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Abstract

Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or
phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for
biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region
have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few
confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this
limitation by replacing knowledge about the biological process by experimental data on differential gene expression
between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we
assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that
strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft
neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene
on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian
exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a
function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on
four monogenic diseases and successfully prioritize the known disease causing genes.
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Introduction

Genetic studies, including cytogenetic, linkage, and association

studies, can identify chromosomal regions associated with a disease

or phenotype of interest. Similarly, high-throughput ‘omics’

experiments identify genes or proteins implicated in a biological

process of interest. In both cases, biologists are often confronted

with long lists of tens or hundreds of candidate genes among which

they need to select a limited number of candidates for further

validation. This problem has been termed gene prioritization [1].

Recently, computational methods for prioritizing candidate genes

have been proposed. They usually rank candidates by matching

their information across multiple data sources against a profile

derived from a set of genes, pathways, or biological processes

already known to be involved in the phenotype. A frequent

objection to this class of methods is that they cannot be applied to

cases where little is known about the molecular basis of the

phenotype (no confirmed disease genes, fragmentary understand-

ing of the biological cascades involved). We seek to overcome this

limitation by replacing knowledge about the biological process by

experimental data on differential gene expression between affected

and healthy individuals. Considering the problem from the

perspective of a gene/protein network, we assess a candidate

gene by considering the level of differential expression in its

neighborhood under the assumption that strong candidates will tend

to be surrounded by differentially expressed neighbors.

A number of methods are currently available for gene

prioritization. Aerts et al. (2006) developed ENDEAVOUR, a gene

prioritization method that ranks candidate genes based on their

similarity to genes already involved in the biological process of

interest, using multiple data sources (e.g., sequence, expression,

literature) [2]. Similarly, Köhler et al. (2008) developed GeneWan-

derer, a method for prioritizing candidate genes by the use of the

random walk analysis that defined similarities in protein-protein

interactions (PPI) networks [3]. Their global distance measure

defines the similarity between genes within the global network and

ranks candidate genes on the basis of their similarity to known

disease genes. They hypothesized that a global network-similarity

measure captures associations between disease proteins better than

algorithms based on direct interactions or shortest paths between

disease genes. Franke et al. (2006) also incorporated the interactions

between genes in a network to prioritize candidate genes [4]. They
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developed a human gene network that integrates information on

genes and their functions. Their method, Prioritizer, ranks

candidate genes on the basis of their interactions. They analyze

susceptibility loci and investigate whether genes from different loci

can be linked to each other. Lage et al. (2007) developed a

phenome-interactome network that integrates phenotypic litera-

ture information from OMIM with a cross-species PPI network

[5]. They implemented a Bayesian disease gene predictor that

computes for each candidate gene the probability that it is the

disease-related gene. High probabilities are assigned to genes that

interact with genes that are already associated with phenotypically-

related disorders. Chuang et al. (2007) developed a network analysis

method by applying a protein network-based approach that

identifies biomarkers not as individual genes but as subnetworks

extracted from protein interaction databases [6]. To find

associations between phenotypes and subnetworks, they developed

a scoring based on mutual information measure. Although their

methodology resembles that of gene prioritization, their method is

related to biomarker discovery rather than prioritization.

Most of available prioritization methods have in common that

they require knowledge about the disease to identify putative

disease genes, for example in the form of a set of genes, pathways,

or gene ontology categories known to be implicated in the disease.

They then rank candidate genes through ‘‘guilt by association’’

methods across a variety of data sources. But when nothing or only

little is known about a disease, these methods will be inapplicable

or ineffective. While it is extremely useful to incrementally add

disease genes to phenotypes whose molecular basis is reasonably

well characterized, there is strong demand from geneticists for

methods that could help in the more difficult case of disorders for

which the molecular basis is not yet elucidated. Currently, there

are not yet truly effective prioritization methods for this case.

We seek to overcome this limitation by replacing knowledge

about the biological process by experimental data on differential

gene expression between affected and healthy individuals. Our

method is a generalization, from a systems biology perspective, of

a standard procedure for assessing candidate genes in genetic

studies. A standard genetic procedure to analyze candidate genes

is to check the expression level of a candidate gene in patient-

derived material against wild type (typically in fibroblast or

immortalized lymphoblastoid cell lines). Candidates for which a

significant difference is observed between the two groups are

considered promising. However, for many genetic diseases (such as

diseases arising from point mutations in coding regions), there is no

guarantee that the expression level of the disease gene itself is

affected (although this is possible through feedback effects).

Rather, genes ‘‘downstream’’ of the disease gene are those whose

expression will be affected. Instead of considering genes in

isolation, we consider the differential expression data now at the

level of a gene/protein network. If we look at expression patterns

mapped on a gene network, we therefore expect that we will

observe a disrupted expression module around the disease gene.

Other candidate genes, which are not causally related to the

phenotype, should not be part of such a disrupted expression

module. For this reason, the entire affected neighborhood has to

be considered for each candidate gene instead of only taking its

own expression level into account.

When considering the expression data at the network level, we

need to rely on a gene/protein network. Originally, protein-

protein interaction networks from data on putative physical

interaction between proteins. More recently, protein networks

combining a variety of information sources have been proposed. A

link in such a network does not necessarily imply physical

interaction between two proteins, but rather some form of

association resulting from different types of data (actual interac-

tion, membership in the same pathway, coexpression, literature

cooccurrence, etc.) We will call such a network, a protein

association network, or protein network for short. Note that in

such networks no distinction is made between gene and protein, or

multiple isoforms. Furthermore, protein networks are far from

complete, and dealing with direct protein-protein interactions may

be suboptimal since protein networks are still sparse because of

many unknown components and pathways [4,7]. Also, procedures

that define neighborhoods in terms of the minimum number of

steps from a given gene suffer from the ‘‘small world’’ effect (i.e.,

the number of neighbors of a given gene grows rapidly with the

number of steps taken along the network). To overcome those

potential limitations, we chose to use a global distance network

that considers both direct and indirect paths in the network [3]. By

considering indirect interactions in a protein network, missing links

in the network can be compensated. Thus, a global distance

network is more densely connected than the sparse protein

network from which it is derived. Specifically, our method derives

the global distance network from a functional protein association

network (STRING [8]) using kernel methods. STRING integrates

both protein-protein interactions as well as predicted interactions

based on comparative genomics and text mining [8].

