
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

Promising neuroprotective strategies for traumatic spinal cord
injury with a focus on the differential effects among anatomical

 levels of injury [version 1; referees: 2 approved]
Antigona Ulndreaj ,   Anna Badner , Michael G Fehlings1-3

Institute of Medical Science, University of Toronto, Toronto, Canada
University of Toronto Spine Program, Toronto, Canada
Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada

Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of motor, sensory,
and autonomic dysfunction. The significant cost associated with the
management and lifetime care of patients with SCI also presents a major
economic burden. For these reasons, there is a need to develop and translate
strategies that can improve outcomes following SCI. Given the challenges in
achieving regeneration of the injured spinal cord, neuroprotection has been at
the forefront of clinical translation. Yet, despite many preclinical advances,
there has been limited translation into the clinic apart from methylprednisolone
(which remains controversial), hypertensive therapy to maintain spinal cord
perfusion, and early decompressive surgery. While there are several factors
related to the limited translational success, including the clinical and
mechanistic heterogeneity of human SCI, the misalignment between animal
models of SCI and clinical reality continues to be an important factor. Whereas
most clinical cases are at the cervical level, only a small fraction of preclinical
research is conducted in cervical models of SCI. Therefore, this review
highlights the most promising neuroprotective and neural reparative therapeutic
strategies undergoing clinical assessment, including riluzole, hypothermia,
granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin
(VX-210), and anti-Nogo-A antibody, and emphasizes their efficacy in relation
to the anatomical level of injury. Our hope is that more basic research will be
conducted in clinically relevant cervical SCI models in order to expedite the
transition of important laboratory discoveries into meaningful treatment options
for patients with SCI.
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Introduction
Traumatic spinal cord injury (SCI), which is caused by external 
mechanical impact, results in impairment of motor, sensory, and 
autonomic function at and below the level of injury. Mechanical 
laceration, contusion, and compression result in cell death, which 
is further propagated by secondary injury mechanisms which  
include ischemia, sodium- and calcium-mediated cell injury,  
glutamatergic excitotoxicity, hemorrhage, and inflammation. The 
secondary injury amplifies the primary damage and promotes  
cystic degeneration and glial scar formation, thereby preventing 
functional recovery. Therefore, targeting secondary injury is a 
promising therapeutic intervention.

Despite several efficacious preclinical studies for SCI, there have 
been challenges in achieving successful translation into the clinic. 
While the disconnect between bench and bedside is not limited to 
SCI, it is important to recognize the underlying factors and identify 
solutions. Clinical heterogeneity, complexity of the disease, and 
the limited regenerative capacity of the spinal cord are among the 
key causes for poor translation and have been broadly discussed 
in the literature1. Yet significantly less emphasis has been placed 
on the need to apply clinically relevant models of cervical SCI2.  
Given that over 50% of human SCI cases occur at the cervi-
cal level3 and the majority of preclinical work involves thoracic  
injuries (Table 1), translation will require a greater understanding 
of injury-level subpopulation differences in pathophysiology and 
therapeutic benefits.

Table 1. Experimental evidence for the efficacy of promising 
neuroprotective therapies.

Neuroprotective/
neural reparative 
therapy

Injury model, species Reference

Riluzole Contusion, T7–T10, rat 69

Compression, T8, rat 70

Compression, T6, rat 71

Contusion, T10, rat 72

Compression, T11, rat 73

Contusion, T8, rat 74

Unilateral contusion, C7, rat 75

Hemisection, C2, rat 35

Compression, C7, rat 76

Unilateral contusion, C7, rat 77

Compression, C7, rat 78

Compression, C7, rat 79

Transection, S2, rat 34

Hypothermia Contusion, T8, rat 80

Compression, T8, rat 81

Compression, T8, rat 82

Compression, T11, rat 83

Contusion, T9, rat 84

Contusion, T10, rat 85

Unilateral contusion, C7, rat 75

Contusion, C5, rat 86

Neuroprotective/
neural reparative 
therapy

Injury model, species Reference

Glibenclamide Contusion, T8, rat 87
Unilateral contusion, T9, mouse 88
Unilateral contusion, C7, rat 75
Unilateral contusion, C7, rat 89
Contusion, C7, rat 90
Unilateral contusion, C4, rat 42
Unilateral contusion, C7, rat 77
Unilateral contusion, C7, rat 91

