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Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of

the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly

conserved catalyst has an almost universal propensity to non-productively interact with

its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited

complexes. In diverse autotrophic organisms this tendency has been counteracted by

the recruitment of dedicated AAA+ (ATPases associated with various cellular activities)

proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites

leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco

activases (Rcas) have been discovered so far. Green and red-type Rca are mostly

found in photosynthetic eukaryotes of the green and red plastid lineage respectively,

whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic

studies are elucidating how the various motors are utilizing both similar and contrasting

strategies to ultimately perform their common function of cracking the inhibited Rubisco

active site. The best studied mechanism utilized by red-type Rca appears to involve

transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of

the action performed by Clp proteases. As well as providing a fascinating example

of convergent molecular evolution, Rca proteins can be considered promising crop-

improvement targets. Approaches aiming to replace Rubisco in plants with improved

enzymes will need to ensure the presence of a compatible Rca protein. The thermolability

of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis

against high temperature stress. Photosynthesis also appears to be limited by Rca

when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the

autotrophic CO2 fixation machinery will need to take into consideration the requirement

for Rubisco activases as well as their properties.
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THE CURIOUS CASE OF RUBISCO

The vast majority of carbon dioxide entering the living world does so via the slow and non-specific
enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Spreitzer and Salvucci, 2002).
The realization that this enzyme often represents the rate-limiting step of photosynthesis has made
it a long-standing target for crop improvement strategies (Parry et al., 2007; Whitney et al., 2011a;
Ort et al., 2015; Sharwood et al., 2016b). The peculiar properties of Rubisco can be understood as
an accident of natural history. A highly complex reaction mechanism for ribulose 1,5-bisphosphate
(RuBP) carboxylation evolved once in a high CO2 atmosphere lacking O2 (Andrews and Lorimer,
1987, Figure 1A). The unprecedented increase in atmospheric oxygen following the evolution of
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oxygenic photosynthesis increased the propensity of RuBP
oxygenation, making it physiologically relevant (Andrews et al.,
1973; Tcherkez, 2016). This resulted in massive metabolite
damage (Linster et al., 2013) in the form of a build-up of 2-
phosphoglycolate, which in contemporary plants is repaired by
photorespiration (Bauwe et al., 2010). In C3 plants exposed to
the current atmospheric environment, photorespiration operates
at ∼20% of photosynthesis (Cegelski and Schaefer, 2006),
making it the second highest flux pathway. Operation of the
photorespiratory pathway is energetically wasteful, resulting in
a high selection pressure to reduce its flux. However, Rubisco’s
extensive adaptive walks through sequence space were not
rewarded by the discovery of catalytic solutions that eliminated
oxygenation (Maynard Smith, 1970; Mueller-Cajar andWhitney,
2008a). Instead it appeared easier to evolve a myriad of diverse
syndromes that concentrate CO2 at the active site of the
carboxylase (Badger et al., 1998; Rae et al., 2013; Sage, 2013).
However, all of these mechanisms involve active transport, and
thus increase the metabolic cost per CO2 fixed. Therefore, there
was a concomitant pressure to enhance the catalytic fidelity of the
enzyme by increasing its CO2/O2 specificity, as manifested most
strongly in C3 plants and red algae (Tcherkez et al., 2006).

EVOLUTION OF HIGHER CATALYTIC
FIDELITY BY RIGIDIFICATION OF THE
ACTIVE SITE

Catalysis by all Rubiscos requires two cofactors to bind at
the active site permitting the functional holoenzyme to form
(Figure 1B). A non-substrate CO2 reacts with the amine group
of the conserved Lys-201 residue (spinach RbcL numbering)
to form a carbamate. A Mg2+ ion is then bound to complete
the activation process, forming the holoenzyme termed ECM
(Lorimer et al., 1976; Cleland et al., 1998). The activated
enzyme then binds the substrate RuBP, which is processed via a
series of five partial reactions to eventually yield two molecules
of 3-phosphoglycerate (3-PG) if carboxylated (Tcherkez, 2013,
Figure 1A). The similarity in size and electrostatic potential
of the gases CO2 and O2 (Kannappan and Gready, 2008)
has culminated in a situation where the enzyme is unable
to perfectly discriminate between the carboxylation substrate
CO2 and the competing O2. The critical step at which the
enzyme can influence the partitioning between carboxylation
and oxygenation is during attack of the gaseous substrate by
the enolized RuBP (Chen and Spreitzer, 1992). An analysis of
decades of kinetic and isotope-fractionation data suggested that
this task is achieved by a relative stabilization of the transition
state for CO2, compared to O2 addition (Tcherkez et al., 2006).
This stabilization manifests itself in both reduced flexibility of
the active site and tighter binding of the carboxylated product
(Pearce and Andrews, 2003). A well-documented outcome of
this strategy is the trade-off where faster enzymes tend to
exhibit higher Michaelis constants for CO2 and are less able
to discriminate between CO2 and O2 (Bainbridge et al., 1995;
Tcherkez et al., 2006; Savir et al., 2010). However, it is important
to note that new Rubisco kinetic data is highlighting exceptions

to these rules, at least regarding some algal enzymes exhibiting
relatively low carboxylase efficiencies (Young et al., 2016).

THE EMERGING REQUIREMENT FOR
CATALYTIC CHAPERONES

A consequence of the described strategy, which tends to be less
well popularized, relates to the tendency of the enzyme to become
irreversibly inhibited by sugar phosphates. Since the unactivated
apo-enzyme (E) already possesses all of the features required
to bind the substrate RuBP, the active site will close when it
encounters the substrate (Jordan et al., 1983; Duff et al., 2000). In
the absence of the co-factors required to catalyze carboxylation
or oxygenation, RuBP cannot be processed and is now bound
unproductively, or “caught in the Rubisco mousetrap” (Andrews,
1996), to form Enzyme-RuBP (ER) (Figure 1C). At the same
time, losing a valuable active site has reduced the capacity
for carbon fixation of the host organism. RuBP is not the
only inhibitory substrate, a palette of other sugar phosphates,
including some generated by misfire-reactions of Rubisco itself,
also tightly bind to the active site (Parry et al., 2008; Andralojc
et al., 2012; Bracher et al., 2015). The affinity of the inhibitors is
correlated with the enzyme’s catalytic parameters, and based on
the data available “superior” high specificity Rubiscos bind RuBP
and other sugar phosphates more tightly than the low specificity
enzymes with more flexible active sites (Pearce and Andrews,
2003; Pearce, 2006).

