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Abstract

Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is
largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response
in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based
cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4,
which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene
production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in
enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts
at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction
mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA
function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile
ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and
adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a
novel mode of interplay between ethylene and ABA in control of rice growth and development.
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Introduction

The gaseous phytohormone ethylene regulates many aspects of
plant growth and development, including seed germination,
seedling growth, floral transition, sex determination, fruit ripening,
organ senescence/abscission and adaptive responses to multiple
biotic and abiotic stresses [1]. Ethylene is synthesized from
methionine via a simple linear pathway, in which 1-aminocyclo-
propane-1-carboxylic acid (ACC) synthase (ACS) and ACC
oxidase (ACO) function as key enzymes [2]. Ethylene is perceived
by a family of membrane-bound receptors that have similarity to
bacterial two-component histidine kinase and act as negative
regulator of ethylene response [3]. Ethylene signal is transmitted
via a linear signaling cascade that consists of CONSTITUTIVE
TRIPLE RESPONSE 1 (CTR1), ETHYLENE INSENSITIVE 2
(EIN2) and EIN3/EIN3-LIKE (EIL) [4-6]. Ethylene receptors,
CTR1 and EIN2 are all predominantly localized at the
endoplasmic reticulum membranes on where they can form
signaling complex [7-10]. Without ethylene, the receptors are
believed to be active and activate CTR1 ser/thr protein kinase
which in turn phosphorylates the positive regulator EIN2, likely
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causing the proteasomal degradation of EIN2 by F-box proteins
EIN2 TARGETING PROTEIN1/2 (ETP1/2) [11-13]. Upon
ethylene perception, EIN2 can be proteolytically cleaved and its
carboxyl terminus is translocated into the nucleus, triggering
EIN3/EILs-mediated transcriptional cascades to induce various
ethylene responses [12,14,15]. EIN3/EILs are also subjected to
proteasomal degradation mediated by EIN3-BINDING F-BOX
PROTEIN1/2 (EBF1/2) [16,17].

In most growth and developmental processes, ethylene achieves
its function through interaction with other phytohormones [18—
20]. Among them, ethylene extensively interacts with abscisic acid
(ABA) in many biological processes [21-29]. ABA plays pivotal
roles in seed dormancy and germination, seedling development,
stomatal closure and adaptive stress responses. ABA is produced
from carotenoids, and the direct precursors are xanthophylls [30].
In Arabidopsis, zeaxanthin is converted into violaxanthin by
Zeaxanthin epoxidase ABAl [31]. ABA4 is involved in the
subsequent conversion of zeaxanthin to neoxanthin although no
enzyme activity was identified [32]. In addition to ABA4, recent
study revealed that NXDI (Neoxanthin-Deficient 1) is also
necessary for neoxanthin synthesis but does not affect ABA
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Author Summary

Rice is a monocotyledonous plant that is distinct from the
dicotyledonous model plant Arabidopsis in many aspects.
In Arabidopsis, ethylene-induced root inhibition is inde-
pendent of ABA action. In rice, however, we report here
that ethylene inhibition of root growth requires ABA
function. We identified MHZ4, a rice homolog of Arabi-
dopsis ABA4 that is involved in ABA biosynthesis. The mhz4
mutant displayed reduced ABA level and exhibited
ethylene-hyposensitive root, but -hypersensitive coleoptile
phenotypes in etiolated seedlings. Exogenous application
of ABA largely recovered the defective ethylene responses.
Overexpression of MHZ4 resulted in enhanced and
reduced ethylene response in the roots and coleoptiles,
respectively. In root, MHZ4-dependent ABA pathway
genetically acts at or downstream of ethylene receptors
and positively regulates root ethylene response. Moreover,
ethylene treatment stimulated ABA production in roots at
least through transcriptional activation of MHZ4. The
results indicate that ethylene-induced root inhibition in
rice is largely mediated through MHZ4-dependent ABA
function. In coleoptile, MHZ4-dependent ABA pathway acts
at or upstream of OsEIN2 and negatively regulates
coleoptile ethylene response, possibly via transcriptional
suppression of OsEIN2. Together, our findings reveal a
novel mode of ethylene-ABA interaction which is funda-
mentally different from that in Arabidopsis.

accumulation in tomato and Arabidopsis [33]. The cis-isomers of
both zeaxanthin and neoxanthin is then cleaved by nine-cis-
epoxycarotenoid dioxygenase (NCED), leading to the production
of xanthoxin [34]. The above steps occur in plastids. Xanthoxin is
released into cytosol and converted to abscisic aldehyde by ABA2,
a short-chain dehydrogenase/redutase [35]. Abscisic aldehyde
oxidase (AAQO) finally oxidizes the abscisic aldehyde to ABA [36].
The core components of ABA signaling pathway include ABA
receptors PYR/PCAR, the negative regulator PROTEIN PHOS-
PHATASE 2C (PP2C) and the positive regulator SNF1-
RELATED PROTEIN KINASE 2 (SnRK2). In the absence of
ABA, PP2Cs such as ABSCISIC ACID INSENSITIVE] (ABI1)
repress ABA signal transduction by inhibiting SnRK?2 kinase
activity through removal of activating phosphates. In the presence
of ABA, ABA-bound receptors inhibit PP2C activity, allowing
activation of SnRK2s and subsequent phosphorylation of ABA-
responsive element binding factors (ABFs) to activate ABA-
responsive genes [37-39].