Figure 1 shows an overview of our approach. For each gene in

the network, its differential expression level is determined by

transcriptome-wide microarray experiments of mutant vs. wild-

type lines. Then differentially expressed neighborhoods in this

network are considered for all candidate genes from a chromo-

somal region of interest (e.g., identified in a linkage study).

Candidate genes with genes in their neighborhood having highly

differentially expressed levels are strong candidates. The neigh-

borhood of a candidate gene is defined by direct connections in the

global distance network, whereby its size can vary. The smaller the

distance from a neighboring gene to the candidate, the closer the

neighboring gene is in the network. We have chosen to work with

the notion of a soft neighborhood by which we mean that the

neighborhood of a gene is not a limited set of gene, but rather a

weighting function that decreases monotonically as a function of

the distance from the gene, but potentially covers the whole

network (this idea is reminiscent of the idea of fuzzy membership

in fuzzy c-means clustering).

To identify candidates belonging to a significantly disrupted

expression module, we have developed a novel randomization

method that identifies modules with significantly affected genes.

Each candidate receives a score based on the analysis of the

differential expression along its neighborhood. The level of

differential expression of each gene is weighted by its network

distance from the candidate and summed up over all genes.

Therefore, the higher the differential expression levels of

neighboring genes with small distances are, the higher the score.

To determine a candidate gene’s significance, a p-value based on a

randomization procedure is computed. If a candidate belongs to a

significant disrupted expression module in the network, its p-value

is expected to be significant.

Evaluating such a method in silico is obviously challenging

because if we make predictions on actual diseases where no genes

are known, the only way to validate those predictions will be to

carry out a full biological validation. Moreover, the kind of

expression data needed for our analysis will be currently available

only for very few diseases because at this point biologists mostly

carry out this type of experiments for diseases for which the cause

is known. In a first step, we therefore mimic the situation by taking

known disease genes for which expression data for patients versus

controls is available and attempt to recover the gene mutated in
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those patients. We present four distinct data sets for which we

could successfully prioritize the disease-causing gene for each data

set. The average rank of the known disease genes was approx. 4

out of approx. 120 candidate genes (see Results). Thus, our

method can detect unknown disease causing genes by identifying

the most disrupted expression modules in the global distance

network. In a second step, using one of the only available human

expression data sets for a disorder of unclear etiology, we have

applied our method to the polygenic disorder Stein-Levental

syndrome for which no disease gene is known. We could confirm

the influence of two candidate genes: fibrillin 3 (FBN3, for which a

susceptibility allele has been identified) and follistatin (FST, for

which association with a Stein-Levental syndrome related

metabolic phenotype has been shown). Finally, we suggest a new

candidate gene (DEAD box 4) potentially involved in this disease.

Results

Our distance network was derived from the STRING database

[8], from which we used all data types provided (genomic context,

high-throughput experiments, coexpression data, and previous

knowledge). The resulting network detects all direct and indirect

connections of genes and represents a notion of global distance

measure (see Materials and Methods).

We illustrate our method by its application to the analysis of

constitutional genetic disorders caused by a single gene mutation.

Following the current practice of assessing candidate gene

expression in EBV cell lines or fibroblast cultures in mutant

against wild type, we consider expression data from such biological

material (or other accessible tissue biopsies). There is however only

a limited number of such data sets publicly available through the

ArrayExpress [9] and Gene Expression Omnibus [10] repositories.

We present here the results of the method on four case studies.

We distributed all signals randomly over the network to estimate

the significance of the candidates. In an adequate data set, at least

one gene should be found with a significant p-value (i.e., p,0.05).

We then assessed how high the actual disease gene ranked and

whether its score was significant.

Case studies
We have evaluated our approach on four data sets: (1) fragile X

syndrome (FXS) [11] caused by mutation of FMR1 (fragile X

mental retardation 1), (2) Marfan syndrome (MFS) [12] caused by

mutation of FBN1 (fibrillin 1), (3) cystic fibrosis (CF) [13] caused by

mutation of CFTR, and (4) Becker muscular dystrophy (BMD)

[14] caused by mutation of DMD.

For each data set, we have determined a set of candidate genes

by taking the genes within a set of chromosomal bands centered on

the disease-causing or disease-related gene to gather approx. 120

genes. Genes that were absent in our distance network were not

further considered. For finding differentially expressed genes in the

network we computed the fold-change for each gene in the

genome (see Materials and Methods). Beside the scores of the

candidates and the fold-change derived from the microarray

experiments, we also present known links to similar diseases with

related phenotypes.

Each data set and the high-ranking candidates (i.e., those that

have a significant p-value) that are phenotypically linked to related

diseases [15–21] are characterized in the Supplementary Materials

S1. This demonstrates the significance of the method and shows

Figure 1. Overview of the method. (1) From a protein association network a global distance network is computed based on a kernel method
(e.g., the Laplacian exponential diffusion kernel). (2) A disease related microarray experiment is required from which the differential expression levels
of all genes in the network are determined. (3) The differential expression levels of the genes are mapped on the global distance network. (4) A set of
candidate genes is required (e.g., from a linkage study). (5) For each candidate gene its differentially expressed neighborhood is identified by a
regression analysis. (6) Based on the regression analysis each candidate gene receives a score. (7) The candidate genes are ranked by their scores.
doi:10.1371/journal.pone.0005526.g001
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that not only the actual disease-causing gene can be identified, but

also related genes that may also be involved in this disease.

Neighborhood
Determining an adequate size for the neighborhood that

influences the score of a candidate is a challenge and influences

the ranking. For three data sets (fragile X syndrome, Marfan

syndrome and Cystic fibrosis) we have determined small

neighborhoods of 150 or 20 neighboring genes, because for these

data sets we obtained the best signal for small neighborhoods (data

not shown) after applying the Fisher omnibus statistics (see

Materials and Methods for more details). However, for one data

set (Becker muscular dystrophy) we have determined a larger

neighborhood of 2000 neighboring genes due to high signal for a

large neighborhood (data not shown).

To illustrate the difference between disrupted expression

neighborhoods of significant candidate genes and not significant

genes, we have added graphs containing the queried neighbor-

hood of the candidates (Figures S1, S2, S3). These graphs show the

differential expression levels of the neighbors and their distances to

the candidate gene. We can observe that the closest neighborhood

of a significant candidate is highly differentially expressed and

belongs to a more disrupted expression module than the

neighborhood of a nonsignificant candidate.