Over time, as Rubisco active sites became more and more
adept at tightly binding the carboxylation-intermediate, the
propensity for the apo-Enzyme to bind the substrate non-
productively also increased (Pearce and Andrews, 2003). This led
to a temporary removal of significant proportions of active sites
from the pool of the enzyme. This problem could be alleviated
by the action of molecular chaperones that would selectively
engage inhibited Rubisco, and by performing a “chiropractic”
maneuver (Carmo-Silva and Salvucci, 2011) conformationally
reset the active site.

Earlier articles have comprehensively reviewed our knowledge
on biochemical and physiological aspects of both the green-type
(Portis, 1995, 2003; Portis et al., 2008; Carmo-Silva et al., 2015)
and the red-type activase (Mueller-Cajar et al., 2014; Hauser
et al., 2015b). Here we aim to direct attention toward the recent
realization that in different autotrophic lineages multiple activase
classes have converged on the same biochemical function. We
attempt to integrate our understanding regarding mechanistic
similarities and differences toward a framework regarding the
chaperone-mediated rearrangement of the highly conserved
inhibited Rubisco active site.

THE EVOLUTION OF RUBISCO AND THE
THREE RCA CLASSES

In spite of the single phylogenetic origin and highly conserved
reaction chemistry of Rubisco, a number of highly distinct
clades of Rubisco can be observed today (Tabita et al., 2008).
All Rubiscos are comprised of ∼55 kDa large subunits that
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FIGURE 1 | Rubisco’s reaction mechanism and its inhibition properties. (A) A complex conserved reaction mechanism evolved to carboxylate ribulose

1,5-bisphosphate. The enediol intermediate can react with both oxygen and carbon dioxide. If oxygenation occurs the toxic metabolite 2-phosphoglycolate (2PG) is

generated, which must be subjected to metabolite repair. (B) To perform the carboxylase reaction a conserved active site lysine (Lys-201 in spinach RbcL) must react

(Continued)

Frontiers in Molecular Biosciences | www.frontiersin.org 3 May 2017 | Volume 4 | Article 31

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Mueller-Cajar The Diversity of Rubisco Activases

FIGURE 1 | Continued

with a non-substrate CO2 to form a carbamate (EC), followed by the binding of a Mg2+ ion to form the catalytically competent holoenzyme ECM. (C) Both the inactive

apo (E) and the active holoenzyme (ECM) are prone to dead-end inhibition by sugar phosphates such as RuBP, which binds to E and CA1P (2-carboxy-D-arabinitol

1-phosphate), which binds to ECM. Rubisco activases (Rca) recognize inhibited active sites and use the energy of ATP hydrolysis to cause a conformational change

that releases the inhibitor.

assemble as anti-parallel dimers. Each dimer harbors two active
sites formed by the β-barrel C-terminal domain of one subunit
and the N-terminal domain (containing a 5-stranded mixed beta
sheet) of the other (Knight et al., 1990). This basic functional
unit is then often found to be assembled into higher oligomeric
states.

Figure 2 shows a phylogenetic tree of selected RbcL sequences
relevant to the present discussion about Rca. The last common
ancestor of all extant Rubiscos was probably the aforementioned
dimer of large subunits, and this arrangement is still found in a
subset of the so-called Form II enzymes, such as the well-studied
enzyme from Rhodospirillum rubrum (Anderson and Fuller,
1969). Contemporary Form II enzymes are often found to occupy
higher order oligomeric states with a hexameric arrangement
recently found to be common (Satagopan et al., 2014; Tsai et al.,
2015; Varaljay et al., 2016). A key early innovation in Rubisco
evolution concerned the recruitment of the small subunit, a
∼15 kDa scaffolding protein that stabilized tetramers of dimers
resulting in a L8S8 stoichiometry. These enzymes constitute the
Form I clade of Rubiscos (Spreitzer, 2003). This clade branched
early into a red (Form IC and D) and green-type branch (Form
IA and B), the large subunits of which today maintain about
50% sequence identity to each other. Form IA Rubiscos can be
subdivided into Form IAQ and Form IAC sequences, the latter
always being associated with carboxysomal gene clusters (Badger
and Bek, 2008). It is interesting to note that the photosynthesizers
dominating our planet’s landmass, the higher plants, possess only
a small slice of Rubisco’s molecular diversity, all encoding a
highly conserved Form IB enzyme derived from the ancestral
cyanobacterial endosymbiont.

Three distinct classes of Rubisco activase (green-, red-, and
CbbQO-type) have now been identified (Salvucci et al., 1985;
Mueller-Cajar et al., 2011; Tsai et al., 2015), permitting us to
start dissecting the molecular underpinnings of how different
organisms dealt with the outlined problem of blocked Rubisco
active sites. The activases were recruited from highly distinct
volumes of sequence space in the AAA+ protein universe
(Ammelburg et al., 2006), and their AAA modules display
less than 25% sequence identity between the groups. This vast
and diverse group of molecular motors was clearly well suited
for the task of active site rearrangement, as their unifying
functional characteristic relates to conformationally remodeling
macromolecular substrates using the energy of ATP hydrolysis
(Hanson and Whiteheart, 2005; Sysoeva, 2016). The identified
activases are not closely related to other well characterized
extant molecular chaperones, which currently precludes the
formulation of detailed hypotheses regarding their historical
evolutionary trajectory.

Green-type Rcas represent the first discovered (Salvucci et al.,
1985) and due to their presence in all higher plants, most
extensively studied activase system (Portis, 2003; Carmo-Silva
et al., 2015). They are evolutionarily derived from cyanobacteria,
where homologs are found associated with carboxysomal
green-type Form IB Rubisco (Li et al., 1993). Importantly,
an experimental verification of the cyanobacterial activase’s
biochemical function is still elusive (Bracher et al., 2017). The
distribution is not universal, but is associated with strains
belonging to clade A and B1 according to the classification by
Kerfeld and colleagues (Shih et al., 2013; Zarzycki et al., 2013).
These are thought to form the sister group to the primary
endosymbiont (Ochoa de Alda et al., 2014), which would indicate
that Rca was transferred together with Form IB Rubisco during
the primary endosymbiotic event about 1.5 billion years ago
(Yoon et al., 2004).

