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Aberrant expression of CITED2 promotes prostate
cancer metastasis by activating the nucleolin-AKT
pathway
Seung-Hyun Shin1,2,3, Ga Young Lee1,2,3, Mingyu Lee1,2,3, Jengmin Kang1,2,3, Hyun-Woo Shin 1,2,3,

Yang-Sook Chun1,3 & Jong-Wan Park 1,2,3

Despite many efforts to develop hormone therapy and chemotherapy, no effective strategy to

suppress prostate cancer metastasis has been established because the metastasis is not well

understood. We here investigate a role of CBP/p300-interacting transactivator with E/D-rich

carboxy-terminal domain-2 (CITED2) in prostate cancer metastasis. CITED2 is highly

expressed in metastatic prostate cancer, and its expression is correlated with poor survival.

The CITED2 gene is highly activated by ETS-related gene that is overexpressed due to

chromosomal translocation. CITED2 acts as a molecular chaperone to guide PRMT5 and

p300 to nucleolin, thereby activating nucleolin. Informatics and experimental data suggest

that the CITED2–nucleolin axis is involved in prostate cancer metastasis. This axis stimulates

cell migration through the epithelial–mesenchymal transition and promotes cancer metas-

tasis in a xenograft mouse model. Our results suggest that CITED2 plays a metastasis-

promoting role in prostate cancer and thus could be a target for preventing prostate cancer

metastasis.
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Prostate cancer is the most frequently diagnosed cancer and
the second leading cause of cancer-related death among
males. Despite many efforts to develop hormone therapy

and chemotherapy, the prognoses of patients with advanced
prostate cancer remains poor, because these treatments cannot
control cancer metastasis1,2. One of the most distinct features of
prostate cancer is that more than half of the patients display gene
fusion between androgen-responsive gene TMPRSS2 (trans-
membrane protease, serine 2) and ETS (erythroblast transfor-
mation-specific) transcription factor genes such as ERG (ETS-
related gene) and ETV13. TMPRSS2–ERG fusion is reported to
promote cancer progression4,5, but the downstream mechanism is
not clearly known.

CBP/p300-interacting transactivator with E/D-rich carboxy-
terminal domain-2 (CITED2, also known as MRG1 and p35srj) is
a transcriptional coregulator together with the transcriptional
coactivator p300/CBP. Depending on its target gene, it functions
as a positive or negative regulator of gene expression. For
example, CITED2 acts as a coactivator of activator protein 2 (AP-
2) transcription factors by recruiting p300/CBP to AP-2 target
genes6. In contrast, CITED2 inhibits hypoxia-induced gene
expression by preventing p300/CBP recruitment to the hypoxia-
inducible factor-1α7. CITED2 interacts with other components
besides the aforementioned proteins. CITED2 expression is
induced by hypoxia, lipopolysaccharides, growth factors, and
proinflammatory cytokines8. CITED2 also plays essential roles in
embryonic stem cell differentiation9 and development of diverse
organs, including liver10, lung11, heart12, and lens13. Furthermore,
adult hematopoietic stem cell (HSC) functions are maintained by
CITED2 via lnk4a/Arf and Trp5314, and acute myeloid leukemia
critically requires CITED2 expression15. However, only a few
investigations have been conducted on the role of CITED2 in
tumor development during the last decade. CITED2 was reported
to promote tumorigenesis of Rat1 cells8 and growth of lung
cancer cells16. However, CITED2 inhibited proliferation of colon
cancer cells17, and low expression of CITED2 was associated with
a poor prognosis in breast cancer18. In particular, CITED2 is
suspected to be extensively involved in prostate cancer, since its
expression is induced by an ETS family member ELK119, which
has been reported to recruit AR to activate growth signaling in
prostate cancer cells20. In this study, we performed co-
immunoprecipitation and shotgun proteomics to discover a
CITED2-interacting protein, and identified nucleolin (NCL).
NCL is an RNA-binding nulceolar protein which has been
reported to stimulate cancer progression and metastasis21–23,
although the exact underlying mechanism has not been
determined.

NCL is widely known to regulate ribosomal RNA (rRNA)
transcription of the engrafting complex of pre-ribosomes. NCL
binds to non-transcribed spacers of recombinant DNA tran-
scription initiation sites or interacts with histone-1 to induce de-
condensation of chromatin structures24,25. NCL also forms the
pre-rRNA processing complex by recruiting U3 small nucleolar
RNA26,27. Moreover, NCL promotes translation of target mes-
senger RNAs (mRNAs) by binding to their G-rich mRNA coding
regions to facilitate polysome formation on transcripts28. NCL
consists of three functional domains: the N-terminal domain
composed of highly acidic regions intermixed with basic regions,
the RNA-binding domain, and the glycine- and arginine-rich
domain. NCL is post-translationally modified by casein kinase 2
and p43cdc2, which phosphorylate NCL at serine residues within
the acidic regions29 and at threonine residues within the basic
regions, respectively30. These phosphorylation events of NCL are
regulated throughout the cell cycle. Notably, P300-mediated
acetylation31 and PRMT5-mediated methylation32 of NCL have
also been reported, but no studies have been conducted on the

oncogenic functional changes induced by these post-translational
modifications of NCL.

In the present study, we found that CITED2 was highly
expressed in metastatic prostate cancer because of TMPRSS2–
ERG gene fusion, which promoted metastasis by activating NCL
at the post-translational level. We also propose that the
CITED2–NCL signaling pathway is a potential target for treating
prostate cancer metastasis.