Significance
To determine a candidate gene’s significance, the differential

expression levels are distributed randomly over the network. The

candidate’s score is compared with the distribution of the

randomly generated scores that leads to a p-value. If a candidate’s

score is larger than 95% of all randomized scores, this candidate

gene can be considered as belonging to a significant disrupted

expression module in the network.

Figure 2 shows for all data sets the distribution of p-values after

10,000 randomizations, and the p-values of the disease genes

whereby all were assigned significant p-values. These plots

demonstrate that a clear distinction could be made between

significant genes with low p-values and all other genes, and that the

disease genes could be identified by their significant p-values and

their high ranking.

Ranking
Tables S1, S2, S3, S4 show the results of the ranking of the

evaluation data sets. In all four benchmark data sets, the disease

causing genes were ranked in the top 10 (FXS: 1st position, MFS:

5th position, CF: 7th position, BMD: 2nd position) out of lists

containing approximately 120 candidate genes (see Supplementary

Material), and all were assigned significant p-values. For all data

sets, we could identify several disrupted expression modules of

different sizes around a candidate gene. For two data sets (FXS

and CF), some of the top ranked genes were already known to be

directly associated with a related disease or phenotype [15–21]

that emphasizes the significance of this result. We could not only

successfully identify the disease genes, but also genes that correlate

with the corresponding phenotype.

One of our aims was to develop a method that is independent of

the differential expression levels of a candidate gene itself.

Therefore, for evaluation purposes, we did not take the differential

expression levels of the candidates into account but, preferably, the

levels of their neighboring genes. Although in practice, we should

obviously take into account the differential expression level of the

candidate itself (because the disease gene can be disrupted through

feedback effects). Our rankings in Tables S1, S2, S3, S4

demonstrate clearly that the ranking orders do not depend on

the up- or down-regulation of the candidate genes themselves, but

rather on the effects of being positioned in their neighborhoods.

Thus, genes that are not differentially expressed can rank higher

than highly differentially expressed genes as long as their

neighborhood is differentially expressed.

Application to Stein-Levental syndrome
We have applied our approach to the Stein-Levental syndrome

[22], which is characterized by obesity, hyperandrogenism, and

chronic anovulation in women. Stein-Levental syndrome is an

endocrine disorder that affects approximately 5% of women and is

a leading cause of infertility. This syndrome is believed to be

oligogenic (i.e., caused by the effect of a limited number of genes)

rather than monogenic [23]. Follistatin (FST) was originally

proposed as a candidate for Stein-Levental syndrome by linkage

and association studies [24], but is now thought to be rather

associated with key androgenic phenotypes of Stein-Levental

syndrome but not with the disease itself. These results suggest the

existence of another disease-causing gene for Stein-Levental

syndrome in the vicinity of FST (rather than FST itself). Recently,

a Stein-Levental syndrome susceptibility locus was identified at

19p13.2 [25] and further association studies have suggested

fibrillin 3 (FBN3) as the Stein-Levental syndrome susceptibility

locus [26]. However, beside FST and FBN3 other candidate genes

have been studied, often with inconsistent results [27].

We have determined two sets of candidate genes located on the

chromosomal region of FST (chr5q11.2) and FBN3 (chr19p13.2).

Both genes (FST, FBN3) were ranked high by our method (Tables

S5, S6) and we could confirm their important role in this disease.

We further detected the DEAD box 4 gene that is located on

chr5q11.2 and that was ranked on the top position with a

significant p-value (Table S5). We suggest that DEAD box 4 is a

new candidate gene for Stein-Levental syndrome because of

association with stem cell recruitment to the ovaries, interaction

with the microRNA processing machinery, and impact on

apoptosis [28–35].

Discussion

As mentioned in the introduction, there are several known

methods to prioritize candidate genes. These approaches can be

split into methods that need known disease-gene associations about

the disease [2,3,5] and methods without this precondition [4]. If

little knowledge is available for a specific disease, the methods that

require known disease genes will be ineffective. Franke et al. (2006)

presented a method to prioritize candidate genes without a

training set [4], but without using expression data to evaluate the

candidate genes. Among a set of disease loci, they will look for

pairs, triples, etc. of genes at different loci for which interaction has

been described. Such sets of interacting genes are considered more

likely candidates for causing the disease at the different loci.

Because of the combinatorial nature of the test, the method does

not have high statistical power. Along other lines, Chuang et al.

(2007) introduced a network analysis method using expression

data [6]. However, they focused on finding active subnetworks and

biomarkers in cancer and developing a methodology that is not

directly related to our problem. Our strategy differs as we focused

on searching for disease genes for which genetic mutation causes

constitutional disorders.

The strength and uniqueness of our approach is that we

substitute disease-specific experimental data (in our case expres-

sion data) for the prior knowledge of the molecular basis of the

disorder. ENDEAVOUR [2] could also incorporate disease-

specific expression data but did not use any network analysis

Identifying Disease Genes
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concepts and would still mostly rely on the knowledge from the set

of known genes for the disease. Among all other methods, only

Chuang et al. (2007) leverages experimental data [6], however with

an entirely different scope and method. Essentially, although

existing methods could be applied on the known benchmark cases,

none of them would be directly applicable to the actual situation

where we want to use our method, which is when the molecular

basis of the disease is unknown (with the case of Stein-Levental

syndrome as an illustration).

A first question is in which setups our method is applicable. We

have chosen here to apply our method in a setup where a locus is

known for the disease. Although this is not a strict requirement and

genes can be prioritized on a genomewide basis, it has the

advantage of limiting the number of candidates tested and

therefore limiting the number of false positives. It also guarantees

that at least one gene must be associated with the disease.

However, among genetic studies, while the method is relevant to

linkage and association studies, it may not be applicable to loci

detected by cytogenetic studies of patients with genomic deletions

or duplications. Indeed, in this case, multiple genes are affected by

a copy number change, so that the expression data can be

expected to be the superposition of the downstream effects of all

the affected genes (although it could be that most of the phenotype

is explained by a single critical gene that dominates the

downstream cascade of expression dysregulation, in which case

the method may still be applicable). Although the concept of our

method may seem at first tailored to monogenic disorders, it is

more broadly applicable. This is demonstrated by our case study

on the polygenic disorder Stein-Levental syndrome, where we

could detect FBN3 and FST as related to the disease.