On a structural level green-type Rcas show similarity to
p97/CDC48 (Hasse et al., 2015) and classification of the C-
terminal subdomain revealed a relationship to the D2 AAA+
module of N-ethylmaleimide-sensitive factor (NSF) (Ammelburg
et al., 2006). Both of these belong to the classical clade of AAA
proteins (Iyer et al., 2004). It is thus reasonable to conclude that
specialization toward activase activity occurred using a general
molecular chaperone in this clade in an ancient cyanobacterium
as a starting point.

The gene encoding red-type Rca (also known as CbbX),
is always found in an operon with the red-type (Form IC)
Rubisco encoding genes in mixotrophic proteobacteria (Gibson
and Tabita, 1997; Badger and Bek, 2008). It is also encountered
in the chloroplast genomes of the red lineage (Oudot-Le Secq
et al., 2007). A proposed explanation for this distribution
involved horizontal gene transfer of the rbcL-rbcS-cbbX gene
cluster from a proteobacterium to an ancestor of the primary
endosymbiont (Delwiche and Palmer, 1996; Nisbet et al., 2004).
Alternatively horizontal gene transfer occurred subsequent to
the endosymbiotic event in the ancestor of the red algae, which
subsequently lost the green Form IB Rubisco genes (Maier et al.,
2000; Rice and Palmer, 2006). Where sequence data exists, it
appears eukaryotes possessing red-type Rubisco always encode
an additional CbbX isoform in the nuclear or nucleomorph
genome (Hovde et al., 2015), and this is thought to be a
consequence of gene duplication and migration of one copy to
the nuclear genome in an early rhodophyte (Fujita et al., 2008).
In the red algae Cyanidioschyzon merolae, the functional red-type
Rca has been shown to be a 1:1 hetero-oligomer of the plastid and
the nuclear encoded isoform (Loganathan et al., 2016), and we
expect this scenario to hold true for red lineage phytoplankton in
general.
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FIGURE 2 | Hypothetical scheme for the evolution of Rubisco and its activases. Following the great oxidation event at least three different classes of Rubisco

activase were recruited from the general molecular chaperone machinery toward a specialized Rubisco activase function in diverse autotrophic organisms. Green type

and red-type Rca was maintained in eukaryotic phototrophs of the green and the red plastid lineage respectively. A phylogenetic tree was drawn using Rubisco large

subunit sequences that are associated with activases. It is important to note that regarding non-red prokaryotic Rubisco sequences, many instances exist that do not

have identifiable activase genes encoded in the same genome. Surface representations of a hexameric Form II Rubisco (pdb:4lf1) and spinach Form I Rubisco

(pdb:8ruc) are shown. Structures shown in this paper were drawn using pymol.

The closest structural neighbors of red-type Rca, as
determined by a DALI search are the helicase RuvB and
protease-associated motors such as HslU and ClpX (Hasse et al.,
2015). HslU and ClpX are powerful unfoldases that generally
thread substrate proteins marked for degradation through their
axial pore of the hexamer into a proteolytic chamber (Sauer and
Baker, 2011). However, recently more gentle conformational
rearrangements have been documented for the mitochondrial
ClpX. In this case ClpX acts on an enzyme involved in heme
biosynthesis and catalyzes the insertion of a cofactor (Kardon
et al., 2015). Hence it is conceivable that subtle “pulling”
on enzymes to bring about conformational transitions that
favor inhibitor release or co-factor insertion is not an unusual
scenario (Olivares et al., 2016). It is therefore a reasonable
hypothesis that red-type Rca evolved in proteobacteria from
a general molecular chaperone using the axial pore threading
mechanism that was either involved in correcting protein
conformations or protein complex maturation (including
co-factor insertion).

The genes encoding the CbbQO-type activase system (Hayashi
et al., 1997, 1999; Sutter et al., 2015; Tsai et al., 2015) are broadly
distributed among proteobacteria, but associate strongly with
chemolithoautotrophs that use sulfur oxidation as energy source
(Badger and Bek, 2008). CbbQ belongs to the large, but relatively

poorly characterized MoxR group of AAA+ proteins, which is
often found encoded in operons together with a second protein
containing a von Willebrand Factor A (VWA) domain (Snider
and Houry, 2006; Wong and Houry, 2012).

Different isoforms of the AAA+ protein CbbQ and the
VWA-domain containing CbbO assemble as hetero-oligomeric
complexes in a Q6O1 stoichiometry (Sutter et al., 2015; Tsai
et al., 2015). Two complexes encoded by Acidithiobacillus
ferrooxidans activate phylogenetically remote Rubiscos (Q1O1
activates Form IAQ and Q2O2 activates Form II) that are
encoded by the same genome (Tsai et al., 2015). In addition
there is a third cbbQ-cbbO gene pair (termed Q3O3 in Figure 2)
associated with a carboxysomal gene cluster, which contains
genes encoding a Form IAC Rubisco (Heinhorst et al., 2002).
The activase function of Q3O3, which is homologous to a
complex recently purified and characterized for ATPase activity,
has not yet been confirmed (Sutter et al., 2015). This work
also pointed out that the presence of multiple Rubisco operons
encoding different CbbQ and CbbO isoforms in the same
organism is common. It is thus possible that the ancestor
of the CbbQO complex became specialized for one Rubisco
form, and then switched substrate following a gene duplication.
Alternatively the ancestral CbbQO was a generalist Rca and
already functional at remodeling both types of Rubisco. The
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feasibility to reconstruct ancestral proteins offers a tantalizing
opportunity to illuminate these details experimentally (Shih et al.,
2016).

Gene pairs highly homologous to CbbQ and CbbO that are
not associated with Rubisco genes also exist in proteobacteria
(Snider and Houry, 2006; Sutter et al., 2015). The genes
encoding the AAA+ protein NirQ and VWA domain protein
NorD, are associated with denitrification gene clusters. In
the absence of either NirQ or NorD, nitric oxide reductase
is produced in non-functional form, implicating NirQ-NorD
in enzyme maturation or assembly (Jungst and Zumft, 1992;
de Boer et al., 1996). The best biochemically characterized
MoxR AAA+ ATPase chaperone system is RavA-ViaA, where
RavA is the AAA+ motor, and ViaA is an interacting VWA-
domain containing protein (Snider et al., 2006; Wong et al.,
2017). Intriguingly one of a number of described function
of RavA involves a reduction of the affinity of the allosteric
inhibitor ppGpp to the enzyme lysine decarboxylase (albeit
in a ViaA independent manner) (El Bakkouri et al., 2010;
Kanjee et al., 2011). Therefore, it is likely that in this family
many chaperones with functions related to the modulation

of enzyme activity remain to be discovered. The CbbQO
Rubisco activation system was likely derived from such an
origin.