Interactions of ethylene and ABA are complicated. The two
hormones interplay at multiple levels, i.e., reciprocal effects on
synthesis, signaling and responsive genes [18]. Ethylene and ABA
interact in both antagonistic and synergistic manners, which
depend upon developmental process, organ/tissue, growth condi-
tions and species. In root growth, ethylene and ABA synergistically
inhibit root elongation. Genetic evidences revealed that ABA
signaling pathway acts upstream of ethylene signaling cascade in
Arabidopsis, as root growth of ethylene-insensitive mutants etrl-1
and em?2 is resistant to ABA inhibition, but the roots of ABA-
insensitive mutant abil and ABA-deficient mutant aba2 display
normal responses to ethylene [21,22,26]. Moreover, block of ABA
synthesis in em2, ein3, en6 or ctrl mutant background by
introducing ¢ba2 mutation [26], or block of ABA signaling in the
ctrl mutant by introducing the ¢bil mutation did not alter the
ethylene response phenotypes of the respective ethylene mutants
[21]. These results suggest that ABA-mediated inhibition
of root growth requires functional ethylene signaling, whereas
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ethylene-induced root inhibition is dispensable for ABA action
[21,22]. Although the integration of ethylene and ABA signaling
pathways has been elucidated in Arabidopsis, their interactions in
other plants remain largely unclear.

Rice is an important crop worldwide. A few ethylene signalling
components homologous to those of Arabidopsis have been
characterized in rice including ethylene receptor OsETR2,
OsRTHI, OsCTR and OsEIN2 [40-44]. Recently, through
analysis of rice ethylene-response mutant mhz7, we find that
MHZ7/0sEIN2 plays central roles in ethylene signalling and
regulation of agronomic traits in rice, and clear ethylene-
mnsensitive and hypersensitive phenotypes are identified in
etiolated rice seedlings [45]. In this study, we further characterized
another rice ethylene-response mutant mhz4 (mao huzi, Chinese
name with a English meaning of cat whiskers), which displays
reduced ethylene-response in roots but enhanced ethylene-
response in coleoptiles [45]. Through map-based cloning, the
MHZ4 was identified to encode a membrane protein orthologous
to Arabidopsis ABA4, which is responsible for the conversion of
zeaxanthin to neoxanthin in ABA biosynthesis pathway [32].
Mutation of MHZ4 abolishes ABA production but promotes
ethylene emission. MHZ4 overexpression enhances root ethylene-
response but reduces coleoptile ethylene-response. MHZ4 acts
downstream of ethylene receptors in regulating root growth but
upstream of OsEIN2 in regulating coleoptile elongation. Our
results reveals the complicated interplay between ethylene and
ABA signaling in regulating rice seedling growth and agronomic
traits, providing new insight into understanding of their interaction
in rice.

Results

Characterization of mhz4 Mutant for Ethylene Response
Phenotypes

The mhz4 is identified previously in our screen for ethylene-
response mutants in rice [45]. For dark-grown wild type (WT)
seedlings, ethylene inhibited root growth but promoted coleoptile
elongation in a dose-dependent manner (Figure 1A-C). The roots
of etiolated mhz4 seedlings were about 10% shorter than that of
WT seedlings under normal conditions. Upon ethylene treatment,
mhz4 roots were insensitive to ethylene inhibition at lower
concentrations (=1 ppm) but displayed mild growth inhibition at
higher concentrations (10 to 100 ppm), e.g. about 20% inhibition
in mhz4 compared with about 70% inhibition in the WT at
10 ppm ethylene (Figure 1A and 1B). This indicates that the roots
of mhz4 are less sensitive to ethylene. On the other hand, the
coleoptiles of mhz4 were slightly but significantly (P<<0.004) longer
than that of WT seedlings in the absence of ethylene and were
much longer than that of WT under all concentrations of ethylene
treatment, indicating that the coleoptiles of mhz4 are hypersen-
sitive to ethylene (Figure 1A and 1C). These results indicate that
mhz4 mutation oppositely affects ethylene responses in roots and
coleoptiles of etiolated rice seedlings.

To further confirm the ethylene responsiveness of mhz4 mutant,
we examined expressions of ethylene-inducible genes originally
identified from a chip analysis (GSE51153; [45]) and a RNA-seq
analysis (SRP041468). Two genes including disease resistance
response gene and peptidylprolyl isomerase gene were found to be
induced by ethylene in both shoots and roots of WT seedlings
(Figure 1D). Four genes (OsERF002, OsRRA5, OsRAP2.8 and
OsIAA20) were found to be induced mainly in roots and four
genes (SHR5, OsERF063, OsERF073 and photosystem II
10 kDa polypeptide gene) mainly in shoots of WT seedlings
(Figure 1E). In mhz4 shoots, the ethylene inducible genes were
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Figure 1. Ethylene responses in etiolated mhz4 seedlings. Rice seedlings were grown in dark for 3 d in the presence of various concentrations
of ethylene. (A) Ethylene-response phenotypes of WT (Nipponbare) and mhz4 seedlings grown in air or 10 ppm ethylene. Bar=10 mm. (B) Ethylene
dose-response curves for root length (top) and relative root length (bottom) in WT and mhz4 seedlings. Each point is average of 20 to 30 seedlings
and bars indicate SD. (C) Ethylene dose-response curves for coleoptile length (top) and relative coleoptile length (bottom) of WT and mhz4 seedlings.
Others are as in (B). (D) Expression of ethylene-inducible genes in both shoot and root of WT and mhz4 seedlings. Dark-grown 2 d-old seedlings were
treated with or without 10 ppm ethylene for 8 h and the RNA was isolated for quantitative PCR. Data are the mean = SD of four replicates. (E)
Expression of ethylene-inducible genes in root (left) or shoot (right) of WT and mhz4 seedlings. Others are as in (D).
doi:10.1371/journal.pgen.1004701.g001
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constitutively expressed at a level higher than that in ethylene-
treated WT. Ethylene treatment of mhz4 did not further increase
the transcript levels probably due to their expression levels were
already very high. It should be noted that we used shoots instead of
coleoptiles for the gene expression analyses because similar
ethylene responses were found for coleoptiles and shoots [46]. In
mhz4 roots, the transcripts of ethylene inducible genes remained at
a similar or lower level when compared to those in WT in the
absence of ethylene, and these genes showed no or only slight
inductions compared to their ethylene inductions in WT roots
(Figure 1D, E). These results indicate enhanced and reduced
ethylene response in mhz4 shoots/coleoptiles and roots, respec-
tively, at gene expression level.

