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In their Comment [1], Raoult et al. challenge our use [2] of species distribution
models (SDMs) to inform on the geographical origins of shark fins sold in
global markets. This is despite our primary result that shark conservation
should prioritize areas within the Exclusive Economic Zones (EEZs); a con-
clusion supported by independent biogeographic analyses [3,4], reconstructed
global fishing effort and catch [5,6], and syntheses of biotelemetry data [7].
Our analysis also responds to calls for new approaches [8,9], as official fin
trade statistics have established flaws [10] that miss what remains illegal or
unreported. The main criticism of Raoult et al. is that our SDMs make unrealistic
assumptions about fishing and that our SDMs disagree with published expert
range maps (‘ERMs’, e.g. [11,12]). For four species of sharks, Raoult et al.
compare our SDMs to ERMs, claiming the ERMs represent ‘established
geographical distributions’. We address these points below.

To begin, it is important to note some limitations of ERMs and their appli-
cation. ERMs are often generated without transparent and standardized data
pipelines, may lack rigorous quality control frameworks, and can be slow to
incorporate new information. The ERM sources the authors cite [11,12] were
last updated in 2013, do not offer digital shapefiles of the data, and many of
the maps have stated ambiguities and remain unchanged from decades pre-
vious. Beyond this, ERMs are inherently binary in nature and present no
information on the population density or geographical affinities within a
species range, further suggesting a species has zero occurrence outside [13].
Such claims are consistently challenged by electronic tagging and fisheries
data. One example is with Atlantic bluefin tuna (Thunnus thynnus), where the
United Nations Food and Agriculture Organization’s ERM does not include
regions with SDM predictions or public fishery records [14,15].

By comparison, our SDMs are generated from 805 235 observations
obtained from living public databases—the Global Biodiversity Information
Facility, FishBase, and the Ocean Biodiversity Information System [16–18]—
which have extensively curated and contemporary data. Following best
practices for SDM [19,20], our analysis [2] detailed a rigorous process of data
screening and model validation using 15-fold 70/30 spatial cross validations,
where the average area under the curve (AUC) criteria from all folds must
exceed 0.80. This means that the data for model testing and calibration are inde-
pendent, and that SDMs must accurately discriminate 80% of the training data.
Truthfully, SDMs can be challenged by the quality of observation data, project-
ing fundamental niches that are not realized, and spatial non-stationarity.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2021.0206&domain=pdf&date_stamp=2021-07-14
mailto:kyle.vanhoutan@gmail.com
http://orcid.org/
http://orcid.org/0000-0001-5725-1773
http://orcid.org/0000-0001-9074-625X
http://orcid.org/0000-0002-8584-6368
http://orcid.org/0000-0002-1901-6972
http://orcid.org/0000-0002-4331-1648
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ha
bi

ta
t s

ui
ta

bi
lit

y 
in

de
x 

(e
ns

em
bl

e)

0

0.2

0.4

0.6

0.8

1.0

distance to expert range map (103 km)

IN 0.1 0.5 1 2 3 4 5 6 7 8 9 10 11 12

1

10

102
 IN: 4.13% OUT: 95.87%

distance to expert range map (km)

no
. o

cc
ur

en
ce

 IN: 74.32% OUT: 25.68%

 IN: 84.54% OUT: 15.46%

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

1

10

102

103

104

1

10

102

103

104

105

106

 IN: 90.72% OUT: 9.28%

×103

×103

×103

×103

C
ar

ch
ar

hi
nu

s 
am

bl
yr

hy
nc

ho
s

Is
ur

us
 o

xy
ri

nc
hu

s
Is

ur
us

 p
au

cu
s

Sp
hy

rn
a 

tu
de

s

10

102

(a)

(c)

(b)

Figure 1. Comparing SDMs and expert range maps (ERMs). (a) ERMs perform variously, but never contain the full array of validated observations from third party
databases of animal observations [16–18]. (b) Occurrences are colour-coded by their distance to the ERM (black is within the ERM). Carcharhinus amblyrhynchos and
S. tudes both have validated empirical observations in novel ocean regions, where I. oxyrinchus and I. paucus have confirmed occurrences immediately adjacent to
the ERM polygons. Red arrows denote clusters or notable observations outside the ERM polygon. (c) The derived SDM for I. paucus [2], cropped to the extent of its
ERM [23], further reveals a significant variation in habitat suitability and likely population density within the ERM polygon. The single extralimital location for
I. paucus in (b) contained multiple observations.
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Therefore, we developed an ensemble modelling framework
to address potential bias and spurious observations. Our
resulting SDMs are built from publicly available observation
data, and do not generate habitat in regions without verified
observations.