Granulocyte 
colony-stimulating 
factor

Contusion, T10, rat 92
Compression, T9, rat 93
Contusion, T9, rat 94
Hemisection, T10, mouse 95
Contusion, T8, rat 96
Contusion, T9, rat 97
Contusion, T8, rat 44
Compression, T8, mouse 98
Compression, T7, mouse 99
Transection, T8, mouse 100
Contusion, T8, rat 101
Compression, T8, rat 102

Minocycline Contusion, T7, rat 103
Contusion, T9, rat 104
Contusion, T9, mouse 105
Contusion, T9, rat 106
Contusion, T9, rat 107
Hemisection, T13, rat 108
Contusion, T10, rat 109
Contusion, T9, rat 110
Contusion, T10, rat 111
Contusion, T9, rat 112
Dorsal transection, C7, rat 113
Unilateral contusion, C5, rat 114
Compression, T3, mouse 115

Cethrin (VX-210) Contusion, T8, mouse 116
Dorsal hemisection, T7, mouse 117
Dorsal transection, T3, rat 118
Contusion, T9, rat 119

Anti-Nogo-A 
antibody

Hemisection, T10, rat 120
Dorsolateral hemisection, T8, rat 121
T-shape transection, T9, rat 122
Partial hemisection, T8, monkey 123
T-shape transection, T8, rat 124
T-shape transection, T8, rat 125
T-shape transection, T8, rat 126
Dorsal hemisection, T8, rat 52
Partial dorsal transection, T6, rat 53
Partial hemisection, C7, monkey 54
Hemisection, C7, monkey 55

The table summarizes the model, anatomical level of spinal cord injury, and 
the species used to evaluate the effectiveness and mechanisms of action 
of the neuroprotective therapies undergoing clinical trials. Although this list 
is not exhaustive, it highlights that thoracic models of spinal cord injury are 
most commonly applied at the preclinical level. All injury models are bilateral 
if not stated otherwise.
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Differences between the cervical and thoracic cord anatomy,  
physiology, and immune response may affect the outcome of  
neuroprotective treatments (Figure 1). Anatomically, the cervical 
spine has small vertebrae and increased mobility, which make it 
more susceptible to injury compared to the thoracic region. The 
cervical spinal cord also has a larger diameter, a greater blood  
supply, and larger gray and white matter areas4. Relatedly, the  
cervical gray matter vasculature has less pericyte coverage than 
the thoracic cord, resulting in a blood spinal cord barrier predis-
posed to increased permeability5,6. Also, some of the most frequent  
conditions of the spine, such as central cord syndrome7 and  
degenerative cervical myelopathy8, affect primarily the cervi-
cal region. Of note, while the cervical spinal cord is especially  
vulnerable to injury and hemorrhage, it may also be more  
accessible to systemically administered therapeutics. Adding to 
this complexity, there is emerging evidence demonstrating level-
dependent variations in the immune response9,10. For example, 
interestingly, higher-level injuries may be less prone to chronic 
autoimmunity11,12. Therefore, as SCI pathophysiology may differ  
between anatomical levels of injury, there is growing awareness 
that treatments should be tailored to the patient’s injury. Here,  
we review the most promising neuroprotective approaches,  
emphasizing their effect differences based on the level of injury 
(Table 2).

Neuroprotective strategies in current care
Early surgical decompression
The popularized phrase coined by the senior author, “Time is 
spine”, highlights the preclinical13,14 and clinical15,16 success of early 
surgical decompression, which aims to realign the spinal column 

and relieve bony or ligamentous spinal cord compression. Decom-
pression of intradural pressure, by durotomy alone or durotomy 
combined with duraplasty, has also been evaluated in experimental 
SCI17,18. Yet mixed results warrant further research on the efficacy 
and standardization of these practices. In contrast, early extradural 
surgical decompression has been shown to reduce tissue damage 
and improve outcomes following SCI. Even with some concern 
regarding perioperative hemodynamic changes affecting cord per-
fusion, most spine surgeons have been, and continue to be, in favor 
of decompressing the acutely injured spinal cord19,20. As a result, 
early decompression remains recommended in clinical management 
guidelines by the American Association of Neurological Surgeons 
(AANS) and the Congress of Neurological Surgeons21. Similarly, 
the recent AOSpine guideline also recommends decompression 
within 24 hours of SCI22. While there may be differential efficacy 
between injury-level subpopulations23, current evidence is limited 
by substantial clinical heterogeneity, loss to follow-up, unclear 
adjustment for baseline factors, and a lack of statistical power. For 
these reasons, more work is needed to develop customizable treat-
ment regimens and prioritized surgical access to the most benefit-
ting patient subtypes.

