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INTRODUCTION

Sixty years have passed since Rachel Carson published her seminal book “Silent Spring” (Carson,
1962). Her work catapulted the ecological movement and shapedmodern environmentalism (Kroll,
2001). However, fast-forward to present day and we seem not to have paid enough attention to the
environment. Guidelines for a sustainable future have been repeatedly proposed and the planetary
boundaries for our safe existence have been established (Rockström et al., 2009). Yet, more than
80% of the current global energy consumption still relies on unsustainable fossil fuels1 (Ritchie
and Roser, 2020) and the COP26 negotiations have not delivered (Sheather, 2021). To make things
worse, the demand for oil and gas is expected to peak in the next two decades.2 The prevailing
linear economy based on the take-make-dispose system is unsustainable (Sariatli, 2017) and climate
change already affects biological systems around the globe (Freitas et al., 2021). There will not be a
“one-stop shop” type of solution, but we need to transition to a circular economy and biorefineries
are a great place to start (Ubando et al., 2020). Among several models, the lignocellulosic biorefinery
concept is prominent (Silva et al., 2018) and this is where fungi occupy a special place.

FUNGI—THE WORKHORSE FOR THE PRODUCTION OF

LIGNOCELLULOLYTIC ENZYMES

The importance of fungi for several industries is undeniable. These microorganisms produce
enzymes that are used in a wide range of processes, from bread-making to paper manufacturing
(Polizeli et al., 2005). But it is as producers of lignocellulolytic enzymes that fungi could be
called a true workhorse. To put in (historical) perspective, the fungus Trichoderma reesei was
first identified as a great cellulase producer over 75 years ago (Bischof et al., 2016). Since then,
lignocellulolytic fungi have been studied to an unparalleled extent. Their enzymes have been
characterized (Benassi et al., 2012), immobilized (da Silva et al., 2014), engineered (Furtado
et al., 2015) and expressed in heterologous systems (Ribeiro et al., 2014). Several fungi have been
screened for their lignocellulolytic capabilities (Benassi et al., 2014), and entire fungal genomes
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2https://www.mckinsey.com/$\sim$/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Global%20Energy
%20Perspective%202021/Global-Energy-Perspective-2021-final.pdf
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have been investigated in the search for holocellulose degrading
pathways (Segato et al., 2014). Enzymatic cocktails derived from
multiple fungi have been formulated as well (Pinheiro et al.,
2021). However, the co-cultivation of fungi has lagged among
the plethora of strategies for the production of lignocellulolytic
enzymes. Broadly speaking, co-cultivation of microorganisms
is the cultivation of two or more microbial strains combined
within the same laboratory flask, Petri dish or fermentation
tank. A co-cultivation can be referred also as a co-culture,
mixed culture, mixed fermentation (more commonly used in
submerged fermentation studies), microbial blend and microbial
consortium. We use these terms interchangeably throughout the
text, but in our discussion, we point to the potential advantages
of having a standardized nomenclature. We have applied fungal
co-cultures in biomass conversion studies (Sanitá Lima et al.,
2016), and we now argue that there is a need (and opportunity)
to take this strategy to a new level. Below, we identify some
aspects that are missing in co-cultivation studies and present
possible strategies for the community to move forward in this
realm. These ideas stem from studies in fungal physiology,
community ecology and synthetic biology. In fact, co-cultivation
of microorganisms has long been applied in the investigation of
natural products (Bertrand et al., 2014) and the development of
synthetic biology techniques (Goers et al., 2014). Therefore, we
believe greater cross-disciplinary discussions would enrich and
spur strategies to produce fungal lignocellulolytic enzymes.

THE METABOLIC BLACK-BOX OF FUNGAL

CO-CULTURES

Fungi are extensively used in biotechnology, precisely because
of their innate capacity to produce several proteins. As part
of the fungal primary metabolism, lignocellulolytic enzymes
are readily secreted according to growth conditions (de Lucas
et al., 2021). But fungi have an intricate secondary metabolism
and secrete numerous compounds into the culture medium
(Frisvad, 2015). Although primary and secondary metabolites
have been studied as separate entities, microorganisms know
how to blurry our artificial classifications (Kistler and Broz,
2015). From day one, fungi produce compounds of diverse
chemical nature that control spore germination, mycelial growth,
clonal reproduction and defense (Leeder et al., 2011). Many
of these molecules are density-dependent and act on quorum
sensing (Albuquerque and Casadevall, 2012). Several other
metabolites trigger the activation of silent gene clusters through
elusive mechanisms of interspecies crosstalk (Marmann et al.,
2014). This is how co-cultures quickly become a metabolic
black-box. This is also where co-cultivation studies for the
production of lignocellulolytic enzymes lack insight. Bacterial
co-cultures, mostly referred as microbial/bacterial consortia,
have been investigated to much greater detail and possess
wider applications. In fact, bacterial consortia are fabricated
for specific biotechnological goals (Vortmann et al., 2021).
Synthetic microbial consortia borrow ecological concepts, such
as amensalism and commensalism, to engineer high performance
multi-species systems (Sgobba and Wendisch, 2020). Although

co-cultivating fungi to produce better enzymatic cocktails is not
a brand-new idea (Zoglowek et al., 2016), the studies within this
domain fare poorly compared to their bacterial counterparts in
terms of insight. Most experiments grow two to three strains
under the same conditions used for the cultivation of one single
strain (Sperandio and Filho, 2021). The effects of inoculum
volume ratio (Rabello et al., 2014) and time (Kolasa et al., 2014)
can be investigated, but this is not common place. So, secondary
metabolites that can exert antagonistic effects are not taken into
consideration and the co-cultivation performance (i.e., the final
hydrolysis yield) is a result of trial-and-error. The co-cultures
mostly have only fungi and use at least one strain that is known to
be a good producer of biomass degrading enzymes (Wang et al.,
2015). Several carbon and nitrogen sources are generally tested
(Sperandio and Filho, 2019), but the effects of the fermentation
style on the growing fungi are hard to tease apart in current set-
ups.