THE ARCHITECTURE OF INHIBITED
RUBISCO ACTIVE SITES

It is established that contemporary Rubisco enzymes all
share a common ancestor (Tabita et al., 2007), and although
there is significant diversity in quaternary structure, tertiary
structure is essentially conserved (Andersson, 2008; Andersson
and Backlund, 2008). The implication is thus that the
different Rca motors will encounter a highly similar substrate,
irrespective of its origin. It is therefore reasonable to expect
that Rca mechanisms will display similarities. Consequently
motor-substrate specificity should be exchangeable by targeted
mutagenesis once the mechanisms are understood in sufficient
detail.

Representative examples of Form I and Form II inhibited
Rubisco complexes that function as Rca substrates are shown

FIGURE 3 | Structural features of inhibited Rubisco complexes. A comparison of structural elements involved in the Rca-mediated activation of Form I (A) and

Form II (B) Rubisco. Left panels: Surface representation of CABP-bound spinach (pdb:8ruc) and R. palustris Rubisco (pdb:4lf1). One large subunit dimer pair (in red

and cyan) is shown with helices represented by cylinders. Key segments are colored as follows: βC-βD loop, yellow; Loop 6, blue; C-terminal strand, orange. Right

panels: Close-up of the active site highlighting differences in Loop 6 (in blue) closure between Form I and Form II Rubisco. Key residues and interactions are

highlighted. Bound CABP is shown in ball and stick representation. The following indicated residues are conserved and functionally equivalent (Form I/Form II):

E60/E49; K334/K330).

Frontiers in Molecular Biosciences | www.frontiersin.org 6 May 2017 | Volume 4 | Article 31

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Mueller-Cajar The Diversity of Rubisco Activases

in Figure 3. The active site is located at the C-terminal face of
the beta strands forming the αβ barrel. Residues contributing
to the active site are mostly found in the loops connecting
the beta strands of the barrel to the downstream helices, but
a few are donated by the N-terminal domain of the opposing
subunit. Once the substrate RuBP has bound, loop 6 of the
beta barrel folds over the active site to form the closed state
(Karkehabadi et al., 2007). Loop 6 contributes a critical lysine
residue (Form I- K334, Form II- K330), which is thought to
position the CO2 molecule for carboxylation. In Form I enzymes,
closure of the active site is accompanied by the C-terminal
strand of the large subunit folding over loop 6, with Asp-473
believed to act as a latch residue (Duff et al., 2000; Satagopan
and Spreitzer, 2004). The thus secured C-terminus is envisaged
to be under tension to push down on Loop 6 via Lys-128
(Bainbridge et al., 1998), providing rigidity to the carboxylation
ready active site (Duff et al., 2000). In stark contrast to the C-
terminal locking mechanism in Form I Rubisco, inspection of the
closed form of the carboxy-arabinitol 1,5 bisphosphate (CABP)
bound Form II hexamer from Rhodopseudomonas palustris
reveals that the C-terminus does not fold over and lock down
Loop 6, but is instead positioned at the apex of the complex
(Satagopan et al., 2014) (Figure 3B). As a consequence Loop 6
is surface exposed in these structures (Satagopan et al., 2014;
Varaljay et al., 2016). Instead of being held in place by the C-
terminus, the structure reveals a salt-bridge between Glu-332
(R. palustris RbcL labeling) and Lys-33 on the opposite subunit.
These residues are conserved in many Form II enzymes, and the
interaction may thus be part of an alternative Loop 6 locking
mechanism. Another important feature of active site closure
concerns a 2◦ rotation of the N-terminal domain, resulting
in a reduced distance between the phosphate binding sites
of the active site (Taylor and Andersson, 1996; Duff et al.,
2000).

Based on these observations, the conformational changes to
bring about an opening of the active site catalyzed by the Rca
motors could either involve manipulation of the C-terminal
domain, for instance by disruption of the latched C-terminus in
Form I enzymes, or Rca-induced movement of the N-terminal
domain. In fact both strategies appear to be utilized.

OLIGOMERIC STATE AND REGULATION
OF THE ACTIVASES

The three classes of Rca identified so far all belong to distantly
related branches of the AAA+ protein superfamily and possess
a single AAA+ domain. Experimentally determined atomic
models of the AAA+ module of all activase classes are now
available, and all exhibit the expected architecture of this protein
family (Henderson et al., 2011; Mueller-Cajar et al., 2011; Stotz
et al., 2011; Hasse et al., 2015; Sutter et al., 2015). A Rossmann
fold forms the nucleotide binding domain, which is followed
by a small α-helical subdomain (Erzberger and Berger, 2006,
Figure 4A). AAA+ proteins commonly form hexameric rings,
and this is certainly the functional form of both the red-type
(Mueller-Cajar et al., 2011; Loganathan et al., 2016) and the

CbbQO-type Rcas (Sutter et al., 2015; Tsai et al., 2015) as verified
by negative-stain electron microscopy.

It is interesting to note that the proteobacterial red-type Rca
forms an ATPase inactive fibril in the presence of Mg-ATP.
Binding of Rubisco’s substrate RuBP to a pocket located in the α-
helical subdomain triggers an oligomeric transition to the ATPase
and activase functional hexamer (Mueller-Cajar et al., 2011). In
contrast the enzyme from the red algae Cyanidioschyzon merolae
presents as a constitutive hexamer composed of alternately
arranged nuclear and plastid-encoded isoforms (Loganathan
et al., 2016). However, the RuBP-binding pocket is conserved
in both isoforms and ATPase activity is stimulated by the
addition of RuBP. Thus, in both prokaryotes and eukaryotes
enzymatic activity of red-type Rca is allosterically regulated by
the substrate of the remodeller’s target. Nevertheless, mutational
studies indicated that the two red-type Rca isoforms in red
algae are functionally non-equivalent. For instance eliminating
ATPase function of the plastid-encoded isoform by mutating the
conserved Walker B glutamate to glutamine counterintuitively
enhanced ATP hydrolysis of the hetero-oligomeric complex
and resulted only in slight impairment of activase function.
In contrast the equivalent substitution in the nuclear encoded
isoform eliminated both Rca and ATPase function (Table 1). It
remains to be seen whether these specializations have resulted
in genuine enhancements in activase function or whether
they are manifestations of molecular ratchet- type evolutionary
trajectories (Gray et al., 2010; Finnigan et al., 2012).