Support of mean arterial pressure
Hypotension, hypoxemia, pulmonary dysfunction, and cardio-
vascular instability are common within the first 7 to 10 days of  
SCI24. Hemodynamic instability not only limits the opportu-
nity for early surgical intervention but also increases spinal cord  
ischemia and therefore secondary damage. For this reason, the 
current AANS and Congress of Neurological Surgeons guideline 
recommends continuous hemodynamic monitoring, interventions 

Figure 1. There are several key differences between cervical and thoracic spinal cord injury. (A) The cervical vertebrae are smaller and 
more mobile than their thoracic counterparts, which are further supported by the rib cage. (B) The cervical spinal cord also has a larger 
diameter, and injuries at the cervical level interrupt the sympathetic innervation to major immune organs. (C) Moreover, the greater vascularity 
of the cervical cord increases susceptibility to hemorrhage following trauma. Lastly, injuries at the cervical level allow for considerably more 
spontaneous recovery compared with injuries at the thoracic level128. BSCB, blood spinal cord barrier; SCI, spinal cord injury.
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correcting hypotension (such as by vasopressor administration), 
and maintenance of mean arterial blood pressure (MAP) between 
85 and 90 mmHg for the first 7 days following cervical injury25. 
While these recommendations are largely based on a small group 
of uncontrolled and underpowered studies26, a recent retrospective 
assessment largely confirmed the published guidelines as well as 
the neuroprotective potential of vasopressor administration27. As 
these results need further prospective validation, it will be impor-
tant to stratify patient populations and identify potential treatment 
effect differences based on the anatomical level of injury. It is also 
important to note that MAP support principally aims to maintain 
appropriate spinal cord perfusion pressure (SCPP), determined 
by the difference between MAP and intraspinal pressure (ISP).  
However, as ISP may increase independently of MAP, mainte-
nance of a low ISP or a high SCPP (or both) is gaining increasing  
attention as an important practice in the acute clinical manage-
ment of SCI28,29. While initial studies have shown encouraging  
results about the predictive value of low ISP or high SCPP in  
neurological recovery, larger multicenter studies are needed to  
validate these preliminary data29.

Methylprednisolone sodium succinate
Methylprednisolone sodium succinate (MPSS) is a synthetic  
corticosteroid with potent anti-inflammatory effects and neu-
roprotective potential in acute traumatic SCI. Concerns about  
increased risk for infections following MPSS treatment have  
kept the drug at the forefront of continuous controversy. While it 
remains the only treatment option for acute SCI, debate regarding 
optimal dose, time of administration, efficacy, and adverse effects 
has dominated the field for decades and has dichotomized clinicians 
around the world. For this reason, there have been three National 
Acute Spinal Cord Injury Studies (NASCIS) to evaluate the clinical 
safety and efficacy of varying MPSS dose and timing. Moreover, 
NASCIS results have been retrospectively analyzed on numerous 
occasions to derive meaningful conclusions. One of the most recent 
publications on the topic concluded that MPSS does not increase 
the risk of infections and confers significant short-term effects 
when given within the first 8 hours of injury30. Importantly, patients 
with cervical SCI and reduced baseline injury severity seem to ben-
efit most from this treatment31. Given the particularly debilitating 
nature of cervical injuries, these improvements have tremendous 
impact on patients’ quality of life. Thus, the most recent AOSpine 
guideline currently recommends a 24-hour treatment of intravenous 
MPSS when initiated within the first 8 hours of SCI, independently 
of injury level22.