The MHZ4 Gene Is Homologous to Arabidopsis ABA4

Genetic analysis has revealed that mhz4 is a recessive mutation
controlled by a single locus [45]. The MHZ4 gene was identified
by a map-based cloning approach using I'2 plants from a cross
between mhz4 and indica rice variety Minghui 63. A total of 480
segregated mutant individuals were used for positional mapping of
the mhz4 locus. The mutation site was narrowed down to a 30-kb
region in chromosome 1 between Idl1-1.55 and Idl1-1.58
markers (Figure 2A). We sequenced all four annotated genes
within this region and found an 18-bp deletion in LO-
C_0Os01g03750. The deletion occurred at the third intron and
disrupted the splicing site, resulting in 81-bp un-spliced intron and
causing a premature stop codon in the encoded protein (Figure 2A
and 2B). The mutations were further confirmed by PCR through
examination of fragment length polymorphisms in genomic DNA
and ¢cDNA of WT and mhz4 (Figure 2C). To verify that the
mutation of LOC_Os01g03750 locus is responsible for the mutant
phenotype of mhz4, we cloned the 4213-bp DNA fragment
including the complete LOC_Os01g03750 genomic sequence
(1147-bp) plus 2048-bp region upstream of the start codon and
858-bp extension downstream of the stop codon from the WT,
and transformed the gene into the mhz4 plants. Ethylene response
assays showed that the altered ethylene responsiveness of mhz4 was
rescued in the transgenic plants (Figure 2D). These results confirm
that MHZ4 is located at LOC_Os01g03750 locus.

The MHZ4 gene encodes a protein of 228 amino acids that
harbors an N-terminal signal peptide and four transmembrane
domains as predicted by the SMART program (http://smart.
embl-heidelberg.de/) (Figure 2B). The MHZ4 sequence shared
47% identity and 64% similarity with Arabidopsis ABA4
(AT1G67080), which is required for neoxanthin formation in the
ABA biosynthesis pathway through an unknown mechanism [32].
Phylogenetic analysis revealed that MHZ4 protein is conserved
from cyanobacteria to higher plants and is more closely related to
homologues from monocotyledonous plants (Figure 2E).

MHZ4 Expression and Protein Subcellular Localization
MHZ4 accumulation was examined by semiquantitative RT-
PCR. The transcripts were detected in all organs from vegetative
to reproductive stages and found to be more abundant in young
leaves (Figure 3A). Transgenic rice plants harboring MHZ4
promoter::B-glucuronidase (GUS) construct were also generated
and GUS staining assay was performed to evaluate the promoter
activity. In etiolated seedlings, MHZ4 expression was detected in
both roots and coleoptiles, and the signals were also present in the
vascular tissues of roots (Figure 3B, a to e). In root apexes, GUS
signals were observed in the putative quiescent center (QC) and
root caps (Figure 3B, f). In field-grown plants, MHZ4 was
expressed in leaf blades, young stem nodes, the base of axillary
buds and adventitious roots derived from the nodes (Figure 3B, g
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to j). In reproductive organs, the expression of MHZ4 was
detected in the anthers and pistil of young flowers, lemma of
mature flowers, and parts of developing grains (Figure 3B, k to n).

The MHZ4 protein was predicted to localize to the chloroplasts
by using the ChloroP 1.1 program (http://www.cbs.dtu.dk/
services/ChloroP/). To experimentally verify the localization,
MHZ74 coding sequence was fused in frame with GFP and
transiently expressed in tobacco leaves. The fluorescence signals of
MHZ74-GFP fusion protein were found in the chloroplasts of
tobacco glandular hairs, as identified by co-localization with the
chlorophyll autofluorescence (Figure 3C). This result is consistent
with the localization of Arabidopsis ABA4 in chloroplast envelope
[47].

Ethylene-Induced Root Inhibition in Rice Is Largely
Mediated through MHZ4-Dependent ABA Accumulation

Since MHZ4 is homologous to Arabidopsis ABA4 in ABA
biosynthesis, we tested whether endogenous ABA contents in mhz4
were altered. The mhz4 mutant contains 61% and 7.8% of WT
ABA levels in roots and shoots, respectively, demonstrating that
ABA production is severely hampered in mhz4 mutant (Fig. 4A).
Ethylene induced ABA accumulation in WT roots but not in
shoots, suggesting organ-specific regulation of ABA accumulation
(Fig. 4A). Ethylene induction of ABA was not observed in mhz4
roots (Fig. 4A), indicating that MHZ4 is required for ethylene-
induced ABA accumulation. We further examined the expression
of ABA-responsive gene OsMFT2 (LOC_Os01g02120) previously
identified by Lenka et al. [48]. OsMFT2 expression was
dramatically induced by ABA in both roots and shoots of WT
seedlings (Figure 4B, top). However, the transcripts were barely
detectable in mhz4 mutant compared with those in WT
(Figure 4A, bottom). These results indicate that MHZ4 is
responsible for ABA biosynthesis in rice.

Under normal growth condition, the mhz4 roots of etiolated
seedlings are slightly but significantly shorter than the WT roots
(Figure 4C). Treatment of the seedlings with 0.04 uM ABA
completely restored the short root phenotype (Figure 4C),
suggesting that basal levels of endogenous ABA are required for
the maintenance of normal root elongation. The same ABA
concentration showed no obvious stimulation on root growth of
WT seedlings (Figure 4C).