Results
CITED2 is highly expressed in metastatic prostate cancer. We
examined CITED2 expression in 28 different types of cancer
using The Cancer Genome Atlas (TCGA) database and found
relatively high CITED2 mRNA levels in thyroid, kidney, ovarian,
lung, prostate, breast, and lung cancers (Fig. 1a). We next com-
pared CITED2 levels between normal and cancer tissues using the
Genomic Spatial Event (GSE) database. Of six types of cancers
evaluated, CITED2 was elevated only in prostate cancer com-
pared with normal tissue (Fig. 1b). Prostate cancer patients from
the TCGA database were categorized into CITED2_low and
CITED2_high groups with respect to the median CITED2
expression value. Overall survival was lower in the CITED2_high
group than in the CITED2_low group (Fig. 1c). In thyroid,
ovarian, lung, and breast cancers, CITED2 expression was not
correlated with overall survival (Supplementary Figure 1a). In
renal cell carcinoma (RCC), the CITED2_high group showed a
longer survival than that of the CITED2_low group. To examine
the involvement of CITED2 in prostate cancer progression, we
determined CITED2 expression in primary tumor and metastatic
tumor tissues and found that CITED2 expression was increased
in metastatic tumors (Fig. 1d). CITED2 expression in other types
of cancers was not significantly increased with tumor stage
(Supplementary Figure 1b). To evaluate CITED2 expression at
the protein level, immunohistochemistry (IHC) using an anti-
CITED2 antibody was performed in human prostate cancer tis-
sues, which were categorized according to their Gleason score.
Increased CITED2 protein levels were associated with an
increasing Gleason score (Fig. 1e). When the prostate cancer
tissues were divided into the CITED2_high and CITED2_low
groups, a lower tumor-free survival was evident in CITED2_high
compared with CITED2_low (Fig. 1f) group. CITED2 expression
might correlate with poor prognosis in prostate cancer patients.

ERG increases CITED2 expression at transcription level in
prostate cancer. The ETS genes are fused to the promoters of the
androgen receptor target genes, leading to their high expression
in prostate cancer cells3,33. Because ELK1 in the ETS family has
been reported to transactivate the CITED2 gene19,34, we exam-
ined which member in the ETS family is responsible for CITED2
gene activation in prostate cancer. We compared the mRNA
levels of ETS members between normal prostate and prostate
cancer tissues using the GSE6919 prostate cancer data set (Sup-
plementary Figure 2a). Among those mRNAs, the ERG level
increased to the greatest extent in cancer tissues (Fig. 2a). The rate
of gene fusion was highest to ERG among the ETS members
according to the TCGA mutation sequence data (Supplementary
Figure 2b). Immunoblotting analysis in various prostate cancer
cell lines showed an apparent correlation between ERG and
CITED2 expressions (Supplementary Figure 2c). Of the examined
cell lines, VCaP harboring the TMPRSS2–ERG gene fusion
expressed both ERG and CITED2 to the highest levels. When
ERG was knocked down using three different small interfering
RNAs (siRNAs), the CITED2 protein and mRNA expression were
both significantly downregulated in three cell lines, indicating
ERG-dependent expression of CITED2 (Fig. 2b, c). In prostate
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cancer cells harboring the TMPRSS2–ERG fusion, ERG expres-
sion is known to be highly induced by testosterone. As expected,
testosterone robustly induced ERG expression in VCaP cells,
where CITED2 expression was subsequently increased. Such
effects of testosterone were not observed in DU145 cells without
the TMPRSS2–ERG fusion (Fig. 2d). To examine the ERG
binding to the CITED2 promoter, we performed chromatin
immunoprecipitation and quantitative PCR analyses. Among the
three regions within the promoter, the second region was iden-
tified as an ERG-binding site (Fig. 2e). We then constructed a
luciferase reporter plasmid containing the CITED2 promoter.
Compared to PC3 and DU145 with a lower level of ERG, three
prostate cancer cell lines with high ERG expression had greater
luciferase activity (Supplementary Figure 2d). In these cell lines,
CITED2 promoter activity was diminished by knocking down
ERG or by mutating the putative ERG-binding motif (Fig. 2f).
Next, we performed IHC to characterize ERG expression in
prostate cancer tissues. The ERG level in prostate cancer
increased with the Gleason score (Fig. 2g). Tumor-free survival in
the ERG_high group was significantly lower compared with the
ERG_low group (Supplementary Figure 2e). Pearson’s correlation

analyses showed that CITED2 expression was positively corre-
lated with ERG expression (Fig. 2h). Furthermore, we performed
PCR using DNAs extracted from prostate cancer tissues and
detected TMPRSS2–ERG gene fusion in 15 of 49 prostate cancers
(Fig. 2i). A chi-square test revealed that TMPRSS2–ERG gene
fusion is associated with a high Gleason score (Supplementary
Figure 2f). ERG and CITED2 overexpression in the
TMPRSS2–ERG gene fusion samples (Fig. 2j) further support the
ERG-driven overexpression of CITED2 in prostate cancer cells.

CITED2 binds to a multimeric complex consisting of NCL,
p300, and PRMT5. To identify the CITED2-interacting proteins,
we pulled down the FLAG/SBP-tagged CITED2 construct that
was overexpressed in HEK293T cells using anti-FLAG or strep-
tavidin affinity beads, and analyzed the co-purified proteins using
liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Proteins pulled down commonly by anti-FLAG antibody (red)
and streptavidin (blue) are listed in Supplementary Data 1. In
addition to p300 and CBP, the PRMT5 complex subunits
PRMT5, WDR77, and RIOK1, as well as NCL were co-purified
with CITED2 (Fig. 3a). The interaction between PRMT5 and
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CITED2 was verified by immunoprecipitation and immunoblot-
ting using HEK293T cells coexpressing MYC-PRMT5 and Flag/
SBP-CITED2 (Supplementary Figure 3a). We analyzed the
interactions among endogenous PRMT5, NCL, WDR77, RIOK1,
and CITED2 and found that both CITED2 and PRMT5

interacted with NCL, WDR77, and RIOK1 (Supplementary Fig-
ure 3b). These protein interactions were confirmed in the
immunoprecipitates using NCL, WDR77, or RIOK1 antibodies
(Supplementary Figure 3c). As previously shown in HEK293T-
cells, these interactions were also identified in all prostate cancer
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cell lines examined (Fig. 3b). To verify the presence of this
multimeric complex, we separated intracellular proteins using fast
protein LC. Standard protein markers were used to determine the
molecular weight of each fraction (Supplementary Figure 3d).
CITED2, PRMT5, NCL, WDR77, Riok1, and p300 were detected
in the ~500 kDa fraction. Importantly, when CITED2 was over-
expressed, the complex was shifted to ~700 kDa (Fig. 3c), which
suggested that CITED2 plays a role in attracting proteins to the
complex. To examine if CITED2, NCL, P300, and PRMT5 are
directly associated, an in vitro binding assay was conducted using
recombinant proteins. CITED2 directly interacted with NCL,
P300, and PRMT5, while PRMT5 did not bind to P300 and NCL.
NCL and P300 were also bound directly (Fig. 3d). Next, we
performed immunofluorescent staining to determine the