Promising neuroprotective and neural reparative 
therapies in clinical trials
Riluzole
Secondary injury involves ionic dysregulation and excitotoxic-
ity. As cell membranes become highly permeable to sodium ions,  
there is increased calcium influx. Subsequently, high sodium and 
calcium ion concentrations in neurons trigger the secretion of  
glutamate from nerve terminals. Increased synaptic glutamate  
leads to prolonged excitability in the postsynaptic neurons, driving 
eventual neuronal edema and death.

Riluzole is a benzothiazole (molecular weight of 234.2 Da) which 
inhibits voltage-gated sodium channels and glutamate release, 
thereby mitigating excitotoxicity. Riluzole has been reported to slow 
the progression of amyotrophic lateral sclerosis (ALS)—a progres-
sive motor neuron disease—and currently is the only US Food and 
Drug Administration (FDA)-approved drug for ALS. In addition, 
riluzole has been shown to have neuroprotective potential in animal 
models of Parkinson’s disease32 and Huntington’s disease33 and cur-
rently is being used in clinical studies of mild Alzheimer’s disease 
(ClinicalTrials.gov identifier NCT01703117). Importantly, riluzole 
was also shown to suppress spasticity34, a frequent co-morbidity in 
patients with SCI, and to promote neural preservation in rats with 
high cervical spinal hemisection injury35.

Capitalizing on the preclinical success of riluzole, a phase I/IIA 
clinical trial was launched in April 2010 to assess the safety  
and pharmacokinetics of riluzole in patients with acute traumatic 
SCI (ClinicalTrials.gov identifier NCT00876889). In this trial,  
36 patients with SCI (28 cervical and eight thoracic SCI) received 
riluzole (50 mg) orally every 12 hours for 28 doses. A control  
group consisting of 36 patients with SCI—matched for neurologi-
cal impairment, gender, and age—received the standard of care but 
no riluzole. Patients who received riluzole showed statistically sig-
nificant improvement compared with the control group (P = 0.021). 
In particular, patients with incomplete cervical injury—American 
Spinal Injury Association (ASIA) Impairment Scale B—showed 
the highest improvement in the International Standards for Neuro-
logic Classification of Spinal Cord Injury (ISNCSCI) motor score 
(P = 0.037). In addition to being efficacious, riluzole was shown 
to be safe for this patient cohort36. Interestingly, there was no dif-
ference within the thoracic injury group, as patient numbers were 
small, patients had more severe injuries, and the ISNCSCI motor 
scoring is less sensitive to thoracic recovery37.

Based on these results, a phase IIB/III was launched in 2013 
to evaluate the efficacy and safety of riluzole in patients with  
cervical traumatic SCI, entitled “Riluzole in Acute SCI Study” 
(RISCIS) (estimated enrollment: 351 patients, ClinicalTrials.gov 
identifier NCT01597518). In this multicenter, randomized, placebo- 
controlled, double-blinded trial, riluzole (100 mg, twice daily) 
is administered orally to patients within 24 hours from injury,  
followed by two 50 mg daily doses for 14 days after SCI. A  
capsule identical in shape and size to riluzole is administered to 
patients in the control group. The primary outcome of the study is  
improvement in ISNCSCI motor scores at 180 days after injury. The  
study is estimated to be completed by 202137.

Therapeutic hypothermia
In response to trauma, increased metabolic rate can lead to excito-
toxicity and cell death. Local or systemic cooling following insult 
has been shown to reduce the metabolic demand, thereby limiting 
cell death. Moreover, therapeutic hypothermia has been shown to 
reduce inflammatory cell infiltration, myeloperoxidase activity, and 
vasogenic edema and stabilize the blood-brain barrier38. Despite 
these benefits, systemic hypothermia may have some serious side 
effects, including bradycardia, respiratory infections, and deep vein 
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thrombosis. While local cooling of the spinal cord circumvents 
many of these concomitant issues, randomized controlled trials are 
still needed to prove the efficacy of local hypothermia in neuro-
logical recovery after SCI. However, in one study, acute (within 8 
hours of injury) local hypothermia was shown to improve recovery 
among cervical and thoracic populations (n = 12 out of 14 cervical 
SCI, n = 4 out of 6 thoracic SCI) when compared with historical  
controls39. Similarly, a pilot study of systemic hypothermia in 
patients with cervical complete SCI (n = 14) demonstrated fewer 
adverse effects and a trend toward improved recovery compared 
with age- and injury level-matched historical controls when sys-
temic hypothermia was induced within 9 hours of trauma40.  
Furthermore, a follow-up randomized controlled trial assessing 
the efficacy of intravascularly delivered systemic hypothermia in 
acute cervical SCI commenced in May 2017 (estimated enrollment:  
120 patients, ClinicalTrials.gov identifier NCT02991690). 
Although previous multicenter randomized clinical trials found  
hypothermia to be ineffective in adults with traumatic brain injury41, 
expectations for SCI remain hopeful.