Considering that MHZ4 mutation leads to the reduced ethylene
sensitivity in mhz4 roots, we investigated whether addition of ABA
could rescue the ethylene response of the mutant. The 0.1 uM
ABA was used in the complementation assay because at this
concentration, no obvious inhibitory effects were observed on root
growth in WT seedlings (Figure S1). In the presence of 10 uM
ACC (precursor of ethylene), application of 0.1 uM ABA largely
rescued the defective response of mhz4 roots to ethylene
(Figure 4D and 4E), indicating that reduced ethylene sensitivity
of mhz4 roots is most likely caused by the lack of ABA.

We further examined MHZ4 expression in response to
ethylene. MHZ4 transcripts were significantly induced by ethylene
in WT roots and shoots (Figure 4F). Promoter-GUS analysis also
showed that ethylene treatment stimulated MHZ4 promoter
activity mainly in the vascular tissues of roots (Figure 4G). These
results suggest a role for MHZ4 in root growth control. It should
be noted that although MHZ4 expression was also induced by
ethylene in shoots, the ABA level did not increase after ethylene
treatment (Figure 4A and 4F). This is likely owning to ethylene-
activated ABA catabolism for a homeostasis in shoots [23,30,49].

To further elucidate the role of ethylene-triggered ABA in root
ethylene response, we investigated the expression of ethylene-
inducible genes in response to ABA as well as ABA biosynthesis
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Arabidopsis thaliana, NP_564889; Brachypodium distachyon, XP_003565288; Setaria italica, XP_004968073; Zeay mays, ACN29324; Physcomitrella patens,
Pp1s108_75V6; Anabaena cylindrica, WP_015215835; Synechocystis, BAA18538.

doi:10.1371/journal.pgen.1004701.g002

inhibitor. OsIAA20 transcripts were dramatically induced not only (Figure 4H). These results suggest that ethylene-induced ABA
by ethylene but also by ABA in rice roots (Figure 4H). However, mediates expression of some ethylene-responsive genes. Taken
ethylene induction of OsIAA20 expression was abolished in the together, these findings suggest that ethylene-induced root growth
presence of NDGA (nordihydroguaiaretic acid), an ABA biosyn- inhibition is largely mediated through MHZ4-dependent ABA
thesis inhibitor that specifically inhibits NCED enzyme activity accumulation.
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doi:10.1371/journal.pgen.1004701.g003

Vector

Ethylene-Hypersensitivity of mhz4 Coleoptiles Is Caused restored the mhz4 coleoptile ethylene response to WT levels and

by Enhanced Ethylene Signaling

The mhz4 coleoptiles showed enhanced ethylene response
(Figure 1A, C). We determined whether ABA addition would
complement the mutant response to ethylene. Without ABA, the
coleoptile length of mhz4 mutant was significantly longer than that
of WT seedlings in the presence or absence of ethylene (Figure 5A
and 5B). When 0.1 uM ABA was applied to roots, however, the
mhz4 coleoptiles were identical in length to that of WT seedlings
with or without ethylene treatment (Figure 5A and 5B). These
observations suggest that application of 0.1 uM ABA substantially
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that ABA-deficiency is responsible for the ethylene hypersensitivity
of mhz4 coleoptiles.

Enhanced ethylene response can be caused by ethylene
overproduction and/or enhanced signal transduction. We then
measured ethylene production in mhz4. The mhz4 mutant
produced 2 to 12 times more ethylene than WT and application
of 1 uM ABA to etiolated mhz4 seedlings dramatically reduced the
ethylene levels, suggesting that ABA-deficiency in mhz4 mutant
promote ethylene biosynthesis (Figure 5C). Furthermore, quanti-
tative PCR analysis revealed that the ethylene biosynthetic genes
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doi:10.1371/journal.pgen.1004701.g004
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doi:10.1371/journal.pgen.1004701.g005

OsACS2, OsACS6, OsACO3 and OsACOS5 were all elevated in We next investigated the contribution of ethylene overproduc-
mhz4 shoots, likely contributing to the enhanced ethylene tion to the enhanced ethylene response of mhz4 coleoptiles
production (Figure 5D). through treatment with the ethylene biosynthesis inhibitor 1-
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aminoethoxyvinyl-glycine (AVG). Application of 5 uM AVG
removed most of the increased ethylene production in mhz4
mutant, but exerted limited effect on the coleoptile ethylene
response (Figure 5E and 5F, Figure S2). This result suggests that
ethylene overproduction is not the main reason for the enhanced
ethylene response in mhz4 coleoptiles. We further examined the
possibility of ethylene signaling and found that OsEIN2 transcripts
were particularly enriched in mhz4 shoots compared with that of
WT (Figure 5G). These results suggest that the enhanced ethylene
response of mhz4 coleoptiles is most likely caused by enhanced
ethylene signaling.

MHZ4 Overexpression Alters Ethylene Response in Roots
and Coleoptiles

To further study the function of MHZ4 in rice ethylene
response, we transformed the gene into WT rice plants under the
control of the CaMV 35S promoter. MHZ4-overexpressing
(MHZ4-OX) lines were identified by semiquantitative RT-PCR
(Figure S3), and four representative lines were used for further
analysis. The four transgenic lines all showed slightly but
significantly shorter roots (P<<10~%) and coleoptiles (P<<10~% in
the dark compared with WT seedlings, indicating constitutive
growth inhibition of the roots and coleoptiles in MHZ4-OX plants
(Figure 6A-6C). Upon ethylene treatment, the MHZ4-OX lines
exhibited strong inhibition of root growth but less promotion of
coleoptile growth in comparison with WT seedlings, indicating
enhanced ethylene response in the roots but reduced response in
the coleoptiles of MHZ4-OX lines (Figure 6A—6C). Examination
of the ethylene-inducible gene OsERF002 in the roots and SHR5
in the shoots further proved the ethylene responsiveness of MHZ4-
OX lines (Figure 6D). Additionally, in the shoots, OsEIN2
transcript levels were down-regulated in MHZ4-OX lines
compared with that in WT seedlings (Figure 6E), suggesting that
the reduced ethylene responsiveness of the coleoptiles is likely
related to the reduction of ethylene signaling. Together, these
results indicate that MHZ4 overexpression leads to different
ethylene responses in roots and coleoptiles.