The in vitro oligomeric state of the green-type Rcas is highly
polydisperse, possibly ranging from monomeric (Keown et al.,
2013) to very large assemblies (Barta et al., 2010; Chakraborty
et al., 2012; Kuriata et al., 2014). However, the existence of
functional, stable hexamers (Blayney et al., 2011; Stotz et al.,
2011; Keown and Pearce, 2014) suggest that this is also the
functional species. It is possible that the oligomeric forms may be
transitional to permit efficientmovement of the activases through
the extremely crowded chloroplast stroma (Harris and Koniger,
1997), permitting this less abundant helper protein to shuttle
between inactive Rubisco active sites as required. Hexameric
assemblies would then occur transiently to form the functional
assembly at the inhibited substrate Rubisco. Consistent with this
notion, green-type activases rapidly exchange subunits in vitro
(Salvucci and Klein, 1994; van de Loo and Salvucci, 1998; Stotz
et al., 2011). Regulation of the green-type Rca in higher plants
is complex (Carmo-Silva and Salvucci, 2013; Hazra et al., 2015),
with a number of mostly energy-related signals integrating. These
include redox modulation by thioredoxin and inhibition by ADP
(reviewed by Carmo-Silva et al., 2015 and Portis, 2003) and most
recently reversible phosphorylation (Boex-Fontvieille et al., 2014;
Kim et al., 2016).

CbbQO is unique among activases, in that the AAA+ hexamer
CbbQ associates with a single adaptor protein CbbO, which
is essential for activase function. The CbbQ6O1 complexes are
monodisperse and do not disassemble as assessed by gel filtration
chromatography (Tsai et al., 2015). Finally, both CbbQO and
red-type Rubisco activases exhibit a strong stimulation of their
ATPase activity when assayed in the presence of inhibited
Rubisco complexes (Mueller-Cajar et al., 2011; Tsai et al., 2015;
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FIGURE 4 | Current models of Rubisco activase function. (A) Bottom view of the different Rca hexameric models showing helices in cylinder view. Adjacent

subunits are colored differently (B) Top view of the Rca models in surface representation. Residues known to be involved in protein-protein interactions with Rubisco

are colored in magenta for red and green-type Rca. (C) Current mechanistic models for the different Rca systems. See text for details. Known Rca interacting

segments on Rubisco are shown in red (RbcL C-tail) and yellow (interacting βC-βD loop residues). Red-type Rca /Rubisco, PDB:3ZUH/1BXN; Green-type

Rca/Rubisco PDB:3ZW6/8RUC; CbbQ/Form IA Rubisco, PDB:5C3C/1SVD.

Loganathan et al., 2016). This type of regulation is not observed
in the green-type Rcas (Robinson and Portis, 1989; Hazra et al.,
2015).

MECHANISTIC INSIGHTS INTO RUBISCO
REMODELING

AAA+ proteins generally function by translating conformational
changes brought about by ATP hydrolysis to a macromolecular
substrate, and this principle applies to Rcas and Rubisco. The
best described mechanisms so far involve the translocation of
the substrate through the axial pore of the hexameric AAA+
ring. This involves a conserved pore loop 1 tyrosine in many
well-studied systems, including ClpX (Siddiqui et al., 2004),
ClpB/Hsp104 (Weibezahn et al., 2004) and the AAA+ unfoldase
of the proteasome (Beckwith et al., 2013). In Table 1 I summarize
biochemical evidence for the mechanistic models described in
this section. The outlined threading mechanism appears to be
utilized by red-type Rca in both photosynthetic bacteria and

red algae. In this model, the activase transiently threads the C-
terminus of the Rubisco large subunit into the pore (Figure 4C).
Red-type Rubiscos all appear to possess a C-terminal extension
of 11–12 residues following the critical latch residue Asp-473,
which locks the C-terminus to its large subunit. Thus, by pulling
on this peptide, the interaction of Asp-473 with its own subunit
can be disrupted, releasing the lock and allowing loop-6 to
retract, followed by release of the bound inhibitor. Substitutions
with alanine of the conserved pore loop 1 tyrosine in both the
bacterial and algal red-type Rca, as well as two and four amino-
acid deletions of the RbcL C-terminus abolish activase function
(Mueller-Cajar et al., 2011; Loganathan et al., 2016).

Interestingly this model, at least relating to transient threading
of the Rubisco large subunit C-tail, is unlikely to apply to either
of the other two Rca classes. In contrast to the red-type Rubiscos,
the C-termini of green-type Rubiscos are of variable length,
but often only have 2–4 residues following the latch residue
(Satagopan and Spreitzer, 2004). Green-type Rca is thus unlikely
to engage this short and variable motif. It was also found that an
extension of the tobacco large subunit by six histidine residues
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TABLE 1 | Overview of selected key Rca and Rubisco mutants providing insights into the activation mechanism and listed in the order referred to in the

text.