Glibenclamide (Glyburide, DiaBeta)
Capillary fragmentation following SCI contributes to hemorrhage. 
This process is initiated in the capillary-rich gray matter of the injury 
epicenter and expands rostro-caudally, leading to progressive tissue 
necrosis, cavitation, and neurological dysfunction. In a rat model 
of unilateral cervical SCI, Simard et al. found that sulfonylurea  
receptor 1 (SUR1)-regulated Ca2+-activated [ATP]

i
-sensitive  

non-specific cation (NC
Ca-ATP

) channels of the capillary endothe-
lium in the spinal cord are key to capillary fragmentation follow-
ing SCI42. By blocking NC

Ca-ATP
 channels with the FDA-approved  

anti-diabetic drug glibenclamide (Glyburide), Simard et al. observed 
decreased lesion volumes and significant white matter preservation  
coupled with improved neurobehavioral outcomes42. Recently, 
a phase I/II clinical trial was initiated to assess the safety and  
neuroprotective effectiveness of Glyburide (DiaBeta) in patients 
with acute traumatic cervical SCI (estimated enrollment: 10 
patients, ClinicalTrials.gov identifier NCT02524379), with an esti-
mated completion date in early 2020.

Granulocyte colony-stimulating factor
Initially overlooked for its potential in the central nervous  
system (CNS), granulocyte colony-stimulating factor (G-CSF) has 
shown positive preclinical results for SCI (Table 1). In response to 
ischemia and CNS injury, G-CSF and its receptor (CD114;  G-
CSFR) are upregulated in neurons and endogenous stem cells, 
initiating a compensatory neuroprotective mechanism. By binding 
to its cognate receptor, G-CSF counteracts programmed cell death 
in mature neurons, induces neurogenesis, and promotes neuronal 
differentiation of adult neural stem cells43. Moreover, angiogenesis44 
and reduced inflammation45 have been attributed to the protective 
actions of G-CSF. Kamiya et al. administered G-CSF for 5 con-
secutive days after cervical SCI and assessed ASIA motor scores  
3 months later46. The improvements were significant compared with 
historical controls of patients with cervical SCI receiving high-dose 
MPSS46. In a study by Inada et al., patients with cervical SCI who 
received G-CSF demonstrated improved recovery compared with 
a non-treated group47. However, the treatment was administered 
in an open-label and non-randomized fashion47. Interestingly, in a 

study by Saberi et al., in which G-CSF was administered in patients 
with chronic SCI, significant motor and sensory recovery was dem-
onstrated, particularly in patients with incomplete cervical SCI48. 
Despite these promising effects, a true double-blinded randomized 
control clinical trial for G-CSF has yet to be developed.

Minocycline
Inflammatory cytokines produced by resident microglia and astro-
cytes following trauma attract peripheral immune cells to the spinal 
cord. Neutrophils and monocytes are the first blood-derived cells to 
enter the injured parenchyma. While these cells are crucial in clean-
ing up the cellular debris, they produce inflammatory cytokines, 
such as tumor necrosis factor-alpha and interferon-gamma, as well 
as toxic by-products that exacerbate damage.