Genetic Interactions of MHZ4 and Ethylene Signaling

Pathway

We further examined the genetic relationship of MHZ4 and
ethylene signaling pathway through double mutant analyses. A
loss-of function Osers] mutant was obtained from the POSTECH
Biotech Center [50] and was identified by PCR-based analyses
(Figure S4). The roots of Osersl etiolated seedlings were
significantly shorter than that of WT seedlings in the absence of
ethylene and displayed a strong ethylene response phenotype
following treatment with 1 ppm ethylene, indicating the presence
of enhanced ethylene response in Osers! roots (Iigure 7A and 7B).
The roots of mhz4 Osers1 double mutant were slightly shorter than
that of the mhz4 single mutant but exhibited ethylene insensitive
response that was indistinguishable from that of mhz4, suggesting
that OsERSI-mediated root ethylene response requires MHZ4
function (Figure 7A and 7B). The coleoptiles of Osersl did not
exhibit apparent ethylene response phenotype compared to that of
WT (Figure 7A).

We constructed mhz4 Osein2 double mutant to analyze the
genetic interaction of MHZ4 with OsEIN2 in coleoptile ethylene
response. The Osein2/mhz7-1 is a mutant showing ethylene
insensitivity in both roots and coleoptiles previously identified [45].
The coleoptiles of mhz4 Osein2 double mutant showed complete
ethylene insensitivity similar to that of Osein2 seedlings but unlike
the mhz4 coleoptiles, indicating that mhz4 requires OsEIN2 in
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regulation of coleoptile ethylene response (Figure 7C and 7D). On
the other hand, the roots of mhz4 Osein2 double mutant showed
complete ethylene insensitivity similar to the case in Osein2 roots
(Figure 7E). Considering that mhz4 roots still had some ethylene
response and this weak response was completely abolished in the
double mutant, we propose that the residual ethylene response
observed in mhz4 roots was dependent on OsEIN2 function.

Effects of MHZ4 on Plant Growth and Yield-Related Traits

We compared phenotypes of field-grown mhz4 mutant, MHZ4-
OX lines and WT plants. At seedling stage, the mhz4 mutant had
flowing leaves with yellow green color compared with WT plants
(Figure 8A). From vegetative to reproductive stages, the leaves of
mhz4 appeared to be pale green and some leaves had brown dots
on the leaf tip (Figure 8B). Chlorophyll (Chl) analysis revealed that
mhz4 had a reduction in Chl b and total Chl contents and an
increase in Chl a/b ratio compared with WT leaves (Figure 8C),
indicating that mhz4 mutation interferes with Chl b biosynthesis.
This may alter the light harvesting antenna size, thus affecting
photosynthetic efficiency [51,52]. For flowering time, both mhz4
mutant and the four MHZ4-OX lines exhibited delayed heading
time in comparison with WT plants (Table S2).

At maturation stage, mhz4 mutant exhibited dramatic growth of
branches developed on upper nodes and adventitious roots
formation on the nodes in comparison with WT plants
(Figure 8D—8F). Similar phenotype was observed in the mhz4
Osein2 double mutant in different years (Figure 8G—8I; Figure
S5). These results suggest that MHZ4 negatively regulate axillary
bud growth and adventitious rooting possibly through ABA
function but not ethylene signaling.

Plant height is an important agronomic trait associated with rice
yield. Ethylene positively regulates rice plant height by promoting
stem elongation [53]. The mhz4 plants were taller than WT and all
the four MHZ4-OX lines were shorter than WT plants (Table S2).
The mhz4 Osein2 double mutant was shorter than mhz4 plants but
was similar to that of Osein2 plants (Table S2). These observations
suggest that MHZ4 negatively regulate plant height in rice in an
OsEIN2-dependent manner. The promoted plant height of mhz4
is possibly due to the increased ethylene production (Figure 5C).
The numbers of effective tiller (tillers producing panicles with at
least five filled grains) in WT and mhz4 were identical, whereas
two of the four MHZ4-OX lines produced more effective tillers
than the WT (Table S2). Panicle length of mhz4 mutant was
shorter than that of WT (Table S2).

Grain-related traits were also examined. The mhz4 grains had
no dormancy and displayed preharvest sprouting phenotype
(Figure S6A and S6B). This is a typical characteristic for ABA-
deficient mutants of rice [54]. Seed-setting rate and 1000-grain
weight were all significantly reduced in mhz4 mutant (Table S2).
The grain shape of WT and mhz4 was further examined. The
mhz4 mutant showed a decrease in grain thickness and an increase
in grain length, implying that MHZ4 mutation affects grain shape
(Figure S6C). We further performed a time course analysis of grain
dry weight during grain filling and found that the grain weight of
mhz4 increased more slowly than that of WT, suggesting that grain
filling is hindered in mhz4 mutant (Figure S6D). These results
indicate that alteration of MHZ4 expression affects branching,
plant height and grain-related traits.

Discussion

We characterized a rice ethylene-response mutant mhz4, which
showed reduced ethylene response in roots but enhanced ethylene
response in coleoptiles. MHZ4 encoded a chloroplast-localized
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doi:10.1371/journal.pgen.1004701.g006

membrane protein homologous to Arabidopsis ABA4 in ABA likely through ethylene-triggered ABA accumulation. Addition-
biosynthesis pathway. MHZ4 mutation reduced ABA level but ally, MHZ4 acts at or upstream of OsEIN2 to negatively regulate

enhanced ethylene production. MHZ4 overexpression enhanced coleoptile ethylene response possibly through modulating
ethylene responses in roots but reduced ethylene response in OsEIN2 expression. MHZ4 also affects agronomic traits. Our
coleoptiles. Genetically, MHZ4 acts at or downstream of the findings reveal a novel mode of interplay between ethylene and
ethylene receptors to positively regulate root ethylene response ABA.
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doi:10.1371/journal.pgen.1004701.g008