Several factors influence the performance of our prioritization

method. First, the quality and coverage of the network around the

Figure 2. Histogram of p-values from randomizations vs. p-values of the disease genes FMR1, FBN1, CFTR, and DMD. This figure
displays the histogram of p-values obtained after 10,000 randomizations, and the p-values of the disease-causing genes from all four benchmark data
sets. It can be observed that in all data sets only a small set of genes have significant p-values (i.e., they belong to disrupted expression modules) and
all disease causing genes are among them.
doi:10.1371/journal.pone.0005526.g002
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actual disease gene will be a strict bottleneck. For example, an

isolated gene with no edges in the network can never be effectively

prioritized by our method (except by relying solely on its own

expression data). We have chosen to use the STRING database

(version 7.1) because it is built by taking into account multiple

heterogeneous data sources. This results in a large network with a

good coverage (human: 16,050 genes, mouse: 16,566 genes).

Errors in the network (caused by incorrect gene annotation,

unreliable functional annotation, etc.) may both cause false

negatives (missing the disease gene) as false positives (genes

incorrectly identified as promising because of incorrect association

with other genes). Continuing improvements in the quality of

protein association networks will contribute to increased effective-

ness of the proposed method. Moreover, protein association

networks are naı̈ve in terms of alternative transcripts of genes and

protein isoforms. At this moment, no distinction is possible among

them. It is also unclear what the quality and coverage of

nonprotein-coding genes is in current protein association networks

– although our candidate gene DEAD box 4 for Stein-Levental

syndrome suggests a possible role for the nonprotein-coding genes

PIWIL2 (MILI) and DICER1. Several alternatives exist to the

STRING network including BioGRID, IntAct, IntNetDb, HPRD,

and Dip, and we will study the impact on performance of the

choice of network in follow-up work.

Second, the quality and the relevance of the expression data will

greatly influence the results of the method. Poorly collected

samples (patients not actually sharing the same molecular

phenotype) or disease heterogeneity (multiple genes or pathways

leading to similar phenotypes) will obscure the expression pattern

and will make picking up a meaningful signal more difficult.

Similarly, lack of access to the most relevant cell types (biopsies

cannot be performed arbitrarily on patients) can be a limiting

factor for the method. If the relevant molecular cascades are

simply not active in the cell type assessed, differences in expression

may be meaningless. The idea is that the pattern of differential

expression is as concentrated as possible on the network so that the

affected subnetworks can be effectively identified. Some mutations

may lead to extensive downstream cascades that may be reflected

in network patterns that are too broad to effectively pinpoint the

disease-causing gene. A promising experimental direction for

focusing the expression patterns towards the disease-causing gene

would be to use more sophisticated factorial disease for the

microarray experiment. If we can identify a stimulus that is

incorrectly processed in affected individuals (e.g., a metabolite or a

protein), we could attempt to perform an expression profiling

experiment where patient and control material receive a treatment

that triggers the affected cascades. The differential expression

response will tend be more tightly focused towards those genes that

are essential for the difference in response to the treatment

between affected vs. non-affected individuals.

Third, an important parameter of the method is the

neighborhood size or, the scale parameter of our weighting

function that defines it. To study the neighborhood of the

candidate genes in order to identify disrupted expression modules

in the distance network, we had to bound the neighborhood to a

limited size because the network was very densely connected, and

thus the neighborhood of a candidate gene consisted of almost all

genes in the network. This limitation was done by only considering

the neighboring genes with the smallest distances to the candidate

(any gene further than a certain threshold was not considered). We

wanted the size of the neighborhood to be dependent on the

disruption we found in the network. We determined this size by

analyzing the observed signals obtained by applying the Fisher

omnibus statistic to the list of candidate genes for different

neighborhood sizes, and choosing the size for which we caught the

best signal as the most reliable one. For three data sets (FXS, MFS,

CF), we determined a small neighborhood because we observed

best signal for small neighborhoods (data not shown). However, for

the fourth data set (BMD), we determined a larger neighborhood

because we could not observe a strong signal for smaller

neighborhoods (data not shown). Therefore, we had to expand

the number of neighboring genes that were taken into account for

finding highly differentially expressed neighborhoods. This

difference showed us that the size of the neighborhood can differ

and is dependent on the number of affected genes in the disease

and their biological pathways.

If we chose a neighborhood size for which we caught a weak

signal, the ranking could produce an unreliable result. For

example, b = 0.5 for FXS [11] that leads to a neighborhood size

of 20 genes (see Table S9) would capture no meaningful signal

from the neighbors and would lead to an unreliable ranking.

Instead, a ranking for which a strong signal regarding to the

significance is observed can be seen as a reliable result. Many

factors influence the selection of an optimal neighborhood size: the

shape of the weighting window, the density of the network (i.e.,

average node degree), the choice of the index of differential

expression (here, the logarithm of the fold change), and so on.

Further optimization of all the parameters will be necessary to

devise an optimal procedure for neighborhood size selection.

Fourth, technical details of the mathematical model could have

a substantial influence on the performance. Our purpose was to

identify all direct and indirect connections in the functional

protein association network from STRING that leads to a densely

connected (global distance) network. We computed the Laplacian

Exponential Diffusion Kernel [36] to obtain a global distance

network. Following Fouss et al. (2006), there exists several kernels

on graphs, such as the Exponential Diffusion Kernel, the

regularized Laplacian Kernel, the von Neumann Diffusion

Kernel, and the Commute Time Kernel [37]. We chose the

Laplacian Exponential Diffusion Kernel because Köhler et al. (2008)

already applied this kernel as a good performing kernel to

construct a distance network [3]. Furthermore Fouss et al. (2006)

observed that this kernel performs systematically better than their

corresponding adjacency matrix-based kernels (Exponential Dif-

fusion Kernel, von Neumann Diffusion Kernel) [37]. However, a

more systematic assessment on the effect of the kernel and its

comparison to shortest-path, direct-interaction-only, or other

methods, such as GTOM [38] is certainly in order. To efficiently

compute the kernel matrix we applied the Cholesky Decomposi-

tion (see Materials and Methods) because the naı̈ve computation

was too time consuming. However, by calculating the Cholesky

Decomposition we could compute the kernel method successfully

with full accuracy (see Tables S7, S8). As a measure for

determining the change in expression of a gene we chose the

fold-change between control and experiment [39]. It is a

commonly used measure (e.g., [11–14]), but numerous alternatives

exist and will be compared in future work, such as differential

expression indices expressed in terms of z-scores or log p-values, or

combining the differential expression level and its statistical

significance.