Protein Mutation Result/Interpretation Reference

C. merolae CmP (red-type, red

algal Rca)

Walker B-E138Q Functional CmNP hetero-oligomer/CmP has mostly

structural role

Loganathan et al.,

2016

C. merolae CmN (red-type, red

algal Rca)

Walker B-E138Q Inactive CmNP heterooligomer/CmN ATPase critical Loganathan et al.,

2016

C. merolae CmN/CmP and R.

sphaeroides RsRca

Pore loop 1 tyrosine- Y114A ATPase functional, Rca inactive/pore-loop treading

mechanism

Mueller-Cajar

et al., 2011;

Loganathan et al.,

2016

R. sphaeroides RbcL (Form IC

Rubisco)

C-terminal deletions (12, 14) Rubisco functional, but cannot be activated by Rca/

C-terminal threading mechanism

Mueller-Cajar

et al., 2011;

Loganathan et al.,

2016

Nicotiana tabacum RbcL C-terminal extension by His6-tag Rubisco functional and can be activated by Rca/likely no

C-terminal threading mechanism

Scales et al., 2014

N. tabacum Rca Specificity helix, D316K, L319V

double mutant

Gains ability to activate Spinach Rubisco/βC-βD loop

engagement mechanism

Li et al., 2005

N. tabacum Rca Pore loop 1/Pore loop 2, A144V,

Y188A

ATPase functional, Rca inactive/pore loop threading

mechanism

Stotz et al., 2011

Chlamydomonas reinhardtii

RbcL

βC-βD loop, D94K, P89A/R Mutants gain ability to be activated by tobacco Rca/βC-βD

loop engagement mechanism

Larson et al.,

1997; Ott et al.,

2000

N.tabacum Rca N-terminal deletions (1N51,

1N58)

ATPase functional, Rca inactive/N-terminal domain required

for engagement

Esau et al., 1996;

van de Loo and

Salvucci, 1996;

Stotz et al., 2011

A. ferrooxidans RbcL (Form I

and Form II)

Multiple C-terminal modifications

to probe H/KR motif function

Rubisco functional but activation by Rca impaired or

eliminated/C-terminal engagement mechanism

Tsai et al., 2015

A. ferrooxidans CbbQ2 Multiple pore loop mutations Rca function not perturbed/C-terminal threading

mechanism does not apply

Tsai et al., 2015

A. ferrooxidans CbbO2 MIDAS motif- D573A, S575A,

S577A, T656A, D684A

ATPase functional, Rca function eliminated or strongly

perturbed/implicates MIDAS in Rca-Rubisco interaction

Tsai et al., 2015

A. ferrooxidans RbcL (Form I

and Form II)

βC-βD loop homologous acidic

residue- D82P (Form I), E75A

(Form II)

Rubisco functional but activation by Rca impaired (Form II)

or eliminated (Form I)/ βC-βD loop engagement mechanism

Tsai et al., 2015

A. ferrooxidans CbbO2 C-terminal deletion (residues

445–759)

Rca non-functional, Complex formation intact/residues

1–444 interact with CbbQ6 hexamer

Tsai et al., 2015

did not affect Rca function (Scales et al., 2014). In addition
the central pore of the green-type Rca hexamer has a larger
diameter than that of red-type Rca, which lead to the hypothesis
that a larger secondary structural element, such as a loop, could
be threaded instead (Stotz et al., 2011). Consistent with the
general theme of a poreloop threading mechanism mutational
analysis of pore loop 1 and 2 resulted in the discovery of
variants that maintained ATPase function but no longer activated
Rubisco (Stotz et al., 2011). Notably, the AAA+ chaperone ClpB
has been demonstrated to be capable of threading a looped
segment (Haslberger et al., 2008), and the threading mechanism
is therefore not limited to free N or C-termini.

The surface exposed βC-βD loop of the large subunit N-
terminal domain has long been implicated in the interaction
with green-type Rca (Figure 3A). Residues 89 and 94 (spinach
numbering) in this loop are known to interact with residues 316
and 319 (tobacco Rca numbering) of the activase (Larson et al.,
1997; Ott et al., 2000; Li et al., 2005), which are located on a helical

insertion in the small subdomain of the AAA+ module (Stotz
et al., 2011; Hasse et al., 2015). This interaction involves the same
(top) face of the disc-shaped hexamer that is involved in red-
type Rca function (Wachter et al., 2013, Figure 4B). In addition
an N-terminal domain of ∼70 amino acids is also involved in
the Rubisco-Rca interaction (Esau et al., 1996; van de Loo and
Salvucci, 1996; Stotz et al., 2011), however it is not resolved
in current crystal structures. It is conceivable that following
initial engagement by activase involving thementioned structural
elements (Figure 4C), a pulling force to the βC-βD loop could be
brought about by Rca pore loop threading. Rigid bodymovement
of the attached beta sheet would then result in the rotation of the
N-terminal domain seen when comparing the closed and open
form of the enzyme (Duff et al., 2000).

Mutational analysis of both CbbQO and the two different
classes of substrate Rubisco revealed the basis of a common
mechanism for CbbQO-type Rcas. More fascinatingly, the
results revealed commonalities to both red- and green-type Rca
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function. It was noted that in spite of low (∼30%) primary
sequence identity of the Form I and Form II Rubisco large
subunits, the C-termini of those enzymes encoded in cbbQ-
cbbO containing gene clusters displayed a common C-terminal
sequence motif (H/KR). Mutagenesis of this motif strongly
impaired the ability of the target Rubiscos to be activated by their
activases, drawing a strong mechanistic parallel to the pore-loop
threading red-type Rcas (Tsai et al., 2015). However, experiments
attempting to perturb the poorly conserved pore-loop region
of CbbQ did not result in non-functional Rca, and I currently
favor a model where the large subunit C-terminus is bound (and
consequently immobilized) by the activase, rather than threaded.
Here I am also considering the fact that in the Form II substrate
the C-terminus does not occupy the same locked latch position
as in the Form I complex (Figure 3, Satagopan et al., 2014), and
thus exerting a pulling force on this motif would not have the
same effect.

As is commonly observed for the MoxR class of AAA+
proteins, the CbbO adaptor encoded downstream of the cbbQ
gene possesses a von Willebrand factor A (VWA) domain at its
C-terminus (Whittaker and Hynes, 2002). This well-described
protein-protein interaction module generally uses four residues
that are part of a motif known as metal ion dependent adhesion
site (MIDAS) to bind a divalent cation. Mutating conserved
MIDAS residues mostly abolished CbbQO activase function (Tsai
et al., 2015). A fifth ligand to the divalent cation is generally
donated by an acidic residue of the interacting protein (Xiong
et al., 2002; Santelli et al., 2004). It was discovered that mutating
a conserved acidic residue in the previously mentioned surface
exposed βC-βD loop of the Rubisco large subunit N-terminal
domain to alanine abolished (Form I Rubisco) or greatly reduced
(Form II) the ability of Rubisco to become activated by CbbQO
(Tsai et al., 2015). Fascinatingly this residue is at the same position
as the green-type Rca interacting residue 89 in higher plants
Rubisco. We therefore predict that the ATP-hydrolysis powered
conformational change brought about by CbbQO and green-type
Rcas will emerge to be similar in nature (Figure 4C). The precise
interaction between a CbbQ hexamer and the CbbO adaptor has
not been resolved so far, but involves residues 1–444 of CbbO
(Tsai et al., 2015). It is possible that the conformational changes
of the hexamer generated by ATP hydrolysis are transmitted to
the VWA domain via the CbbO N-terminal region (Figure 4C).