subcellular location of the proteins. The subunits in the complex
were co-localized mainly in the nuclei of PC3 (Fig. 3e) or
HEK293T cells (Supplementary Figure 3e). The interaction
between PRMT5 and CITED2 was further characterized by
immunoprecipitation of the domain peptides of CITED2 and
PRMT5. p300, PRMT5, and NCL were identified to bind to the
transactivation domain, the serine/glycine-rich junction (SRJ),
and the cysteine/arginine-rich domain 3 (CR3) of CITED2,
respectively (Fig. 3f, g). In addition, CITED2 interacted with the
N terminus of PRMT5 (Fig. 3h). Since CITED2 provides different
binding sites for p300, PRMT5, and NCL, these proteins could
form a stable complex in a noncompetitive manner. Therefore, we
hypothesized that CITED2 acts as an essential binder to make the
multimeric complex.
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CITED2 modulates translocation of NCL through methylation
and acetylation. To examine whether CITED2 affects the sub-
cellular localization of these subunits by forming a complex, we
evaluated each subunit in the nuclear and cytoplasmic fractions of
HEK293T cells overexpressing CITED2. CITED2 overexpression
reduced nuclear expression of NCL but enhanced cytoplasmic
expression, which was attenuated by a nuclear export inhibitor
Leptomycin B (Fig. 4a). This suggests that CITED2 induces the
nuclear export of NCL. To determine the role of CITED2 in the
PRMT5/p300/NCL complex, immunoprecipitation was per-
formed using HEK293T cells with either CITED2 overexpression
or silencing. Notably, PRMT5 and p300 binding to NCL was
potentiated by CITED2 overexpression but weakened by CITED2
knockdown (Fig. 4b). This result prompted us to determine
whether CITED2 acts as a molecular chaperone to guide PRMT5
and p300 to NCL. As expected, NCL was arginine dimethylated
and lysine acetylated by PRMT5 and p300, respectively (Fig. 4c,
d). More importantly, both modifications were dependent on

CITED2 (Fig. 4e, f). The CITED2-dependent modifications of
NCL were attenuated by PRMT5 and p300 knockdown (Fig. 4g,
h), which supports our hypothesis that CITED2 promotes post-
translational modifications of NCL by recruiting PRMT5 and
p300. Our next objective was to determine the subcellular loca-
tion where CITED2-facilitated NCL modification occurs. The
CITED2-dependent modifications of NCL were detected in the
nuclear fraction, which was expected since NCL is present mainly
in the nucleus (Fig. 4i). Although the level of NCL protein was
low in the cytoplasmic fraction compared to nuclear fraction,
surprisingly, the dimethylated and acetylated NCL forms were
clearly detected in the same fraction (Fig. 4i). The nuclear export
of NCL was promoted by CITED2 overexpression, which was
reversed by a PRMT5 inhibitor EPZ015666 (Supplementary
Figure 4). These results suggest that NCL is modified in the
nucleus and then translocated to the cytoplasm in part. The
EGR–CITED2–PRMT5/p300–NCL pathway is summarized in
Fig. 4j.
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The CITED2–NCL axis positively regulates epithelial–mesenchymal
transition (EMT) and cell migration in prostate cancer. The cellular
consequences of the CITED2–NCL axis were examined using
gene set enrichment analyses. Prostate cancer tissues in the
GSE6919 data set were divided into low and high expression
groups based on the mean CITED2 and NCL expression values
(Supplementary Figure 5a). We identified the gene sets that were
enriched in the high group compared with the low group (Sup-
plementary Figure 5b). Several metastasis-related gene sets were
among the top 10 gene sets enriched in the CITED2_high and
NCL_high groups. To determine the role of the CITED2–NCL
axis in cellular processes, we searched for gene sets commonly
associated with CITED2 and NCL. Five of the top 10 common
gene sets were related to metastasis (Fig. 5a). The enrichment
profiles of two representative gene sets associated with CITED2

and NCL expression are shown in Fig. 5b and those of other gene
sets in Supplementary Figure 5c, d. To support the patient-
derived gene set enrichment data, we conducted RNA-sequencing
(RNA-seq) analysis in PC3 cells. CITED2 was knocked down in
PC3 cells using siRNAs (Supplementary Figure 6a). To observe
changes in gene expression pattern by CITED2 knockdown, heat
map clustering was performed (Supplementary Figure 6b). We
found that metastasis-related gene sets were more enriched in the
control group than in the CITED2 knockdown group (Fig. 5c).
Based on these results, we evaluated whether the CITED2–NCL
axis is involved in prostate cancer cell migration. In phalloidin-
stained PC3 and DU145 cells, lamellipodia were formed
depending on CITED2 expression (Supplementary Figure 7a). In
Transwell® migration and invasion assays, CITED2 stimulated
cell migration and invasion in an NCL-dependent manner
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Fig. 5 CITED2 enhances metastatic potential NCL-dependently in prostate cancer. a Gene Set Enrichment Analysis (GSEA). Venn diagram depicts 39 gene
sets upregulated (P < 0.05 and FDR < 0.30) commonly by CITED2 and NCL expression. Of them, top 10 gene sets are listed. b Representative enrichment
plots of the metastasis-related gene set which positively correlate with CITED2 (left panel) or NCL (right panel). c PC3 cells were transfected with control
or CITED2-targeting siRNA. Total RNAs were extracted using Trizol and subjected to RNA-sequencing analyses. The experiments were performed three
times independently. The graphs show representative enrichment plots of the metastasis-related gene set which positively correlate with CITED2 in PC3
cell. d Cell migration was analyzed using a transwell chamber. PC3 and DU145 cells (1 × 104/well), which had been transfected as indicated, were placed on
the upper chamber. After 12 h, cells passing through the interface membrane were stained (bottom) and counted (top). Each bar represents the mean+ SD
(n= 3). The scale bar represents 25 μm. e PC3 and DU145 cells were transfected with CITED2 or si-CITED2, and/or si-NCL. Representative EMT markers
were immunoblotted. f RNAs were extracted from PC3 or DU145 cells which were transfected with CITED2 or si-CITED2 and/or si-NCL. The SNAIL and E-
CAD mRNA levels were measured by RT-qPCR. Each bar represents the mean+ SD (n= 3). *P < 0.05 versus the control group; N.S. not significantly
different’ among the groups by Student’s t-test
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(Fig. 5d and Supplementary Figure 7b). The CITED2 and NCL
expression levels in the cells were verified by western blotting
(Supplementary Figure 7c). In addition, CITED2 increased the
protein and mRNA levels of mesenchymal markers but decreased
those of epithelial markers, and these effects of CITED2 were
attenuated by knocking down NCL (Fig. 5e, f). However, CITED2
or NCL expression did not affect cell growth or viability in
prostate cancer cells (Supplementary Fig 7d–f). Taken together,
these results strongly suggest that the CITED2–NCL axis
enhances the metastatic potential, rather than cell growth, in
prostate cancer cells.