Co-cultures have clear advantages over their axenic
counterparts (Sperandio and Filho, 2019). Growing several
strains altogether will reduce production costs, as inputs and
human labor are better used. With the right strains, co-cultures
can be more resistant to contamination and produce more
powerful (i.e., synergistic) enzymatic cocktails (Gutiérrez-Correa
and Villena, 2012). The emphasis here is on “right strains” and
“synergistic” cocktails. Co-cultures tend to exhibit higher yields
of biomass saccharification, but claims about multi-enzyme
synergism can be loosely made. In fact, at the end of these
experiments very little is known other than the final amount of
reducing sugars released. Are the co-cultured (co-expressed?)
enzymes acting synergistically or additively? What about the
co-cultivation attempts that did not present higher yields of
biomass hydrolysis? Have the co-cultured fungi inhibited each
other via secondary metabolites or have the fungi run out of
carbon source before producing all their enzymes? These are
some questions that are commonly not present in most co-
cultivation studies aiming to produce lignocellulolytic enzymes.
The consequent lack of insight brought about by experimental
design blind spots not only prevents the community from finding
promising co-cultures, but also hinders the possibility of these
systems being scaled-up. If experiments do not account for the
inter-species metabolic talk happening inside an Erlenmeyer,
how could these strategies be scaled up to industry applications?

We understand that these studies are focused on the
production of cellulases, xylanases, and lignin-modifying
enzymes. It is unfeasible to dissect every single co-culture using
fully fledged metabolomics, proteomics, transcriptomics and
epigenomics techniques. This is why we believe standardized
group effort is the way to move forward. Co-cultivation systems
represent a valuable (and untapped) source of multi-enzyme
cocktails. We need cooperation across disciplines to make this
strategy a successful approach.

DISCUSSION

What is in a name can create momentum around scientific
findings and help spread concepts (Smith and James, 2013).
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In an attempt to strengthen the studies of lignocellulolytic
co-cultures, our first suggestion is for researchers to adopt a
common language. Currently, growing concomitantly several
microorganisms for a specific purpose can be called a co-culture,
mixed cultured, co-cultivation, mixed fermentation, microbial
(e.g., fungal) consortium, microbial cocktail, and microbial
blend. This list is not comprehensive and name variants exist
depending on the applications of the study. Although certain
name choices hold intrinsic value according to different fields,
having a cross-disciplinary nomenclature can help with scientific
dissemination and galvanize collaborations. In fact, we are not
the first ones to highlight the need for standardized names. Del
Frari and Ferreira (2021) have proposed the term “skopobiota” to
move forward, for instance.

Our other suggestion is the creation of a database of co-
cultures. Databases have been fundamental to data-rich research
endeavors in molecular evolution (Smith and Sanitá Lima, 2017)
and microbial community ecology (Sanitá Lima et al., 2019).
However, databases must be standardized and possibly curated
for them to hold meaning and value in springing future research
(Sanitá Lima and Smith, 2017). As researchers start to adopt
a common nomenclature, each co-cultivation assay could be
stored in this “database of co-cultures.” Experimental variables,
such as cultivation conditions, and number and name of strains,
could be standard entries that would be easily retrieved for
future reference and comparative analyses. Each combination
of fungi, pairwise or not, could be classified according to
their ecological interactions—whether there was commensalism,
mutualism, antagonism, etc. Data pertaining to metabolic,
proteomic, transcriptomic and epigenomic analyses could be
added. This would serve as a roadmap to indicate knowledge gaps
and possible points of reference—the species X with commensal
Y produced metabolite Z after W days. As data are gathered,
the database could give rise to a mix-and-match system through
which future co-cultures would be more easily designed and
enzymatic cocktails optimized. This approach resembles the
prolific tinkering of other systems, such as the OSMAC approach

(Bode et al., 2002) andGENPLAT platform (Banerjee et al., 2010).
The possibilities are endless, just like the potentialities of the
co-cultivation of lignocellulolytic fungi.

The current costs for the production of lignocellulosic biofuels
are still mostly prohibitive (Rosales-Calderon andArantes, 2019).
Great part of these costs derives from the biomass pretreatment
and production of enzymes for biomass saccharification (de
Oliveira Gorgulho Silva and Filho, 2017). Co-cultivation of
lignocellulolytic fungi can produce cheaper enzymes and make
biomass conversation technologies more feasible. Studying
fungal enzymes has spawned profitable industries and decades-
long research programs. These enzymes will not save the world,
but can certainly contribute to a less wasteful one. The transition
from a linear present to a circular future is a true maze, and we
need to start from somewhere. Otherwise, we risk not only having
a silent spring, but a silent planet.
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