Disruption of the closed conformation of the Rubisco
holoenzyme by Rca of all three classes will lead to release of the
inhibitory sugar phosphate. The active site is thus reset either
for cofactor binding, or acceptance of the substrate RuBP (if
the inhibitor removed was already bound to ECM holoenzyme,
Figure 1C).

THE ROLE OF THE ACTIVASES IN A
SYNTHETIC BIOLOGY OF CO2 FIXATION

A strong impetus regarding research into the detailed
mechanisms underlying Rubisco repair in autotrophic organisms
is provided by the realization that relatively poor Rubisco
performance contributes to the low photosynthetic efficiency

of plants, and enhancing its activity is predicted to significantly
improve the yield of crops (Long et al., 2015). Given the
tight coupling of carboxylase function to maintenance of its
activation state by the described highly diverse Rca proteins,
any modifications of Rubisco will need to keep in mind
compatibilities and other properties of Rca.

RUBISCO AND RCA TRANSPLANTATION

A number of strategies regarding the enhancement of C3
photosynthesis rely on the concept of transplanting a Rubisco
enzyme of choice into a target crop (Andrews andWhitney, 2003;
Zhu et al., 2004). Such experiments need to ensure the presence
of a suitable Rca, and technically this is not a difficult problem.
Rca in higher plants is encoded by the nuclear genome, and
thus Agrobacterium tumefaciens based transformation methods
can successfully deliver a target Rca gene (Kurek et al., 2007;
Kumar et al., 2009; Fukayama et al., 2012). Deletion or silencing
of the endogenous Rca genes may be advantageous if hetero-
oligomerization is likely to occur (for instance if a green-type
Rca is to be transplanted). In particular the rapid development
of CRISPR-Cas9 technology will facilitate this process further
(Belhaj et al., 2015). However, the relative ease of Rca engineering
does not extend to Rubisco. Since in higher plants the rubisco
large subunit is encoded by the chloroplast (as opposed to the
nuclear) genome, this achievement requires the replacement of
the endogenous rbcL genes in multiple plastid genome copies.
Following significant technical progress in the past decades it is
now possible to routinely perform this experiment in tobacco
plants using biolistic transformation. Here a particular boon
has been the development of a marker-free tobacco-rubrum
“master” line (Whitney and Sharwood, 2008), which has its
endogenous hexadecameric Form IB Rubisco replaced by a
bacterial dimeric Form II enzyme. Due to this Rubisco’s low
CO2/O2 specificity, it only permits plant growth at elevated
levels of CO2 (Whitney and Andrews, 2001) and thus facilitates
the isolation of transformants expressing more catalytically
adept heterologous Form I enzymes. Key examples of successful
rubisco transplantation experiments include various higher plant
enzymes (Sharwood et al., 2008; Whitney et al., 2011b, 2015), a
cyanobacterial Form I enzyme (Lin et al., 2014b) and an archaeal
Form III enzyme from Methanococcus burtonii (Wilson et al.,
2016). It is therefore technically feasible to produce functional
heterologous Rubisco in tobacco plants, although expansion of
the technology to other species has so far met with modest
success and most crops cannot currently be modified in this
manner (Bock, 2015). Current efforts in this area of research
are aiming to identify better suited higher-plant Rubiscos (Orr
et al., 2016; Sharwood et al., 2016a), or introducing single residue
changes into the large subunit that result in desired catalytic
switches (Whitney et al., 2011b). Here activase requirements
should be easy to satisfy due to the wide level of compatibility
between plant Rubiscos and green-type Rcas (Wang et al., 1992).
Still a relative paucity of Rubisco-Rca compatibility data may
require careful biochemical characterization on a case to case
basis.
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Although production of heterologous Rubisco in higher plants
is currently feasible, a key limitation concerns our incomplete
understanding of the enzyme’s folding and assembly machinery,
which results in either low Rubisco content, or a complete failure
in functional Rubisco expression. Regarding the production of
heterologous plant Rubisco, rapid progress is being made, for
instance co-expression of the Rubisco assembly chaperone Raf1
(Feiz et al., 2012; Hauser et al., 2015a) permitted a doubling
of correctly assembled Arabidopsis Rubisco large subunits in
tobacco chloroplasts (Whitney et al., 2015).

Among the most tempting targets for transplantation are
the red-type Form ID Rubiscos from red algae, some of which
have evolved CO2/O2 specificity values that are twice as high
than those found in the land plant Form 1B enzymes (Read
and Tabita, 1994; Uemura et al., 1997). For instance functional
production of the Rubisco from the red algae Griffithsia monilis
(Whitney et al., 2001) in higher plant chloroplasts is predicted to
result in a 27% increase in daily canopy carbon gain (Zhu et al.,
2004). However, early experiments to produce these proteins
in tobacco led to complete insolubility of the gene products
(Whitney et al., 2001), consistent with an incompatibility of
the folding and/or assembly chaperone machinery. Interestingly
this apparent dependency on sophisticated chaperone machinery
does not extend to the related bacterial Form IC red-type
Rubiscos. The enzyme from Rhodobacter sphaeroides has no
requirements for assembly chaperones, merely requiring the
GroEL-ES chaperonin for productive folding of the large subunit
in a reconstituted system (Joshi et al., 2015). Meeting the
biogenesis requirements of Form ID Rubisco may thus be less
complicated than that of the higher plant Form IB enzymes,
which appear to require a plethora of assembly factors including
Raf1, Raf2 and possibly RbcX (Liu et al., 2010; Feiz et al., 2014;
Bracher et al., 2017). Once Form ID Rubisco transplantation has
been achieved it will need to be supplemented with a red-type
Rubisco activase. Based on the work with purified C. merolae
proteins it is likely that the cognate algal Rca, a hetero-oligomer
of nuclear and plastid encoded subunits, will be optimal for
this purpose. However, the simpler homo-oligomeric bacterial
red-type Rcas also presents with some activity toward the algal
enzyme and thus may be sufficient (Loganathan et al., 2016).

