance and poor frequency resolution in DWT.
A comparison of other image decomposition methods has fractional scaling and
shifting properties which is helpful to enhance the performance of the model, as
depicted in Table II. Due to the high resolution of decomposed images, statistical
features are easily extracted.

2. LBP and VAR This technique is based on Statistical, which covers all distinctive features from the
decomposed images.
It also helps to find the uniqueness of features, which helps identify diseases from CT images.

3. Student t-value and LS-SVM (RBF) The hyper plan is used for boundary creation, and radial basis function (RBF) kernels are used
for distinct
non-linear features. RBF is a flexible kernel, and it is suitable for separating our non-linear data

Results of proposed model:- FAWT + Statistical features (LBP + VAR) + LS-SVM (RBF) – The proposed model is more appropriate than previously developed
models because it has a less false-negative rate performance matrix of the model is Acc 93.4, Spe 93.34, Sen 93.6, F1-score 93. For COVID detection, the proposed
model requires less number of features, and also FAWT-based decomposition preserves the information without loss.
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images in this study. The underlying texture variation in

deconstructed pictures is captured using statistical charac-

teristics [39]. The information provided in FAWT images is

effectively captured by median, Entropy, mean, standard

deviation, skewness, and kurtosis [31,33]. Entropy is a mea-

sure of signal complexity or uncertainty in general. These

characteristics have lately been examined for.

a variety of biomedical signal processing applications.

These characteristics have previously been demonstrated to

be beneficial for detecting glaucoma [31], human seizures,

and fatty liver disease classification [69]. The benefit of these

features is their universality and flexibility, which is attributa-

ble to the parameters involved, which allow for many uncer-

tainty measures. We investigated these features for COVID

diagnosis using CT lung images because of their known effi-

ciency [70]. Table 4 indicates the superiority of PCA features

over LDA features, as shown in Fig. 9. This is because normal

photos have higher pixel intensity variations, but COVID

images have fewer pixel intensity variations. These findings

suggest that the features recovered from the decomposed

green channel are useful in distinguishing between the two

classes. We found that combining the student’s t-value rank-

ing features with LS-SVM improved the proposed approach’s

overall performance. Tables 5 and 6 show the classification

performance of various kernel values and classifiers. CT

scans are shown to be more suitable for COVID than x-rays

because a computer tomography (CT) scan creates a 3600 pic-

ture of the body, which provides a high amount of detail. As a

result, a CT scan is preferred for emergency and diagnostic

purposes.

In conclusion, the suggested methodology has the follow-

ing advantages over existing methodologies:

1. Using 11 characteristics, the suggested technique achieved

93.47 %, 93.6 % sensitivity, and 93.34 % specificity. As a

result, our strategy is helpful in easing the workload on

doctors during mass patient screening.

2. When tested on a dataset of CT lung images, the suggested

method surpassed existing methodologies for COVID diag-

nosis, achieving the most significant classification

accuracy.

The proposed approach has not been tested on large and

diverse databases, and FAWT has employed two separate fil-

ters for the high-frequency component, which is the current

limitation of the study conducted. The competitiveness of

our results and methods are depicted in Table 9.

5. Conclusion

We developed a way to deal with the problem of testing and

identifying COVID-19 patients in this study. For image decom-

position, the 2-D FAWT technique is used in our work for the

first time. The key advantages of FAWT are that it is shift-

invariant, has tunable oscillatory bases, and can cover a wide

range of time and frequency variations. Thismethod improves

the performance, and it is helpful for deep feature extraction

from decomposed sub-band images using LBP and VAR his-

togram. After this, PCA is used for dimensionality reduction.
The Student’s t-test algorithm ranks selected features. Then,

selected features are applied to the different classifiers: RF,

KNN, SVM, and LS-SVM (RBF). The effectiveness of our model

has been evaluated using Tenfold cross-validation. FAWT

module-based decomposition enhances the performance

matrix of the model in terms of Accuracy, Sensitivity, and

specificity by 4.87%, 3.14%, and 6.7%, respectively. Proposed

model is more suitable than other models because it has clas-

sified COVID images with an accuracy of 93.47% based on the

various experimental results. Compared to the previous study,

our approach gives better outcomes with fewer features and

lower computational complexity. We can infer that our

approach is appropriate for COVID detection based on the

results. More interestingly, the suggestedmodel outperformed

the existing methods for lung CT image classification. This

methodology can also be extended to diagnose various infec-

tions via X-rays, CT scans, and other imagingmodalities, such

as tuberculosis, brain tumor, Glaucoma, Cancer, and influenza.
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