There are certainly diseases for which the candidate genes show

no significances (i.e., there are no significant p-values that

distinguish significant from not significant genes). In this case the

disease does not lead to detectable disrupted expression modules

or affected pathways in the network. Although it would be

preferable to detect the disease gene, the ability of the method to

return a negative result is an asset of the method. Indeed the

performance is greatly influenced by the quality of the expression
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data, the quality of the protein network around the actual disease

gene, and the underlying biology (i.e., existence of actually

disrupted expression modules) so that the method cannot be

expected to work optimally on every disorder. Therefore, the

ability to assess statistical significant and potentially return a

negative result (i.e., ‘‘no strong candidate found’’) makes it possible

to avoid pursuing ‘‘best’’ candidates that are actually not

promising. There are also cases for which our method does return

significant genes among which the known disease causing gene can

however not be found. For those cases, one or several disrupted

expression modules are found but none of them is centered on the

disease-causing gene. This can be explained by the fact that even a

single-gene disorder can result in the disruption of several

pathways (downstream of the original pathway), making therefore

the signal we are looking for more difficult to detect. This reflects

that the current method is not suitable for all single gene disorders.

We applied our approach to Stein-Levental syndrome [22] and

could identify two important candidate genes (FST and FBN3)

from two different chromosomal regions [23–26]. We further

detected the DEAD box 4 gene that is located on chr5q11.2 and

that was ranked on the top position with a significant p-value.

DEAD box polypeptide 4 (synonyms Mvh and Vasa) is an RNA

helicase and is used commonly as a marker for germline cells

[28,29]. Although little is know about the molecular function of

DEAD box 4 in mammals, there are several reasons why Dead

box 4 is a plausible candidate gene for Stein-Levental syndrome.

First, in male mice loss of Dead box 4 results in infertility due to

suspension of premeiotic differentiation of spermatogenic cells

[30]. Female knockout mice do not show any obvious reproductive

defects, but it is plausible that the effect may be less dramatic in

females, leading only to a (partial) arrest in follicle development.

One of the genes that fail to be expressed in a mouse Dead box 4

knockout is Aven, a caspase inhibitor [29]. Failure to express Aven

thus may result in altered apoptosis control. Stein-Levental

syndrome is characterized by follicular arrest, where several

follicles develop to a size of 5–7 mm but not further. Since primary

follicles secrete androgens, too many arrested follicles likely lead to

elevated androgen levels, a hallmark of Stein-Levental syndrome.

Second, DEAD box 4 interacts with Dicer1 and is colocalized with

MILI [31]. Dicer1 processes miRNA precursors to mature

miRNAs which are incorporated in the RISC complex. These

miRNA-RISC complexes then exert a broad posttranscriptional

control on many mRNAs. Mili belongs to the Piwi family, encodes

a component of the RISC complex and is expressed at early stages

of oocyte growth [32] and crucial for progression through

spermatogenesis [33]. In Drosophila, the loss of Piwi function

leads to the failure of germline cyst formation [34]. As a third

potential mechanism, altered DEAD box 4 may influence stem cell

recruitment to the ovaries. Johnson et al. have demonstrated that

stem cells from bone marrow and peripheral blood which are also

marked with the presence of DEAD box 4, can migrate to the

ovaries of sterilized females and give rise to oocyte-containing

follicles. Interestingly, the level of DEAD box 4 is influenced by the

estrous cycle [35].

In summary, we have developed a novel gene prioritization

approach that substitutes expression data to prior knowledge of the

molecular basis of the disease, as required by existing methods.

Our method ranks candidate genes by their differentially

expressed neighborhoods. We have developed an efficient

algorithm to compute a genomewide network by applying the

Cholesky decomposition. To illustrate the power of our method,

we have applied it to four constitutional genetic disorders and

successfully prioritized the known disease-causing genes. In an

application on a genetic disorder that is not yet well studied, we

could retrieve two important known candidate genes and suggest a

new candidate gene.

Materials and Methods

Overview
A network model based on the STRING database [8] was built

for human genes. This sparse network model was used to compute

distances between single genes via the Laplacian Exponential

Diffusion Kernel [36]. The goal of such an approach is to build a

network model based on global similarity measure (i.e., to include

both direct and indirect connections between genes).

For each disease, a set of candidate genes (e.g., from a linkage

study) has to be defined and a relevant microarray experiment is

required (e.g., diseased sample vs. reference sample). A main issue

that arises when applying kernel graph methods to genomewide

networks is the computing time. To reduce it, the kernel matrices

were approximated by the full or incomplete Cholesky decompo-

sition and the reduced eigenvalue decomposition. Knowing the

distances between single genes in the network, the differential

expression level of adjacent genes can be considered. Each

candidate gene receives a score based on the analysis of the

differentially expressed neighborhoods, by which it is ranked.

Candidate genes with genes in their neighborhood having highly

differentially expressed indices are strong candidates.

Functional protein association network
A protein association network is an undirected graph with

proteins as nodes and weights as edges. If there exists an

association between two proteins, an edge will be set between

the corresponding nodes in the graph. The weights of the edges

are taken represent the probability that such an association exists

in reality. To model our functional protein association network, we

used data from STRING [8] (version 7.1). STRING is a database

of known and predicted protein-protein interactions. The

interactions are derived from different information sources and

different organisms, whereas the interactions include physical and

functional associations. To build our networks, we have used the

fused network provided by STRING that already integrates all

available protein-protein interactions.

Kernel matrix and distance network
We hypothesize that global network-similarity measures capture

relationships between disease proteins better than algorithms

based on direct interactions. To capture global relationships within

a graph, a graph kernel was used. A graph kernel computes the

global similarity of two nodes as the probability of reaching one

node at some time point after a random walk starting from another

node. This global similarity detects, besides direct, also indirect

connections in the graph. The resulting graph leads to a global

distance network where the edge between two nodes does not

represent a direct interaction, but rather the global distance in this

network.