We employed SDMs in this setting because they have
found important applications in fisheries science and man-
agement. The United States (US) National Marine Fisheries
Service, for example, couples SDMs of protected species
with real-time environmental data to inform fishery operators
where bycatch risk is highest [21]. Another study generated
SDMs from pelagic longline vessels (pretending they were
‘apex marine predators’) and finding the vessels and their
target prey shared a similar environmental niche [22]. Follow-
ing these important examples, our analysis assumes fishing
effort has a non-uniform environmental niche that parallels
target species and their habitat preferences. Advances in the
availability of occurrence data and modelling approaches



sp
ec

ie
s 

ri
ch

ne
ss

(b)

32 34 36 38 40 42 44

25

20

15

10

5

0

no. species in EEZ (including territories)

Australia
Costa Rica

United Kingdom
Panama

Colombia
The Netherlands

Brazil
Mexico

United States
France

0 2000 4000 6000 8000 10 000 12 000
distance to expert range map (km)

10

102

103

104

105

no
. o

cc
ur

en
ce

 IN: 57.8% OUT: 42.2%

(a) (c)

Figure 2. Nearly half of validated shark observations occur outside published ERMs. Aggregate results for all 59 shark species from [2] show (a) 42.2% of validated
observations occur outside ERMs, revealing a significant gap between published range maps and occurrence data. Summarized species richness patterns from
accumulating the ERM-cropped SDMs show (b) a coastal concentration of sharks and (c) the coastal zones of the USA, Mexico, Brazil and Australia as top 10 nations
in shark richness.

3

royalsocietypublishing.org/journal/rsbl
Biol.Lett.17:20210206
have made integrating SDMs into ocean management a power-
ful new tool, as niche models have been validated to inform on
the spatial overlap of fishery operators and key species.

Figure 1a,b compare the observation records used to feed
our SDMs to published ERMs from the International Union
for Conservation of Nature (‘IUCN’, [23]) for Carcharhinus
amblyrhynchos, Isurus oxyrinchus, I. paucus, and Sphyrna
tudes. (We replaced Sphyrna mokarran with I. paucus as
S. mokarran had multiple ERMs.) Figure 1a counts the percen-
tages of observations that are within and outside the ERM.
For these species, the number of observed occurrences that
falls outside the ERM ranges from 9.3% to 95.9%. For coast-
ally restricted species such as C. amblyrhynchos and S. tudes,
public databases provide validated empirical observations
in novel marine regions. Subjectively censoring such data
sources falsely assumes that species ranges are either fixed
or already perfectly understood [24]. For widespread pelagic
species such as I. oxyrinchus and I. paucus, most extra-range
observations are adjacent the ERM, perhaps reflecting more
recent poleward expansions from ocean warming [24,25].
Figure 1c crops our SDM output for I. paucus with its corre-
sponding ERM, emphasizing the structure of habitat
preferences the SDM provides that is missing from the com-
paratively flat ERM.

Figure 2 expands this analysis and summarizes the results
for all 59 species in our original study [2]. Figure 2a shows
that 42.2% of the 805 235 observations occurred outside the
ERMs, suggesting that ERMs are underestimating the shark
distributions. Next, we crop all 50 SDM outputs to their cor-
responding ERM and accumulate the total species richness
from all cropped SDMs (figure 2b). Figure 2c summarizes
this richness within each sovereign nation’s EEZ (including
territories), from the global map (figure 2b) detailing the
coastal concentration of shark species [4,7]. Figure 2c shows
that even if we restrict our SDM outputs to the ERM extents,
and do not proportionally rate SDMs by the number of
market fins, we still identify the USA, Mexico, Brazil and
Australia in the top 10 for shark species richness. Perhaps
we agree (e.g. [4]) that the coastal ecosystems of these nations
should be prioritized for global shark conservation?

Certainly, there remains a serious threat to oceanic sharks
in today’s shark fin markets, and the focus in the inter-
national community on threatened and endangered species
remains critical. Our results using market identifications
and SDMs add coastal species around the world as an
additional important conservation focus. While the expansive
distribution of many shark species does not allow us to pin-
point the exact locations of their catch, derived SDMs help to
narrow the environmental niche and spatial locations where
fisheries might expect the greatest interactions [21,22]. There-
fore, our model conservatively assigns species’ catch level to
the entire area in which it most probably exists. While scal-
able, our approach does have limitations and can be further
improved with additional data layers on marine protected
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areas and fishery accessibility [26], operator incentives [27]
and vessel tracking [22] and market surveys. Such additions
may alter our conclusions, perhaps especially by appreciating
the spatial non-uniformity of fisheries catch and the impor-
tance of market proximity [26]. Until then, our analysis may
be sufficient to show the large fraction of coastal sharks in
the fin trade, and broadly prioritize conservation in these
coastal areas while we move towards more comprehensive
effort. Part of that effort should also be devoted to data acqui-
sition and quality assurance of open access databases of
species occurrence, given their utility.

Darwin himself was one of the first naturalists to appreci-
ate that species are not fixed but change through time. While
Darwin was primarily considering forms, we now know from
fisheries catch, community science and tracking studies that
species distributions are changing. Ocean warming is rapidly
shifting ranges, as populations follow their niche across our
dynamic seas. This underscores that we need contemporary
data and modelling approaches to respond to this key
management challenge for global shark conservation.
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