The roots of mhz4 seedlings displayed about 20% growth Ethylene-induced ABA mediates expression of some ethylene-
inhibition (80% insensitivity) when treated with 100 ppm ethylene responsive genes; (5) The ethylene receptor OsERSI-mediated
(Figure 1B). By contrast, the WT roots exhibited about 70% root ethylene response required MHZ4 function. The present

inhibition under the same concentration of ethylene. This conclusion that ethylene inhibited root growth largely/partly
comparison reveals that MHZ4 mediates a large part of the through ABA function is in contrast to that observed in
ethylene-inhibition of root growth. Since MHZ4 mutation Arabidopsis, where ethylene-mediated root inhibition is indepen-
reduced ABA contents possibly through disruption of a branch dent of ABA action [21,22,26]. This difference indicates that rice,
of ABA biosynthesis (Figure 4A), we propose that ABA may be the as a monocot or a semiaquatic plant, may have adopted a novel
factor participating in ethylene-inhibition of root growth. Five mechanism for ethylene-ABA interaction.

pieces of evidence supports this conclusion. (1) Exogenous We have identified another rice ABA-deficient mutant mhz5
application of ABA largely recovered the defective response of that showed a similar ethylene response phenotype as mhz4 and

mhz4 roots to ethylene; (2) MHZ4-overexpression resulted in the corresponding gene OsCRTISO encodes the carotenoid
enhanced ethylene response in roots; (3) Ethylene induced MHZ4 isomerase that acts at early step in ABA biosynthetic pathway
expression and ABA accumulation particularly in roots; (4) (Yin et al., unpublished). Consequently, it seems that the ABA-
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dependent ethylene effect on rice root growth is not restricted to
MHZ4, possibly other ABA biosynthetic genes and even the
signaling component genes may affect the root ethylene response
in rice.

In Arabidopsis, extensive studies have established that ethylene
inhibits root growth through auxin action via modulating its
biosynthesis, transport and/or signaling [55-62]. Auxin response
occurring in the elongation zone mediates a substantial part of
ethylene effect on root growth [63]. In monocotyledonous plant
Brachypodium, ethylene may inhibit auxin biosynthesis in IPA
pathway to control root elongation, which is different from the
case in Arabidopsis [64]. In rice, our present results demonstrate
that ethylene inhibits root growth largely through ABA function.
Previous studies also discover that ethylene triggers ABA
biosynthesis, leading to growth inhibition [65]. It is unknown
whether auxin is also involved in this process. ABA may act
through auxin pathway or vice versa, or the two hormones might
act independently to mediate ethylene response. Further investi-
gation toward the relationship among these hormones should shed
light on their complicated interaction in control of rice roots.

MHZ4 mutation drastically enhances ethylene emission possibly
through activation of ethylene biosynthesis genes, and ABA
inhibits ethylene production (Figure 5C). Considering that ethyl-
ene induces ABA to inhibit root growth (Figure 4), the ABA
suppression of ethylene generation may represent a negative
feedback control mechanism to alleviate ethylene effects on roots.

The coleoptiles of mhz4 were slightly but significantly longer
than that of WT seedlings (Figure 5B), indicating that ABA acts as
an inhibitor of rice coleoptile elongation. Similar effect of ABA was
observed in rice seedlings treated with fluridone, an inhibitor of
ABA biosynthesis, which reduced the levels of endogenous ABA in
coleoptiles and in turn promoted coleoptile growth [66]. In
contrast to the ABA effect, ethylene stimulates coleoptile growth in
rice (Figure 1; [46]), suggesting that the two hormones have
antagonistic interaction. That MHZ4 mutation enhanced ethylene
production and ethylene response whereas its overexpression
reduced ethylene response in coleoptiles (Figure 1, 5, and 6)
further supports the antagonistic relationship of ABA and
ethylene. In Arabidopsis, ABA biosynthesis gene ABA2 mutation
also resulted in elevated ethylene production [67]; however,
ethylene response of this mutant was not altered [26,67],
indicating presence of conserved and diverged aspects in
interactions of ABA and ethylene.

In WT shoots, ethylene slightly inhibits ABA levels and may
hence promote shoot/coleoptile elongation (Figure 4A). In mhz4
shoots, the ABA level is slightly induced by ethylene but the
induction is not statistically significant (P =0.089168). Additional-
ly, the ABA level in mhz4 shoots is quite low (about 1/10 of the
WT level) compared with that in WT. The small increase in ABA
contents in mhz4 shoots after ethylene treatment may be not
enough to affect its ethylene response. However, we could not
exclude the possibility that ethylene-altered ABA levels may have
some subtle effects on ethylene responses.

Although elevated ethylene production was observed in mhz4
mutant, AVG treatments that inhibited ethylene production did
not significantly altered ethylene response (Figure 5E), suggesting
that the enhanced ethylene response in mhz4 coleoptiles is likely
caused by enhanced ethylene signaling rather than ethylene
overproduction. In support of this prediction, transcript levels of
the central ethylene signaling component OsEIN2 were up-
regulated in mhz4 shoots (Figure 5G). Further genetic analysis
revealed that mhz4 ethylene-response phenotypes in coleoptiles
required OsEIN2 function. Collectively, MHZ4-dependent ABA
pathway negatively regulates rice coleoptile ethylene response at
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least in part through modulating OsEIN2 expression. It should be
mentioned that although the ethylene overproduction in mhz4
mutant did not play major roles in enhanced ethylene response,
the basal level of ethylene did contribute to the coleoptile
elongation because AVG reduced the coleoptile length of mhz4
to the WT level (Figure 5E).