The CITED2–NCL axis promotes prostate cancer metastasis in
mice. To characterize the in vivo role of the CITED2–NCL axis in
metastasis, we established stable PC3 cell lines and implanted
them into the prostates of male athymic nude mice (Fig. 6a).
CITED2 overexpression (Supplementary Figure 8a), luciferase
activity (Supplementary Figure 8b), and the degree of cell
migration (Supplementary Figure 8c) were assessed in PC3 stable
cell lines. The gene-silencing efficacies of lentiviruses harboring
five different small hairpin RNAs (shRNAs) targeting CITED2 or
NCL were evaluated by western blotting (Supplementary

Figure 8d). The abdomens of the mice were opened 2 months
after cell implantation, revealing strong growth of the xenografted
tumors in the prostates (Fig. 6b). In tumor tissue homogenates
obtained from mouse xenograft, protein expressions of CITED2
and NCL were measured to verify the overexpression or knock-
down of CITED2 and NCL (Supplementary Figure 8e). We
monitored the bioluminescence emitted from cancer cells each
week to trace the metastatic growth of the prostate tumors
(Supplementary Figure 9). Compared with the control group,
metastasis was enhanced in the CITED2-overexpressing group
but reduced in the CITED2 knockdown group. The metastasis-
promoting effect of CITED2 overexpression was abolished by
NCL knockdown (Fig. 6c). Integrated values of region of interest
(ROI) luminescence were used in statistical analyses of tumor
growth and metastasis. The results showed that prostate tumor
growth was delayed by CITED2 or NCL knockdown (Fig. 6d).
Metastasis was significantly enhanced by CITED2 overexpression,
and this effect was reversed by NCL knockdown (Fig. 6e). Fur-
thermore, mouse survival was decreased by CITED2 over-
expression but rescued by CITED2 or NCL knockdown (Fig. 6f).
The CITED2 overexpression group showed significant body
weight loss, suggesting that these mice might be cachectic
(Fig. 6g). Representative images of liver metastases are shown in
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Fig. 6 CITED2 promotes prostate cancer metastasis NCL-dependently in mice. a Schematic diagram of in vivo prostate metastasis model. b Representative
photographs of prostate tumors 10 weeks after cell implantation. The luciferase-expressing PC3 cells (0.5 × 106) were suspended in 20 μL of sterile PBS
and injected into the prostates of Balb/cSlc-nu/nu mice. c Bioluminescent images of primary tumors and metastases were monitored using Xenogen IVIS®
Lumina 100. Color scale bars represent tumor intensity from purple (low) to red (high). d Growth curves of primary tumors were plotted based on
bioluminescence intensities. Data are presented as the mean+ SD, and *P < 0.05 between two groups by Mann–Whitney statistical analysis. Mouse
numbers are 8 in the sh-EGFP group, 8 in the sh-CITED2 group, 11 in the CITED2+sh-EGFP, and 7 in the CITED2+sh-NCL group. e Metastasis rate was
retrieved according to the Kaplan–Meier method and *P < 0.05 between two groups. Metastasis defined as ROI flux value was larger than 1.0 × e5. f
Kaplan–Meier overall survival rate analyses were followed up until 80 days after xenograft and *P < 0.05 between two groups. g Tumor-bearing mice were
weighed in the indicated times. Data are presented as the mean+ SD, and *P < 0.05 between two groups by Mann–Whitney statistical analysis. h
Representative photographs of livers with metastatic carcinoma nodules (indicated by arrow)
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Fig. 6h. Based on these results, the CITED2–NCL axis may
activate signaling pathway(s) that strongly induce cancer
metastasis.

CITED2-activated NCL promotes the AKT-driven EMT by
enhancing translation of AKT mRNA. To explore the signaling
pathway responsible for NCL-mediated EMT, we performed
proteomic analyses of phosphoproteins and found that phospho-
AKT was reduced most in NCL knockdown cells (Fig. 7a and
Supplementary Figure 10a). The antibodies used in the

microarray are listed in Supplementary Figure 10b. NCL knock-
down downregulated the protein levels of total AKT as well as
phospho-AKT in prostate cancer cells (Supplementary Fig-
ure 10c), which occurred without any change in AKT mRNA
levels (Supplementary Figure 10d). The CITED2–NCL axis was
shown to affect the levels of AKT and phospho-AKT (Fig. 7b, c).
CITED2 overexpression facilitated de novo synthesis of the AKT
protein (Fig. 7d) but did not stabilize the protein (Supplementary
Figure 10e). Moreover, mRNA processing genes were enriched in
cells with altered CITED2 or NCL expression (Supplementary
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Figure 10f). These results prompted us to evaluate whether the
CITED2–NCL axis regulates the translation of AKT mRNA. We
immunoprecipitated NCL using anti-NCL antibody and quanti-
fied the amount of co-precipitated AKT mRNA by quantitative
reverse transcription-PCR (RT-PCR). The NCL–AKT mRNA
interaction was enhanced by CITED2 overexpression but reduced
by CITED2 knockdown (Fig. 7e). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA was used as a negative control
to verify the specificity of RNA immunoprecipitation. Because the
interaction between NCL protein and AKT mRNA was atte-
nuated by silencing PRMT5 or P300 even under CITED2 over-
expression (Fig. 7f), CITED2 may have enhanced the NCL–AKT
mRNA interaction via PRMT5-mediated methylation and P300-
mediated acetylation of NCL. To check whether cell migration
was stimulated due to enhancement of AKT translation mediated
by CITED2, migration assay was conducted with AKT knock-
down and CITED2 overexpression (Supplementary Figure 10g).
Compared to the control, CITED2 overexpression increased
migration in PC3 and DU145 cells, which was attenuated by AKT
knockdown (Fig. 7g). Using three different AKT inhibitors
(Wortmannin, LY294002, and MK2206), we examined whether
the AKT signaling pathway mediates CITED2-induced cell
migration. As previously shown in Fig. 5d, CITED2-dependent
cell migration was almost completely attenuated by each of these
inhibitors (Supplementary Figure 11). In a similar manner,
mRNA markers (Supplementary Figure 12a) and EMT protein
(Supplementary Figure 12b) were no longer regulated by
CITED2. Because AKT signaling promotes SNAIL expression via
nuclear factor (NF)-κB activation35, we examined whether NF-κB
mediates the CITED2–AKT–EMT signaling. CITED2-dependent
cell migration and invasion were both abolished by an NF-κB
inhibitor Bay-11-7082 (Supplementary Figure 12c). IHC was used
to determine if AKT is activated in prostate cancer tissues.
Phospho-AKT expression increased concomitantly with an
increase in the Gleason score (Fig. 7h) and was associated with
poor survival of patients with prostate cancer (Fig. 7i). Pearson’s
correlation analyses revealed a significant positive correlation
between phospho-AKT and CITED2 levels (Fig. 7j).