Minocycline is a tetracycline antibiotic with neuroprotective and 
anti-inflammatory properties. A single-center, placebo-controlled,  
double-blinded phase I/II clinical trial was initiated in 2004 to 
evaluate the efficacy and safety of intravenous minocycline within 
12 hours of injury for 7 days. The study, which was completed in 
2010 (27 patients received minocycline and 25 received placebo), 
showed a trend toward improved motor scores in incomplete cer-
vical SCI cases in the absence of any serious adverse effects  
(P = 0.05) but no improvement in thoracic SCI49 (ClinicalTrials.
gov identifier NCT00559494). Based on these results, a phase 
III clinical trial, titled “Minocycline in Acute Spinal Cord Injury 
(MASC)”, was initiated in 2013 and is expected to finish by 2018 
(estimated enrollment: 248 patients, ClinicalTrials.gov identifier  
NCT01828203). Interestingly, a clinical trial evaluating the  
efficacy of minocycline in reducing neuropathic pain has been  
successfully completed, but the results have yet to be published  
(ClinicalTrials.gov identifier NCT01869907). Given that neuro-
pathic pain is a common and debilitating co-morbidity in patients 
with SCI, the study results will be of significant interest to the 
field.

Cethrin (VX-210)
The injured spinal cord niche contains growth-inhibitory mole-
cules, such as myelin debris and chondroitin sulfate proteoglycans, 
that lead to neuron growth cone collapse, thereby inhibiting regen-
eration. These molecules bind to respective receptors on regener-
ating neurons, where they initiate a phosphorylation cascade. At 
the converging point of this cascade are Rho GTPases, a family 
of intracellular enzymes that regulate cytoskeletal mechanisms and 
cellular mobility. Cethrin (VX-210) is a recombinant deactivator 
of RhoA (a member of the Rho family) with dura and cell mem-
brane penetrance. An open-label uncontrolled phase I/IIa clini-
cal trial showed significant neurological improvement in patients 
with SCI who received Cethrin (48 patients, ClinicalTrials.gov  
identifier NCT00500812). Benefits were particularly enhanced 
in patients with cervical SCI compared with their thoracic  
counterparts50, a finding that incentivized the initiation of larger  
controlled double-blinded clinical trials for patients with cervical  
SCI. This phase IIb/III clinical trial will evaluate the safety and 
efficacy of two doses of VX-210 (formerly known as Cethrin)  
compared with placebo (a fibrin sealant) when applied extradurally 
at the site of injury, acutely after cervical SCI (estimated enroll-
ment: 150 patients, ClinicalTrials.gov identifier NCT02669849).
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Anti-Nogo-A antibody (ATI-355)
Anti-Nogo-A antibody is a monoclonal antibody against Nogo-A, 
a protein inhibitor of neurite growth found on adult CNS myelin. 
Widely assessed at the thoracic level in rodents51–53, in addition to 
several studies in primate models of cervical SCI54,55, anti-Nogo-A 
antibody has been shown to promote axonal sprouting and improve 
functional recovery following injury. A non-randomized, open-label 
phase I clinical trial of humanized anti-Nogo-A antibody (ATI-355; 
Novartis Pharmaceuticals) was initiated to assess the feasibility, 
tolerability, and safety of either repeated intrathecal bolus injec-
tions of AT1-355 or continuous intrathecal delivery in acute SCI 
(4–14 days after injury). In total, 52 cervical and thoracic patients 
with traumas between C5 and T12 level were recruited in the study, 
and results are pending dissemination (ClinicalTrials.gov identifier 
NCT00406016). A phase IIb trial, led by Armin Curt, is expected to 
begin in Europe shortly.

Emerging neuroprotective approaches
Intravenous immunoglobulin G
Intravenous immunoglobulin G (IVIG) consists of serum immu-
noglobulin G (IgG) pooled from thousands of healthy donors. 
Independent laboratory studies in cervical and thoracic models of 
SCI have shown that IVIG improves recovery by targeting the det-
rimental inflammatory response in the spinal cord after trauma56–58. 
While the efficacy of IVIG for SCI has not been assessed in clinical  
trials, the exciting preclinical results coupled with IVIG’s long-term 
clinical use for the treatment of autoimmune and immunodeficiency 
conditions make it a promising candidate for SCI clinical trials.

Cell therapies
With cell transplantation as an attractive treatment approach for 
SCI, a diverse range of cells has been evaluated in preclinical 
studies, resulting in a plethora of potential mechanisms. In short, 
transplanted cells have been used for immune modulation, trophic 
support, scaffolding, re-myelination, and cell replacement59. Yet, 
predominantly applied in the subacute and chronic phases of injury, 
only a few cell transplantation strategies are thought to have neuro-
protective potential for the acutely injured spinal cord.