Our present results reveal that ABA and ethylene are synergistic
in root growth inhibition but antagonistic in coleoptile elongation.
The opposite effects of mhz4 mutation on ethylene response of rice
root and coleoptile may be due to alterations of expressions of
ethylene-responsive genes in these organs (Figure 1D, E). Previous
studies have reported antagonistic interactions of ethylene and
ABA in several processes such as seed germination, stomatal
closure and submerge-induced shoot elongation of semiaquatic
plants, and synergistic interactions in tomato fruit ripening and
abiotic stress responses [68]. These findings imply that ethylene-
ABA interplay is quite complicated, depending on biological
processes, tissue/organs, and plant species. Why plants have these
different interactions remains unclear. It is possible that multiple
interaction manners allow plants to be more adapted to the
changing environments at different growth and developmental
stages.

At mature stage, mhz4 plants had branches and adventitious
roots at nodes of higher positions (Figure 8). This phenomenon is
rarely observed in rice and not dependent on OsEIN2 function of
ethylene signalling through double mutant analysis, suggesting that
ABA itself inhibits branching and formation of adventitious root.
This function probably represents a novel aspect of ABA roles
during rice development. It has been reported that a higher ratio
of ABA to ethylene in rice spikelets is required to maintain a faster
grain-filling rate [69]. In our mhz4 mutant, a low ABA level but a
high ethylene production was noted and the low ratio of ABA to
ethylene may be related to the impaired grain filling (Figure S6).
However, in MHZ4-overexpressing plants, grain-related traits
were not widely improved (Table S2), implying that these traits are
likely regulated in a complicated manner.

The MHZ4 seems to have a negative role on plant height
because the mhz4 mature plants are taller than WT whereas the
overexpressing lines are shorter than WT (Table S2). MHZ4
mutation activated ethylene production which increased plant
height through OsEINZ2 function. Our results are similar with
those obtained in Arabidopsis and tomato, where ABA-deficient
mutants exhibit stunted shoot growth due to increased ethylene
production [67,70]. It should be noted that ethylene promotes
shoot growth in rice but inhibits this process in Arabidopsis and
tomato.

In conclusion, we demonstrate that ethylene inhibits rice root
growth through ABA action, and ABA negatively regulates
coleoptile ethylene response through modulating OsEIN2 expres-
sion. Synergistic interaction in roots but antagonistic interaction in
coleoptiles was revealed between ABA and ethylene, providing
new insights into understanding of their complicated interplay.

Materials and Methods

Plant Materials and Growth Conditions

The mhz4 and Osein2/mhz7-1 mutants were identified
previously [45]. The OsERSI (LOC_Os03g49500) T-DNA
knockout mutant Osers! (PFG_1B-08531.L) is in Dongjin (DJ)
background and was obtained from the POSTECH Biotech
Center [50]. The homogenous Osers] mutation was identified by
PCR using the T-DNA left border primer PR152 (5'-TTGGTTA-
GAGAACAGCACAA-3') and gene-specific primers flanking the
insertion site: PR139 (5'-AATAAATGATTGGCCAGAGC-3')
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and PRI140 (5'-TGCTTCTCAGTATCCTTTGT-3"). The
Osein2/mhz7-1 harbors a 24-bp deletion in the cording region of
OsEIN2 (LOC_Os07g06130), and the mutation was identified as
previously described [45]. For ethylene treatment, rice seedlings were
grown on a stainless steel sieve that was placed in an air-tight plastic
box with various concentrations of ethylene [45]. The seedlings were
incubated at 28°C in the dark for 2 to 3 days as indicated in each
experiment. For ABA or NDGA treatment, rice seedlings were grown
on a stainless steel sieve and various concentrations of ABA (Sigma,
A1049) or 100 pM NDGA (Sigma) was added to the water. The stock
solutions of ABA and NDGA were prepared in ethanol. For AVG
treatment, rice seedlings were grown on eight layers of cheesecloth
saturated with 5 uM AVG (Sigma) in Petri dishes. For field
experiments, rice plants were grown in the Experimental farm
Station of the Institute of Genetics and Developmental Biology in
Beyjing from May to October of each year.

Map-Based Cloning of MHZ4 Gene

T2 mapping populations were generated from crosses between
mhz4 mutant and indica variety Minghui 63. Genomic DNA was
isolated from etiolated seedlings with mutant phenotype. For
primary mapping, bulked segregant analysis (BSA) was performed
using a DNA pool from 15 mutant individuals selected from the F2
population between mhz4 and MHG63. The markers used in BSA
included 30 published SSR markers (http://www.gramene.org)
and 117 insertion-deletion (Idl) markers. A total of 480 mutant
individuals selected from the I2 populations were used for fine
mapping. MHZ4 locus was mapped to chromosome 1 between
Idl1-1.55 and (5'- CAGGGCAATCTGTCAAAGCT-3" and 5'-
CTAAAGATCAGTACTGGGCAC-3") and Id11-1.58 (5'- CTC-
TTTGTCAAGCTTATTTACC-3" and 5'- ACAGATCCG-
TATGTTTATAGTG-3') in the region of 1.55 Mb to 1.58 Mb
(Genebank accession number: NC_008400), which contains 4
genes. The candidate gene was finally determined by DNA
sequencing of all the candidate genes within this region.

To confirm the 18-bp deletion in the genomic DNA of mhz4,
DNA fragment length polymorphism between wild-type (WT) and
the mutant was examined using PCR with primers (5'-
CTCTGTTCCGGCCTCGCGCA -3" and 5'- AGGACGGC-
GATGGTGCCCCA -3'). The 81-bp insertion in the mhz4 cDNA
was detected by PCR amplification of the full-length cDNA using
primers (5'- ATGGCGGCTCTCCTCCTCCT -3' and 5'-
TCAATGTGAGCGACCAATTGAAC-3").