Discussion
The current treatments for prostate cancer include surgery,
irradiation, and androgen deprivation, but none of these treat-
ments are effective for metastatic castration-resistant prostate
cancer (CRPC). Docetaxel is currently used to treat CRPC,
because it prolongs the median survival by 3 months36, and
abiraterone is an emerging anti-CRPC drug capable of increasing
the survival by 4 months37. Unfortunately, the anticancer effects
of these drugs are very limited because of the development of
drug resistance38,39. In this study, CITED2 was found to be
uniquely overexpressed in prostate cancer cells, in which it pro-
moted metastasis by activating the NCL–AKT signaling pathway.
We therefore propose that CITED2 may be a potential target for
treating metastatic prostate cancer.

ERG is an important factor that contributes to prostate
cancer progression4,5. It is not expressed in normal prostate
epithelium but is markedly amplified in prostate cancer because
of its gene fusion to the androgen-driven promoter
TMPRSS240. Other ETS gene family members, such as ETV1,
ETV4, ETV5, and FLI1, can also fuse to TMPRSS2, but these
fusion events display much lower frequencies compared with
ERG41–43. The significance of ERG gene fusion was demon-
strated by its correlation with the clinical phase of patients.
ERG expression was positively correlated with the Gleason
score in prostate cancer tissues, and it was associated with
prostate cancer metastasis and poor patient prognoses44. Many

follow-up studies have been conducted to understand how ERG
promotes prostate cancer. For example, one study reported that
ERG reorganizes actin filaments by activating vimentin and
upregulating matrix metalloproteinases, leading to cell inva-
sion45. ERG was also reported to facilitate cell movement by
inducing the EMT46. However, the downstream signaling
pathway responsible for ERG-driven metastasis remains
unclear. We identified ERG as a transcription factor regulating
expression of the CITED2 gene, which is specifically over-
expressed in prostate cancer, and further clarified the
ERG–CITED2 axis as the downstream pathway involved in
prostate cancer.

Because NCL exists in a complex with PRMT5 and p300, we
tested the possibility that NCL is post-translationally co-modified
by PRMT5 and p300. Although arginine methylation does not
significantly affect the overall charge of NCL, steric hindrance or
hydrogen bonds around arginine could be altered. Thus,
methylation can modify intermolecular interactions47–49. In
proteins containing the RNA-binding RGG domain, alterations of
protein–RNA interactions by methylation have been reported
previously50. Because NCL is also an RNA-binding protein with a
RGG motif51, we tested the possibility that NCL binding to AKT
mRNA is regulated by the PRMT5-mediated arginine dimethy-
lation of NCL. Methylation enhanced the interaction between
NCL and AKT mRNA, thereby facilitating de novo synthesis of
AKT translationally. However, lysine acetylation of NCL has not
been investigated comprehensively. A previous study reported
that p300-mediated lysine acetylation stabilized NCL52. However,
we observed no change in the level of NCL after overexpressing or
knocking down p300. According to another study, acetylation
may influence the binding between NCL and nucleic acids. Lysine
acetylation is essential for STAT3 (signal transducer and activator
of transcription 3) or p53 binding to DNA53,54. In a similar
manner, we speculate that NCL acetylation by P300 can affect
mRNA polysome formation. This possibility needs to be con-
firmed by additional studies.

Notably, we found that the NCL complex was present mainly
in the nucleus, but NCL was bound to AKT mRNA in the
cytoplasm. The difference in the location of NCL suggests that
NCL is post-translationally modified in the nucleus and then
transported to the cytoplasm. Because the entire NCL complex
was too large to pass through the nuclear membrane, it is
reasonable to assume that the modified NCL is released from
the complex and then translocated to the cytoplasm. Consistent
with these possibilities, a study demonstrated translocation of
NCL from the nucleus to the cytoplasm and the plasma
membrane after phosphorylation55. However, no study has
reported the translocation of NCL after acetylation or methy-
lation, which suggests a mechanism underlying NCL
translocation.

Although CITED2 has no special functional domain, it can
participate in important biological processes as a scaffolding
protein. CITED2 is comprised of three CR(1–3) and one SRJ
domains56,57. Because each domain provides a docking site for
protein interactions, CITED2 with multiple domains may act as a
central scaffold recruiting different proteins. For example, CR2
interacts with transcription factors such as TFAP2, HNF4a,
PPARa/r, and Smad 2/3 and enhances gene expression by
recruiting CBP/p3006,10,58,59. CR1 interacts with the GCN5
acetyltransferase, thereby inhibiting the GCN5-mediated acet-
ylation of PGC-1α60. CR3 binds to the homeobox protein LHx2
and increases expression of glycoprotein hormone α-subunit61.
Because we are intrigued by the numerous functions of CITED2,
which depend on its binding molecule, we investigated its
potential role in tumorigenesis. Previous studies have reported
that CITED2 increases cancer progression. It has been reported
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that CITED2 promotes MYC-mediated transactivation of the
E2F3 gene by recruiting p300 to stimulate lung cancer progres-
sion16. However, little is known about the role of CITED2 in
cancer metastasis. We thus conducted a screening in patients to
identify the cancer type most affected by CITED2 expression and
found that CITED2 was most elevated in metastatic prostate
cancer. However, considering that a kind of cytokine storm
occurs in tumor microenvironment, CITED2 could be differen-
tially expressed in primary and metastatic tumors because they
grow with distinct stromal cells. Indeed, various growth factors
and cytokines have been reported to increase CITED2 expres-
sion8. Therefore, we cannot rule out the possibility that CITED2
is overexpressed in metastatic tumor milieu. Nonetheless, our
cellular and animal experiments support our notion that ERG-
induced CITED2 promotes prostate cancer metastasis. According
to this scenario, CITED2 could be a potential target to prevent
prostate cancer metastasis. Since the complete inhibition of
CITED2 has been reported to induce acute bone marrow fail-
ure14, the anti-CITED2 strategy should be carefully optimized
before clinical application.