The Laplacian Exponential Diffusion Kernel was intro-

duced by Kondor and Lafferty (2002) [36] as

K~ lim
n??

Iz
bL

n

� �n

~ebL ð1Þ

whereby L is the Laplacian matrix of a weighted and undirected

graph G with symmetric weights [36,37], and the parameter b is the

diffusion parameter that determines the degree of diffusion (for

more details see Supplementary Materials). For a Laplacian matrix,
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ebL is always positive definite and thus can be used as a kernel

matrix. It can be seen as a random walk, starting from a node and

transitioning to a neighboring node with the probability b.

The complexity of Equation (1 is O n3
� �

. To improve the

performance of the computation of such a diffusion, we can apply

the Cholesky decomposition, that is decomposing the Laplacian

matrix into the product of a lower triangular matrix by its

transpose, before computing the kernel from this matrix. In this

way, the computing time is reduced significantly as presented in

Table S7.

The resulting kernel matrix is a densely connected network.

This new network detects not only the direct interaction from the

original protein association network, but also all indirect

interactions via other genes. Thanks to this property the distances

between all genes in the network can be determined. They are

necessary for identifying highly expressed neighborhoods with a

certain distance from a candidate gene, even if the genes are not

directly interacting.

Cholesky decomposition
There exists for every symmetric positive definite matrix A of

rank n exactly one lower triangular matrix S~ sij

� �
with sij~0 if

ivj and sijw0 if i = 1, 2,…, n.

The Cholesky decomposition (CD) solves the linear equation

A:x~b by transforming A into a product of a lower triangular

matrix S of rank n and its transposed ST :

A~S:ST ð2Þ

To reduce the dimensionalities of kernel matrices we applied the

Incomplete Cholesky decomposition (ICD) with pivoting [40–42].

ICD is an iterative algorithm that approximates a lower rank

matrix (m%n) in order to reduce the dimensionalities so that

A&~SS:~SST ,[Rn|m, m%n ð3Þ

The resulting matrix ~SS is a lower triangular matrix of rank m. The

overall complexity is O m2n
� �

and the storage requirement is

O mnð Þ.

Distance network
Having a symmetric and positive semidefinite Laplacian matrix

L, we can compute the Laplacian Exponential Diffusion Kernel by

applying CD or ICD instead of Equation (1), the computing time

can be reduced significantly from O n3
� �

to O n2m
� �

, in which m is

the rank of S (Equations 2–3)).

In Table S7, we show that the computing time in calculating the

Laplacian Exponential Diffusion Kernel can be significantly

reduced by applying the CD. If we can accept an approximation

to the exact kernel, we can apply the ICD by defining a threshold

to reduce the rank of the matrices. In our example, we chose a

threshold that led to an error of 7%–10%, depending on the size of

the matrix (Table S8). The error is the difference of the norm of

the reduced rank matrix and of the full rank matrix. For a network

of the whole human genome containing 16,566 genes and an error

of 7%, the resulting matrix got a low rank matrix with a rank of

1,829 that could be computed in 35 minutes, whereas by running

the computation by applying the initial equation introduced by

Kondor and Lafferty (2002) [36] (Equation (1)), the computation on

the same machine (dual Opteron 250 with 16 GB RAM) ran out

of memory and could not finish the computation. Even if no error

can be handled and the CD is applied, and thus the matrices

remain full rank, the computation could be successfully finished

after 32 hours.

Gene expression analysis
After obtaining a global distance network by computing the

Laplacian Exponential Diffusion Kernel from the protein

association network, the gene expression profiles for a specific

disease can be mapped onto this network. For this purpose,

relevant genome-wide microarray experiment data (e.g., disease

sample vs. reference sample) is required from which the differential

expression level for each gene in the genome is computed. Basing

on the microarray experiment (the datasets that we chose from

GEO were from good quality and already normalized) the fold

change between the two conditions can be computed for each

gene. We applied the fold-change between control and experiment

[39]. For our method only the absolute value of the fold-change is

relevant (i.e., if a gene is highly differentially expressed or not). We

do not use a threshold to distinguish between highly and lowly

differentially expressed genes, because our method considers all

differential expression levels for computing the scores.

Scoring and ranking
For each candidate gene a score is computed based on the

differential expression levels of its neighborhood. For this purpose

the differential expression levels of all neighbors in the distance

network are ordered by their distance to the candidate gene. The

rank of the diffusion distance is then taken as the new distance

measure. The differential expression levels are then multiplied by a

weighting function (w~e{b:r, controlled by parameter b and rank r)

to stress expression of close neighbors and to suppress expression of

neighbors being far. Then the expression data is distributed

randomly over the network. The score for a candidate gene is

defined by the maximum deviation between its weighted neighbor-

ing expression and the randomized expression. Thus, the higher the

level of differential expression level of close neighboring genes, the

higher the score for the candidate gene (see Figure 3).

To obtain an empirical p-value for each candidate gene, the

distribution of the scores was determined by repeatedly (3,000

times) randomly distributing the expression data over the network

to estimate the significance of the signals of the actual candidates.

By comparing the score of each candidate gene with the random

distribution of the scores, a p-value was assigned. If a candidate’s

score was larger than 95% (a= 0.05) of all randomized scores, this

candidate gene’s score was considered significant.

Neighborhood size
For our soft neighborhoods, we also define a notion of neighborhood

size. Instead of having a hard threshold on the distance that

determines whether a gene belongs to the neighborhood or not, our

weighting function has a scale parameter that determines how quickly

the weight decreases as a function of the distance. This parameter is

what defines our neighborhood ‘‘size’’. To communicate about the

neighborhood size easily, we use the following procedure. First, a

threshold on the weight is selected, meaning that we neglect the

contribution of all genes that have a weight lower than the threshold

and are thus sufficiently ‘‘far away’’ from the candidate (the number

of considered genes varies between 20 and 4000, depending on b that

varies from 0.001 and 0.5 (see Table S9)). As a result, we view the

genes for which the weight is considered nonnegligible as ‘‘inside’’ the

neighborhood. In our case, the weighting function is a negative

exponential function (w~e{b:r) regulated by a parameter b. As b
decreases, the neighborhood size increases, and more neighboring

genes are considered for computing the scores of the candidates (see

Table S9).
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For each data set, an appropriate neighborhood size must be

computed independently. Therefore, we first run the analysis for

various value of b (from 0.001 to 0.5) and, for each, measure the

signal captured by using the Fisher omnibus statistic

(S~
P

{2 ln p{valueð Þ) on the rankings produced. We then

generate a new p-value from the statistic S for each b using the x2

distribution. The value of the parameter b with the smallest

corresponding p-value is considered the appropriate neighborhood

size for this data set. The idea is that, for an appropriate

neighborhood size, some of the candidates will capture meaningful

signal from their neighbors. By contrast, for inappropriate

neighborhood sizes, all candidates will have uniformly distributed

p-values, leading to a low statistic S.