Mesenchymal stem/stromal cells. Mesenchymal stem/stromal cells 
(MSCs) are multipotent mesodermal progenitors defined by their 
in vitro adhesion to plastic and their cell surface antigen profile60. 
Readily accessible from various adult tissues such as bone marrow, 
cartilage, and fat, MSCs are among the most commonly studied 
cells in regenerative medicine. This popularity has led to signifi-
cant heterogeneity in MSC isolation, cultivation, and purification 
procedures, further resulting in mixed therapeutic efficacy among 
preclinical studies and the increasing number of clinical studies61. 
In SCI, MSCs have been reported to dampen inflammation, modu-
late the immune response, and secrete neuroprotective factors59. 
A 2013 systematic meta-analysis of preclinical studies, involving 
intrathecal, intraparenchymal, and intravenous infusion of MSCs 
in various models of cervical and thoracic SCI, determined that the 
cells, overall, result in improved functional recovery after injury62. 
While this is encouraging, a lot remains to be understood about the 
identity and function of MSCs. Furthermore, additional mechanis-

tic studies are needed to effectively tailor their therapeutic applica-
tion for SCI and identify differences in efficacy between anatomical 
levels of injury.

Final thoughts
Spinal cord level-dependent differences in vertebral structure, 
anatomy, and peripheral immune organ innervation may affect SCI 
pathophysiology. Though largely overlooked in preclinical studies,  
post hoc subgroup analysis from seminal large-scale clinical  
trials has been indicative of varying treatment efficacy between 
different anatomical levels of SCI50,63. As a result, the stratification 
of patients into injury-level subpopulations is being increasingly 
adopted in trial design, and the aforementioned RISCIS trial is a 
leading example37.

Notwithstanding its strengths, this approach has considerable 
challenges. Firstly, given the clinical heterogeneity of SCI patho-
physiology, even within the same level of injury, the recruitment 
of adequate patient numbers to reach statistical power may prove 
substantially difficult, especially for acute and infrequent injuries. 
Although multicenter trials may circumvent this issue, they require 
tremendous coordination, collaboration, and resources. However,  
a recently published assessment of patient recruitment for acute 
SCI trials determined that such multicenter Canadian trials are 
feasible with careful a priori planning and registry support64.  
Secondly, stratified analysis is susceptible to confounding effects. 
For instance, treatment efficacy may be directly affected by 
patient age or injury causation rather than the anatomical level of 
injury3. In addition, stratification according to injury level alone is 
unlikely to account for the significant variability in injury severity,  
presentation, and patient characteristics. Finally, a greater under-
standing of the impact of trauma-related mechanisms on the impact 
and outcomes of SCI is also required.

Therefore, it is increasingly recognized that optimal patient recov-
ery will stem from a combinatorial treatment regimen of integrated 
pharmacological and rehabilitation-based strategies that will be 
personalized to their SCI signature (age, medical history, level, 
completeness, and mechanism of injury). For this reason, transla-
tional laboratory studies need to compare neuroprotective efficacy, 
as well as combinatorial approaches, between different anatomi-
cal levels of injury and severity. Moreover, advances in imaging 
and biochemical biomarkers are needed to help tailor trials within 
a heterogeneous SCI patient population, narrowing the inclusion 
window and increasing study power. These approaches can be fur-
ther applied to better assess treatment efficacy, specifically beyond 
basic neurological recovery. Apart from outcomes, treatment proto-
cols should ensure sufficient drug delivery to target sites, especially 
for systemically administered neuroprotective agents with CNS-
specific effects65. Moreover, coordinated efforts should be made by 
leading SCI care units to standardize early medical management66,67 
and monitoring practices68 in order to maximize the efficacy of  
randomized controlled trials. Lastly, with the increasing incidence 
of traumatic SCI in the elderly3, it is important that more emphasis  
be placed on optimizing such practices to address the specific  
needs of this growing demographic.
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In conclusion, neuroprotection has the potential to improve recovery 
of motor, sensory, and autonomic function following SCI. Signifi-
cant strides in our understanding of SCI pathophysiology, patient 
presentation, and biomarkers will further align preclinical research 
with clinical reality, yielding translatable solutions that can benefit 
patients.
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