Because AKT is involved in important oncogenic pathways,
most studies have emphasized its role in survival and the cell
cycle. AKT activates the mTOR (mammalian target of rapamy-
cin) pathway, which increases cyclin D1 translation to promote
cell cycle progression62, and stimulates CREB activity to induce
survival genes such as Bcl-263. Many recent studies have also
characterized the roles of AKT in EMT and cell migration. AKT
not only increases SNAIL expression by activating NF-κB35, but
also stabilizes the SNAIL protein by inactivating glycogen syn-
thase kinase-3β (GSK-3β)64. Moreover, AKT enhances tran-
scription of the SNAIL and SLUG genes by phosphorylating β-
catenin65. According to past studies, the AKT pathway is aber-
rantly activated in cancers because of AKT gene amplification and
the PTEN gene deletion66. Our study suggests a mechanism
involving AKT activation in prostate cancer. The
CITED2 stimulation of AKT translation strengthens AKT sig-
naling to promote EMT and eventually cancer metastasis.

In this study, we identified a pathway related to metastasis,
involving ERG, CITED2, NCL, and AKT pathway, in prostate
cancer. This metastasis-promoting mechanism may be particu-
larly important in prostate cancer overexpressing ERG due to
gene fusion events involving ERG. We also identified CITED2
and NCL as target molecules for preventing prostate cancer
metastasis in an orthotopic xenograft animal model. Overall, this
study provides a basis for future concept studies to develop the
next generation of prostate cancer treatments.

Methods
Reagents and antibodies. Antibodies against CITED2, PRMT5, β-tubulin,
WDR77, RioK1, p300, β-CTN, Vimentin, TWIST, Snail, N-Cad, and ZEB1 were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA); anti-NCL, anti-
dimethyl-arginine and anti-acetyl-lysine from Upstate Biotechnology (Lake Placid,
NY); anti-p-AKT, anti-AKT and anti-E-cadherin from Cell Signaling (Danvers,
MA); anti-FLAG, anti-MYC, and anti-HA from Sigma-Aldrich (St. Louis, MO);
and anti-ERG and anti-α-SMA from Abcam (Cambridge, MA). MK2206 was
purchased from Selleckchem. Human recombinant proteins of CITED2, PRMT5,
P300, and NCL were purchased from Origene. Fetal bovine serum (FBS), dithio-
threitol, G418 disulfate salts (G418), EPZ015666, Leptomycin B, Bay-11-7082,
LY294002, Cycloheximide, Wortmannin, and others were obtained from Sigma-
Aldrich. Sources and dilution factors of antibodies used are summarized in Sup-
plementary Table 1.

siRNAs and plasmids. The nucleotide sequences (5’ to 3’) of siRNAs are;
UUAUGUCCUUGGUGAUAGATT for CITED2 (NM_006079), AGACUAUAG
AGGUGGAAAGAAAGC for NCL (NM_005381), AUGAUGUUGAUAAAGC
CU, CGUCCUCAGUUAGAUCCU, and CCACGGUUAAUGCAUGCU for ERG
#1–3 (NM_001136154), GGACUGGAAUACGCUAAU for PRMT5
(NM_001039619), GACAAAACCGUGGAAGUA for p300 (NM_001429), CCU
CACAGCCCUGAAGUACUCUUTC for AKT (NM_005163), and AUGAACGU

GAAUUGCUCAA for non-targeting control. The complementary DNAs (cDNAs)
of CITED2, NCL, luciferase, and luciferase-CITED2 were cloned by reverse tran-
scription and PCR using Pfu DNA polymerase, and the cDNAs were inserted into
pcDNA, Myc-tagged, FLAG-tagged, HA-tagged, or FLAG/streptavidin-binding
protein (SBP)-tagged vectors by blunt-end ligation. TRC lentiviral shRNA targeting
CITED2 or NCL were purchased from Dharmacon (Lafayette, CO).

Cell lines and cell culture. HEK293T (human embryonic kidney) and human
prostate cancer (PC3, DU145, VCaP, LNCaP, C42B, and 22RV1) cell lines were
obtained from the American Type Culture Collection (Manassas, VA). Myco-
plasma contamination was routinely tested when cell growth or shape was changed.
The cell lines were cultured in RPMI-1640 or Dulbecco's modified Eagle's medium
supplemented with 10% heat-inactivated FBS in a 5% CO2 humidified atmosphere
at 37 °C. Luciferase-expressing and luciferase/CITED2-co-expressing PC3 stable
cell lines were established from five G418-resistant clones per cell line. The
expression of luciferase has been confirmed with luciferase assay.

Immunoblotting and immunoprecipitation. Cell lysates were separated on SDS-
polyacrylamide gels, and transferred to Immobilon-P membranes (Millipore,
Bedford, MA). Membranes were blocked with a Tris/saline solution containing 5%
skim milk and 0.1% Tween-20 for 1 h, and incubated with a primary antibody
overnight at 4 °C. Membranes were incubated with a horseradish
peroxidase–conjugated secondary antibody for 1 h, and visualized using the ECL
kit (Thermo; Rockford, IL). To analyze protein interactions, cell lysates were
incubated with anti-CITED2, anti-Flag, or anti-Ac-K or dimethyl-R antibody for 4
h at 4 °C, and the immune complexes were precipitated with protein A/G beads
(Santa Cruz, CA). Precipitated proteins were eluted in a denaturing 2× SDS sample
buffer, loaded on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE), and immunoblotted.