Table S9 illustrates the signals derived by the Fisher omnibus

meta-analysis using the example of FXS [11], leading to an

appropriate neighborhood size of approximately 150 genes for this

data set.

Data sets

N FXS

# Mendelian disorder: fragile X syndrome (FXS, OMIM

#300624)

# Disease gene: fragile X mental retardation 1 (FMR1,

OMIM *309550)

# Phenotype: mental retardation, macroorchidism, and dis-

tinct facial features

# Expression data: Nishimura et al. (2007) [11] (GEO accession

number: GSE7316). Lymphoblastoid cell cultures from

patients with confirmed FMR1 full mutation (CGG repeat

expansion). Platform: Agilent-012391 Whole Human Ge-

nome Oligo Microarray G4112A

N MFS

# Mendelian disorder: Marfan syndrome (MFS, OMIM

#154700)

# Disease gene: fibrillin-1 precursor (FBN1, OMIM *134797)

# Phenotype: variable skeletal abnormalities, tall stature,

disproportionately long limbs and digits, joint laxity, eye

anomalies and progressive cardiovascular problems.

# Expression data: Yao et al. (2007) [12] (GEO accession

number GDS2960). Fibroblast cultures from patients with

confirmed FBN1 missense (9) and nonsense (7) mutations as

well as one multi-exon deletion. Platform: Research

Genetics (Invitrogen) - GF211 Microarray Filter

N CF

# Mendelian disorder: Cystic fibrosis (CF, OMIM #219700)

# Disease gene: Cystic fibrosis transmembrane conductance

regulator (CFTR, OMIM *602421, [43])

# Phenotype: chronic obstructive lung disease, bronchiectasia,

and exocrine pancreatic insufficiency

# Expression data: Wright et al. (2006) [13] (GEO accession

number GDS2143). Analysis of the nasal respiratory

epithelium of cystic fibrosis (CF) patients with mild (4) or

severe (5) lung disease. Platform: Affymetrix GeneChip

Human Genome U133 Array Set HG-U133B

N BMD

# Mendelian disorder: Becker muscular dystrophy (BMD,

OMIM #300376, [44])

# Disease gene: dystrophin (DMD, OMIM *300377)

# Phenotype: muscle wasting and weakness, and in some cases

with mental impairment.

# Expression data: Bakay et al. (2006) [14] (GEO accession

number GDS2855). Analysis of muscle biopsy specimens

from patients with various muscle diseases. Platform:

Affymetrix GeneChip Human Genome U133 Array Set

HG-U133B

N Stein-Levental syndrome

# Mendelian disorder: Stein-Levental syndrome ( OMIM

%184700)

# Putative disease genes: follistatin (FST (HGNC symbol),

OMIM *136470) putatively related with Stein-Levental

syndrome [24], fibrillin 3 (FBN3), OMIM *608529)

putatively associated with Stein-Levental syndrome [26].

# Phenotype: obesity, hyperandrogenism and chronic anovu-

lation

# Expression data: Cortón et al. (2007) [22] (GEO accession

number: GDS2084). Omental fat biopsy from patients.

Unconfirmed disorder etiology. Platform: Affymetrix Gen-

eChip Human Genome U133 Array Set HG-U133A

Figure 3. Level of differential expression as function of distance from the candidate for two different candidate genes. Gene A has a
more differentially expressed genes among its close neighboring genes in the distance network than gene B, and is therefore a better candidate gene
than gene B.
doi:10.1371/journal.pone.0005526.g003
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Supporting Information

Supplementary Materials S1

Found at: doi:10.1371/journal.pone.0005526.s001 (0.07 MB

DOC)

Figure S1 Neighborhood of FMR1 and DUSP9. These graphs

show the closest neighbors of FMR1 (A) and DUSP9 (B) including

their differential expression levels and distances to FMR1 and

DUSP9. For genes with absolute differential expression levels (2-

fold-changes) larger than 1.5, the nodes are labeled with the gene

names, the node size increases with the value and the color gets

darker. With decreasing distances (i.e., increasing similarities) the

edges between FMR1 or DUSP9 and their neighbors become

thicker. This picture shows that the neighborhood of FMR1

belongs to a more disrupted expression module than the

neighborhood of DUSP9.

Found at: doi:10.1371/journal.pone.0005526.s002 (2.11 MB TIF)

Figure S2 Neighborhood of FBN1 and LEO1. These graphs

show the closest neighbors of FBN1 (A) and LEO1 (B) including

their differential expression levels and distances to FBN1 and

LEO1. For genes with large absolute differential expression levels

(2-fold-changes), the nodes are labeled with the gene names, the

node size increases with the value and the color gets darker.With

decreasing distances (i.e., increasing similarities) the edges between

FBN1 or LEO1 and their neighbors become thicker. This picture

shows that the neighborhood of FBN1 belongs to a more disrupted

expression module than the neighborhood of LEO1.

Found at: doi:10.1371/journal.pone.0005526.s003 (2.43 MB TIF)

Figure S3 Neighborhood of CFTR and PIK3CG. These graphs

show the closest neighbors of CFTR (A) and PIK3CG (B)

including their differential expression levels and distances to

CFTR and PIK3CG. For genes with large absolute differential

expression levels (2-fold-changes), the nodes are labeled with the

gene names, the node size increases with the value and the color

gets darker. With decreasing distances (i.e., increasing similarities)

the edges between CFTR or PIK3CG and their neighbors become

thicker. This picture shows that the neighborhood of CFTR

belongs to a more disrupted expression module than the

neighborhood of PIK3CG.