A challenging goal that is currently being pursued by a
number of groups involves the transplantation of the prokaryotic
carboxysomal CO2-concentrating mechanism into the higher
plant chloroplast (Price et al., 2008; Lin et al., 2014a,b). A
combination of a high velocity Rubisco operating at very
high CO2 concentrations achieved by carboxysomal Rubisco
compartmentalization and active inorganic carbon transport
should permit high carbon dioxide assimilation in the absence of
photorespiration (Zarzycki et al., 2013). When considering this
strategy it is important to realize that a subset of carboxysomal
gene clusters include homologs of all three classes of Rca
(Zarzycki et al., 2013; Sutter et al., 2015). Activase activity
has not yet been demonstrated for any of the carboxysomally
associated Rcas biochemically, and an inability to detect this
function biochemically was reported in two cases (Li et al., 1999;
Sutter et al., 2015). However, in my opinion the association
of these Rca homologs with carboxysomal gene clusters is

indicative that the associated Rubiscos have not escaped from the
activase dependency. Progress here will likely require the use of
Rubisco inhibitors other than RuBP, which binds only weakly to
carboxysomal Rubiscos (Andrews and Abel, 1981; Pearce, 2006),
as well as assay conditions that mimic the crowded carboxysomal
interior. In order for Rca associated carboxysomes to function
optimally, the relevant activase will likely also need to be supplied
(Long et al., 2016).

It is intriguing that significant numbers of carboxysome-
containing organisms do not appear to encode Rca proteins
(Zarzycki et al., 2013), suggesting either a true activase
independence or the existence of unidentified activase classes.
Another enticing possibility would involve members of the
general chaperone machinery functioning as activases, in a
scenario resembling the situation prior to the evolutionary
recruitment of specialized Rcas.

OVERCOMING THE THERMOLABILITY OF
RCA

For a long time it has been realized that plant photosynthesis
is highly sensitive to temperature stress (Berry and Bjorkman,
1980), and that the reduction of this process was correlated
with a loss in Rubisco activation state (Weis, 1981; Kobza and
Edwards, 1987). The discovery that Rca is highly thermolabile,
and undergoes heat denaturation at physiologically relevant
temperatures provided a mechanistic basis to this observation
(Feller et al., 1998; Crafts-Brandner and Salvucci, 2000; Salvucci
and Crafts-Brandner, 2004a). This realization was followed by
the critical demonstration that expression of more thermostable
Rca proteins in Arabidopsis led to enhanced growth and biomass
accumulation at moderately elevated growth temperatures
(Kurek et al., 2007; Kumar et al., 2009). It is therefore imperative
that these promising studies are followed by rigorous analyses of
crop plants expressing more thermostable Rca proteins and such
experiments have been reported to be taking place (Carmo-Silva
et al., 2015). It will be most important to carefully analyse such
plants for deleterious phenotypes at high temperatures, since
Rca thermolability has been proposed to be regulatory (Sharkey,
2005). It may thus act as a thermal fuse to bring about Rubisco
deactivation under stressful high temperature conditions.

In addressing these issues clearly opportunities exist in taking
advantage of more thermostable Rca proteins that exist among
natural variation (Salvucci and Crafts-Brandner, 2004b; Lawson
et al., 2012; Scafaro et al., 2016). It is also worth pointing
out that it may not be necessary to restrict oneself to green-
type Rca. The characterized red-type Rca from the thermophilic
rhodophyte C. merolae was a functional activase at 25◦C, and
able to hydrolyze ATP after incubation at 60◦C (Loganathan
et al., 2016). Protein engineering approaches that utilize both
our mechanistic insights in combination with artificial evolution
experiments that utilize an expanding suite of Rubisco dependent
Escherichia coli (RDE) systems (Mueller-Cajar and Whitney,
2008b; Durao et al., 2015; Antonovsky et al., 2016; Wilson et al.,
2016) will enable incompatibilities between specific Rubiscos and
activases to be overcome.
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ACCELERATING RUBISCO ACTIVATION IN
PLANTS

An additional opportunity to enhance Rubisco function
and photosynthesis by activase engineering relates to the
naturally slow activation response of Rubisco under fluctuating
light conditions (Mott and Woodrow, 2000; Lawson et al.,
2012). Accordingly it was shown that Arabidopsis plants
expressing less regulated Rubisco activase isoforms were
able to activate Rubisco more rapidly than wild-type plants
following a dark to light transition. This property translated
to increased biomass accumulation when the plants were
grown under a fluctuating light regimen (Carmo-Silva and
Salvucci, 2013). Rice plants overexpressing an activase from
maize also displayed faster induction of photosynthesis under
fluctuating light conditions (Yamori et al., 2012). These
results indicate that activases that are highly functional, and
thus able to rapidly convert inhibited Rubisco complexes
to the ECM holoenzyme, may be able to confer enhanced
photosynthetic properties to plants exposed to fluctuating light
conditions that may commonly be encountered in natural
environments.

While considering the possibility of qualitatively superior
activases it is also worth mentioning that the thus far described
members of the red-type and CbbQO type Rca clades were all
able to remove the extremely tight-binding inhibitor CABP from
their cognate Rubiscos (Tsai et al., 2015; Loganathan et al., 2016),
whereas the green-type Rca from higher plants is unable to do
so (Robinson and Portis, 1988). Although more work is required
regarding the relative affinity of CABP to various enzymes, these

results indicate that different clades of Rca have evolved different

levels of remodeling power that can potentially be utilized to
advantage in heterologous contexts.

OUTLOOK

It appears likely that the crops of the future will possess
a photosynthetic machinery consisting of carefully selected
modules that will ensure maximum yield performance in their
particular environment (Zhu et al., 2010; Kromdijk et al., 2016).
The properties of Rubisco and its support cast will continue
to play a critical role in this endeavor (Sharwood, 2017). In
order to intelligently and effectively apply modifications to
the photosynthesizers of our choice, a much denser network
of Rubisco and activase related data is required (Hanson,
2016). This is critical because our dependence on Rubisco
as key carbon fixation catalyst will be ongoing, at least until
alternative and more efficient synthetic CO2 fixation pathways
have been successfully and fully integrated into the metabolism
of photoautotrophs (Bar-Even et al., 2010; Schwander et al.,
2016).
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