IHC of human prostate cancer tissue array. Human prostate cancer tissue arrays
were purchased from SuperBioChips Lab (Seoul, South Korea). Clinical informa-
tion on prostate cancer patients is summarized in Supplementary Table 2. Tumor
staging was defined according to the AJCC (American Joint Committee on Cancer)
cancer staging manual (7th edition)67. The array slides were dried for 1 h in an
oven at 60 °C, dewaxed, and autoclaved in an antigen retrieval solution. Tissue
sections were treated with 3% H2O2, and then incubated with a primary antibody
(against CITED2, ERG, or p-AKT) overnight at 4 °C, and with a biotinylated
secondary antibody for 1 h at room temperature. The immune complexes were
visualized using the Vectastatin ABC kit (Vector Laboratories, Burlingame, CA),
and tissue slides were counterstained with hematoxylin for 10 min. The immune-
stained cells were counted at four high-power fields for each tissue.

Immunofluorescence. Cells grown on cover slides were fixed with methanol for
30 min, permeabilized with 0.1% Triton X-100 for 10 min, blocked by 3% bovine
serum albumin for 2 h, and then incubated with a primary antibody in the dark
overnight at 4 °C. The slides were incubated with Alexa Flour® 488 IgG anti-
mouse/rabbit (green, 1:200), Alexa Flour® 568 IgG anti-goat (red, 1:200), Alexa
Flour® 647 IgG anti-mouse (purple, 1:200), or Alexa Flour® 633 phalloidin (F-
actin) solution in the dark for 1 h. Then, nuclei were stained with 4’,6-diamidino-2-
phenylindole (DAPI) for 10 min. Fluorescence images were photographed using
confocal microscopy.

Orthotopic xenograft mouse model. All animal studies were carried out
according to the proposed protocol approved by the Seoul National University
Institutional Animal Care and Use Committee (No. 150629-4-1). PC3 prostate
cancer cells were transfected with the luciferase-IRES-EGFP or the luciferase-IRES-
CITED2 plasmid and treated with G418 to select stable cell lines. Male 8-week-old
Balb/cSlc-nu/nu mice are used for orthopotic xenografts. We opened the low
midline abdomen of mouse with 3–4 mm incision, and smoothly pressed the
bladder using sterile cotton swab to find the prostate. The PC3 stable cell lines were
injected into the ventral lobe of prostate. After 14 days, shRNA lentiviruses were
injected into grafted tumors, and tumor growth and metastasis were monitored
using Xenogen IVIS® Lumina.

Informatics analysis. Publicly available prostate cancer microarray data set
GSE6919 was analyzed to compare CITED2 and NCL mRNA levels between
normal and cancer tissues. All tissues (n= 171) were grouped as four classes:
normal prostate tissues free of any pathological alteration (n= 18), normal prostate
tissues adjacent to tumors (n= 63), primary prostate tumors (n= 65), and meta-
static prostate tumors (n= 25). The values of the 33113_at probe (corresponding
to CITED2), the 32590_at (corresponding to NCL) on each group were calculated
and compared between the four groups using Pearson's correlation. The prostate
cancer gene set enrichment analysis (GSEA) was also performed using GSE6919
data set, and a formatted GCT file was used as input for the GSEA algorithm v2.0
(available from: http://www.broadinstitute.org/gsea). For grouping the GSE6919
data set, the values of the 33113 or 32590_at probe were used as criteria standard
for low expression and high expression group. CITED2 mRNA expression in 28
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different types of cancer were obtained from TCGA cancer provisional data sets
based on TCGA Research Network (http://cancergenome.nih.gov). The abbrevia-
tions used in Fig. 1a and the number of patients are as follows: ACC, adrenocortical
carcinoma (n= 79); Bladder, bladder urothelial carcinoma (n= 408); Glioma,
brain lower grade glioma (n= 530); Breast, breast invasive carcinoma (n= 1100);
Cervical, cervical squamous cell carcinoma and endocervical adenocarcinoma (n=
306); Cholangiocarcinoma (n= 36); Colorectal, colorectal adenocarcinoma (n=
382); GBM, glioblastoma multiforme (n= 166); Head & neck, head and neck
squamous cell carcinoma (n= 522); chRCC, kidney chromophobe (n= 66);
ccRCC, kidney renal clear cell carcinoma (n= 534); Liver, liver hepatocellular
carcinoma (n= 373); Lung adeno, lung adenocarcinoma (n= 517); Lung squ, lung
squamous cell carcinoma (n= 501); DLBC, lymphoid neoplasm diffuse large B-cell
lymphoma (n= 48); Mesothelioma (n= 87); Ovarian, ovarian serous cystadeno-
carcinoma (n= 307); Pancreas, pancreatic adenocarcinoma (n= 179); PCPG,
pheochromocytoma and paraganglioma (n= 184); Prostate, prostate adenocarci-
noma (n= 498); Sarcoma (n= 263); Melanoma, skin cutaneous melanoma (n=
472); Testicular Germ Cell, testicular germ cell cancer (n= 156); Thymoma (n=
120); Thyroid, thyroid carcinoma (n= 509); Uterine CS, uterine carcinosarcoma
(n= 57); Uterine, uterine corpus endometrial carcinoma (n= 177); Uveal mela-
noma (n= 80).

Fractionation of cytoplasmic and nuclear components. Cells were spun down at
800 × g for 5 min, and gently homogenized in a hypotonic solution containing
20 mM Tris/HCl (pH 7.8), 1.5 mM MgCl2, 10 mM KCl, 0.2 mM EDTA, 0.5%
NP-40, 0.5 mM dithiotheritol, and 0.5 mM phenylmethylsulfonyl fluoride
(PMSF). The cell lysates were centrifuged at 3000 × g for 10 min at 4 °C, and the
supernatant was collected as the cytosolic fraction. The pellet was resuspended in
a hypertonic solution containing 20 mM Tris/HCl (pH 7.8), 400 mM NaCl, 1
mM EDTA, 1.5 mM MgCl2, 10% glycerol, 0.5 mM dithiotheritol, and 0.5 mM
PMSF, and intermittently vortexed on ice for 30 min. After the suspension was
centrifuged at 18,000 × g for 20 min at 4 °C, the supernatant was collected as the
nuclear fraction.