Found at: doi:10.1371/journal.pone.0005526.s004 (2.22 MB TIF)

Table S1 Top 25 ranked candidate genes in Fragile X syndrome

(FXS). Fragile X syndrome [11] is a disorder caused by mutation

in the FMR1 gene, and is characterized by mental retardation,

macroorchidism, and distinct facial features. Candidate genes

were chosen from chrXq26-q28 that contains 119 genes including

FMR1. These candidate genes were ranked by our new approach,

and the top 25 ranked candidate genes are presented here,

whereas the top eleven genes have significant p-values (a= 0.05).

FMR1 ranked first with a significant p-value (0.00131), and

FMR2, also involved in FXS, got a significant p-value of 0.01991

on position 6. Out of the eleven significant candidate genes in the

ranking we identified four genes, including FMR1 and FMR2,

that are known to be linked to mental retardation [11,15–17].

Found at: doi:10.1371/journal.pone.0005526.s005 (0.06 MB

DOC)

Table S2 Top 25 ranked candidate genes in Marfan syndrome

(MFS). Marfan syndrome [12] is a heritable connective tissue

disorder caused by mutations in the FBN1 gene, and is

characterized by increased height, disproportionately long limbs

and digits, anterior chest deformity, joint laxity, vertebral column

deformity, and other variable skeletal abnormalities, as well as

several ocular and cardiovascular features. Candidate genes were

chosen from 15q15.3-q22.33 that contains 129 genes including

FBN1. These candidate genes were ranked by our new approach,

and the top 25 ranked candidate genes are presented here,

whereas the top six genes have significant p-values (a= 0.05).

FBN1 was ranked on the fifth position with a significant p-value

(0.0226). In the ranking we obtained six genes that were significant

but not involved in MFS or phenotype related diseases.

Found at: doi:10.1371/journal.pone.0005526.s006 (0.06 MB

DOC)

Table S3 Top 25 ranked candidate genes in Cystic fibrosis (CF).

Cystic fibrosis [13] is an autosomal recessive disorder of epithelial

ion transport caused by mutations in the CF transmembrane

conductance regulator gene (CFTR), and is characterized by

chronic obstructive lung disease, bronchiectasia, and exocrine

pancreatic insufficiency. Candidate genes were chosen from

chr7q22.1-31.33 that contains 110 genes including CFTR. These

candidate genes were ranked by our new approach, and the top 25

ranked candidate genes are presented here, whereas the top nine

genes have a significant p-value (a= 0.05). CFTR was ranked in

the seventh position with a significant p-value (0.046). In the

ranking we obtained seven genes that were significant but not

involved in CF or phenotype related diseases. However, out of the

top 25 ranked genes we detected four genes that are known to be

linked to CF [18–21].

Found at: doi:10.1371/journal.pone.0005526.s007 (0.06 MB

DOC)

Table S4 Top 25 ranked candidate genes in Becker muscular

dystrophy (BDM). Becker muscular dystrophy [14] is a X-linked

progressive myopathy caused by mutations within the DMD gene,

and is characterized by muscle wasting and weakness, and in some

cases with mental impairment. Candidate genes were chosen from

chrXp22.33-21.1 that contains 116 genes including DMD. These

candidate genes were ranked by our new approach, and the top 25

ranked candidate genes are presented here, whereas the top two

genes have significant p-values (a= 0.05). DMD ranked on the

second position with a significant p-value (0.0272). The other

significant gene is not involved in BMD or in a phenotype related

disease.

Found at: doi:10.1371/journal.pone.0005526.s008 (0.06 MB

DOC)

Table S5 Top 25 ranked candidate genes from chr5q11.2 in

Stein-Levental syndrome. Stein-Levental syndrome [22] is a

oligogenic hormonal disorder among women putatively related

with the FST gene, and is characterized by hyperandrogenism,

chronic anovulation and associated with obesity. Candidate genes

were chosen from chr5q11.2 that contains 25 genes including the

candidate gene FST [24]. These candidate genes were ranked by

our new approach, whereas only the top gene has a significant p-

value (a= 0.05). FST was ranked in the second position with a p-

value of 0.056, and we received only one significant gene (DEAD

box 4) that is a plausible candidate gene for Stein-Levental

syndrome.

Found at: doi:10.1371/journal.pone.0005526.s009 (0.06 MB

DOC)

Table S6 Top 25 ranked candidate genes from chr19p13.2 in

Stein-Levental syndrome. Stein-Levental syndrome [22] is a

oligogenic hormonal disorder among women putatively associated

with the FBN3 gene, and is characterized by hyperandrogenism,

chronic anovulation and associated with obesity. Candidate genes

were chosen from chr19p13.2 that contains 100 genes including

the candidate gene FBN3 [26]. These candidate genes were

ranked by our new approach, and the top 25 ranked candidate
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genes are presented here, whereas only the top gene has a

significant p-value (a= 0.05). FBN3 was ranked in the fifth

position with a p-value of 0.0595.

Found at: doi:10.1371/journal.pone.0005526.s010 (0.06 MB

DOC)

Table S7 CPU times for computing the Laplacian Exponential

Diffusion Kernel by its definition, the CD and the ICD. CPU

times (sec) for computing the Laplacian Exponential Diffusion

Kernel by its definition (Equation 1), by CD (Equation 2), and by

ICD (Equation 3) with a threshold leading to an error of 7%–10%.

The computation were run on a dual Opteron 250 with 16 GB

RAM.

Found at: doi:10.1371/journal.pone.0005526.s011 (0.03 MB

DOC)

Table S8 Rank and Error of resulting Laplacian Exponential

Diffusion Kernel computed by its definition, the CD and the ICD.

Rank and Error of resulting Laplacian Exponential Diffusion

Kernel computed by its definition, (Equation 1), by CD (Equation

2), and by ICD (Equation 3) with a threshold leading to an error of

7%–10%. The computation were run on a dual Opteron 250 with

16 GB RAM.

Found at: doi:10.1371/journal.pone.0005526.s012 (0.03 MB

DOC)

Table S9 Example for determining an appropriate neighbor-

hood size using the example of data set 1 (FXS [11]). The

neighborhood size is controlled by a weighting function

(w = exp(2b?r). Applying the Fisher omnibus meta-analysis

(S =g22 ln (p-value)) for each parameter b, new p-values are

generated from a X‘2 distribution. The parameter b , for which

the smallest p-value is observed (here: b= 0.05), leads to the

appropriate neighborhood size for FXS (approx. 150 genes).

Found at: doi:10.1371/journal.pone.0005526.s013 (0.02 MB

DOC)
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