Quantitative PCR and RNA-Seq Analyses

Total RNAs were extracted from various rice tissues using
TRIZOL reagent (Invitrogen) according to the manufacturer’s
mstructions. Quantitative PCR and/or semi-quantitative PCR
were carried out as described previously [45]. The primers are
listed in Table S1. For RNA-seq analysis, two-day-old etiolated
seedlings of WT and mhz4 mutant were treated with air or
10 ppm ethylene for 8 h. The libraries were prepared from 10 pg
total RNA using NEBNext Ultra RNA Library Prep Kit (NEB,
USA), and each sample contains two biological replicates. Clean
reads were mapped to rice MSU7.0 genome using TopHat, and
analyzed using Cufflinks as described [71].

Transient Expression Assay

To generate MHZ4-GFP fusion construct, the MHZ4 coding
sequence was PCR amplified (for primers see Table S1), digested
with Xholl/Ncol and fused in frame to the 5-end of GFP in a
pUC18-based vector under the control of CaMV35S promoter.
The fusion gene was transiently expressed in tobacco leaves by
microprojectile bombardment using a Bio-Rad PDS-1000/He
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particle delivery system [9]. The images were taken using a
confocal microscope (Leica TCS SP5). Excitation/emission
wavelengths were set at 488 nm/500-530 nm for GFP fluores-
cence and at 570 nm/640 nm for chlorophyll autofluorescence.

Generation of Transgenic Rice Plants

To generate MHZ4pro::GUS construct, a 2048-bp promoter
region upstream of the start codon was PCR amplified and cloned
into Sse83871/BamHI sites of pCAMBIA2300-35S-GUS vector
to replace the CaMV35S promoter. To generate MHZ4-
complementation construct, the genomic DNA (4213 bp) of
MHZ4 was PCR amplified and subcloned into Sse838711/Sall-
digested pCAMBIA2300-35S  vector. To generate the
358::MHZ4 construct, the MHZ4 coding sequence was PCR
amplified and inserted into BamHI/Sall-digested pCAM-
BIA2300-35S vector. The primers used for these constructions
are listed in Table S1. The constructs were transfected into
Agrobacterium tumefaciens strain EHA105 by electroporation.
Rice transformation was performed as previously described [42].
The MHZ4pro::GUS or 358::MHZ4 construct was transformed
into rice variety Nipponbare. The MHZ4-complementation
construct was transferred into mhz4 mutant. Positive transgenic
plants were confirmed by PCR using NPT II gene-specific primers
(Table S1). Homozygous transgenic lines were selected using
Kanamycin treatment (50 mg/L).

GUS Staining

Rice seedlings or organs were fixed in 90% acetone on ice for
15 min, rinsed with staining buffer (100 mM NazPO, buffer
pH 7.0, 10 mM EDTA, 5 mM potassium ferricyanide, 5 mM
potassium ferrocyanide, 0.1% Triton X-100), and vacuum
infiltrated with staining solution (staining buffer containing
0.5 mg/ml X-Gluc (Sigma, B8049) for 15 minutes. The samples
were incubated at 37°C in the dark. After staining, green tissues
were decolorized in 70% ethanol and then in ethanol/acetic acid
(6:1) until the chlorophyll was removed. The samples were
observed using stereo microscopy (Leica, M165 FC).

Measurement of Ethylene and ABA

Ethylene production of WT and mhz4 mutant in 4 d-old
etiolated seedlings, two-week-old green seedlings, mature leaves
and panicles was determined by gas chromatography (GC2014,
Shimadzu, Japan) equipped with a flame ionization detector. ABA
contents in WT and mhz4 were detected using 4 d-old etiolated
seedlings or 2 d-old etiolated seedlings treated with or without
10 ppm of ethylene for 48 h. Plant tissues (200 mg) were ground
into powder in liquid nitrogen. ABA was determined by UPLC-
MS/MS (UPLC-Quattro Premier XE) at the National Center of
Plant Gene Research (IGDB, CAS, Bejing, China) as described
[72]. For both ethylene and ABA detection, each material or
treatment includes three duplications.

Measurements of Agronomic Traits in Field-Grown Plants

Heading date of WT, mhz4 mutants and MHZ4-OX lines was
recorded when the first spike of a rice plant emerged about 1 cm
above the sheaths. Twenty to thirty individuals were examined for
each material. After harvest, 20 plants from each material were used
for measurements of agronomic traits as previously described [45].

Supporting Information

Figure S1 ABA dose-response curves for root and coleoptile
growth in WT. Rice seedlings were grown in the dark for 3 d in
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the presence of various concentrations of ABA. Each point is
average of 35 to 40 seedlings and bars indicate SD.

(TIF)

Figure 82 Effects of AVG treatment on ethylene production and
coleoptile ethylene response of mhz4 and WT seedlings. (4)
Ethylene production in the presence of various concentrations of
AVG. Data are the mean £ SD of three replicates. (B) Coleoptile
phenotypes of the seedlings grown in the dark for 2.5 days in the
presence or absence of 10 ppm ethylene, supplemented with or
without 5 pM AVG.

(TIF)

Figure 83 MHZ4 gene expression levels in overexpressing lines
detected using semiquantitative RT-PCR. Actinl was used as a
control.

(TTF)

Figure S4 Identification of the Osers/ mutant. (4) Schematic
representation of OsERSI (LOC_Os03g49500) gene structure.
The T-DNA insertion site and the primer positions are indicated.
(B) PCR genotyping for the OsersI mutant and WT (Dongjin). (C)
OsERSI expression in Osers] and WT detected by RT-PCR
analysis with amplification of the full-length ¢cDNA. Actinl was
used as an internal control.

(TIF)

Figure S5 Quantification of branching and adventitious rooting
in WT, mhz4, Osein2 and mhz4 Osein2 double mutant plants in a
different year. (4) Branch length at each node in main tillers from
20 plants. (B) Percentage of adventitious root formation at each
node in main tillers in 20 plants in (A).

(TIF)

Figure S6 Prcharvest sprouting and grain-related traits of mhz4
mutant. (4) Preharvest sprouting of mhz4. Arrow heads indicate
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