Cell viability assay. Cells were grown in 98-well culture plates, and incubated with
100 μL/well of the MTT labeling reagent (Sigma-Aldrich) for 3 h. Blue formazan
crystals were solubilized with acidified isopropanol, and formazan levels were
determined at 570 nm.

Fast protein liquid chromatography. Fast protein liquid chromatography (FPLC)
analysis was performed on Preparative Biomolecular Purification System equipped
with AKTA explorer 10 and Superdex 200 10/300 GL column (GE Healthcare,
Uppsala, Sweden). After transfection with CITED2 or empty vector, the cells were
centrifuged at 800 × g for 5 min, and resuspended with a lysis buffer consisting of
20 mM Tris/HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 0.5% NP-40, 0.5 mM
PMSF and protease inhibitor. The cell lysates were centrifugated at 4000 × g for 10
min to separate into pellet and supernatant. Transfer supernatant and collect it for
FPLC analysis. Then, 100 μL of protein elusion was continuously monitored at 280
nm using a UV detector. To estimate molecular weight of proteins in each fraction,
the Sigma-Aldrich FPLC protein markers (29–700 kDa) were run on FPLC in the
same condition. All procedures were carried out at 4 °C. Each elute was subjected to
immunoblotting with antibodies against NCL, PRMT5, WDR77, CITED2, P300,
and RioK1.

Migration and invasion assays. PC3 or DU145 cells were cultured in 24-well
transwell plates with an 8.0 μm polycarbonate membrane which were pur-
chased from Corning Life Science (Acton, MA). The lower chamber was filled
with a culture medium containing 10% FBS as a chemo-attractant. For cell
migration analysis, PC3 or DU145 cells in an FBS-free medium were seeded
into the upper chamber and incubated at 37 °C for 12 h. For cell invasion
analysis, the polycarbonate membrane was coated with 0.5 mg/mL of Matrigel.
Cells on the upper surface of the interface membrane were removed using a
cotton swab. Migrating cells on the lower surface of the membrane were
stained with hematoxylin and eosin, and counted under an optical microscope
at a 100× magnification.

Quantitative RT-PCR. Total RNA was isolated using TRIZOL reagent (Invitrogen;
Carlsbad, CA), and cDNA synthesis was carried out in a reaction mixture (Pro-
mega, Madison, WI) containing M-MLV Reverse Transcriptase, RNase inhibitor,
dNTP, and random primers at 46 °C for 1 h. Quantitative real-time PCR on 96-well
optical plates was performed in the qPCR Mastermix (Enzynomics, Daejeon,
Korea), and fluorescence emitting from dye-DNA complex was monitored in CFX
Connect Real-Time Cycler (BIO-RAD, Hercules, CA). The mRNA values of tar-
geted genes were calculated relative to GAPDH expression. All reactions were
performed in triplicate. The nucleotide sequences of PCR primers are summarized
in Supplementary Table 3.

RNA inmunoprecipitation. RNA immunoprecipitation (RIP) was conducted using
the Magna RIPTM RNA-binding protein immunoprecipitation kit (EMD Millipore,

Billerica, MA). Cells were spun down and homogenized in a RIP lysis buffer
containing a protease inhibitor cocktail and RNase inhibitor. After cell lysates were
centrifuged at 18,000 × g for 10 min, the supernatant was incubated with IgG or
anti-NCL antibody in RIP inmmunoprecipitation buffer overnight at 4 °C, followed
by incubation with protein A/G magnetic beads. The immune complexes were
precipitated using a magnetic separator, and incubated in a protein degradation
buffer containing 10% SDS and proteinase K at 55 °C for 30 min. The samples were
mixed with 400 μL of phenol:chloroform:isoamyl alcohol and centrifuged at
18,000 × g for 10 min to separate the phases. The aqueous phase (350 μL) was
mixed with 400 μL of chloroform, and centrifuged at 18,000 × g for 10 min. The
aqueous phase (300 μL) was mixed with 50 μL of salt solution I/II, 5 μL of pre-
cipitation enhancer and 850 μL of absolute ethanol, and centrifuged at 18,000 × g
for 30 min at 4 °C. The pellet was washed with 80% ethanol, and resolved in 20 μL
of RNase-free water. The level of AKT mRNA in the sample was quantified by RT-
qPCR and represented as percentage of IP/input signal (% input). All reactions
were performed in triplicate.

Chromatin immunoprecipitation (ChIP). Cells were fixed with 37% formaldehyde
at 37 °C for 10 min, treated with 150 mM glycine. Fixed cells were lysed with 0.5%
NP-40, and centrifuged at 800 × g at 4 °C for 10 min to collect crude nuclear
fraction. Nucleus pellet was incubated with 1% SDS and sonicated to shear genomic
DNAs into 300–500 bp fragments. Soluble chromatin complexes were immuno-
precipitated with IgG or anti-ERG antibody overnight at 4 °C. Immune complexes
were precipitated with protein A/G beads pre-blocked by salmon sperm DNA at 4 °
C for 4 h. The beads were sequentially washed with a low salt buffer, a high salt
buffer, LiCl wash buffer, and TE buffer. The immunoprecipitation chromatin
complexes were eluted in a ChIP direct elution buffer at 65 °C for 30 min and
incubated overnight at 65 °C to cross-link chromatin complex. DNAs were isolated
by phenol-chloroform-isoamyl alcohol (25:24:1) and precipitated with ethanol and
glycogen. The extracted DNAs were resolved in nuclease-free water and analyzed
by real-time PCR (95 °C/55 °C/72 °C, 30 s at each phase).

Statistical analysis. All data were analyzed using Microsoft Excel 2013 software or
Graph pad Prism 5 software, and results were expressed as means and SD from
three or more distinct samples. We used the unpaired, two-sided Student's t-test or
Mann–Whitney U-test to compare protein expression level, mRNA expression
level, cell viability, ROI flux, and cell numbers. Statistical significances were con-
sidered when P values were less than 0.05. In addition, protein or mRNA
expression correlations were analyzed using Spearman’s p statistic. Survival rate
analyses were performed by drawing curves and calculating log-rank P test using
the Kaplan–Meier method.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files or from the corresponding author
upon reasonable request. Raw data file for LC-MS/MS is included in Supplementary Data
1. Raw data files for RNA-seq have been deposited in the NCBI Gene Expression
Omnibus database under the accession code GSE119113. Full Western blots are
presented in Supplementary Figure 13.
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